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Abstract: Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing
incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate
normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of
patients with malignant and paired normal tissue samples from gene array cohorts, we identified
the top genes over-expressed in ccRCC. We collected surgically resected ccRCC specimens to further
investigate the transcriptomic results on the proteome level. The differential protein abundance
was evaluated using targeted mass spectrometry (MS). We assembled a database of 558 renal tissue
samples from NCBI GEO and used these to uncover the top genes with higher expression in ccRCC.
For protein level analysis 162 malignant and normal kidney tissue samples were acquired. The most
consistently upregulated genes were IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1 (p < 10−5

for each gene). Mass spectrometry further validated the differential protein abundance of these genes
(IGFBP3, p = 7.53 × 10−18; PLIN2, p = 3.9 × 10−39; PLOD2, p = 6.51 × 10−36; PFKP, p = 1.01 × 10−47;
VEGFA, p = 1.40 × 10−22; CCND1, p = 1.04 × 10−24). We also identified those proteins which correlate
with overall survival. Finally, a support vector machine-based classification algorithm using the
protein-level data was set up. We used transcriptomic and proteomic data to identify a minimal panel
of proteins highly specific for clear cell renal carcinoma tissues. The introduced gene panel could be
used as a promising tool in the clinical setting.

Keywords: kidney cancer; proteomics; biomarker; diagnostics; mass spectrometry

1. Introduction

Clear cell renal carcinoma (ccRCC) is the malignant transformation of epithelial cells
of the kidney and is the most frequent form of kidney tumors with approx. 70% of all
kidney cancer cases [1]. In 2020, there were 431,288 new cases and 179,368 deaths from
kidney and renal pelvis cancer worldwide [2]. Although the rate of new cases seems to rise,
in the past decades, the mortality rates are stagnating in the US [3]. Risk factors of ccRCC
include obesity, smoking, hypertension, older age, and male gender. Patients with a family
history of ccRCC also have a higher risk of developing this disease [4].

Diagnosis of ccRCC is usually based on radiological imaging and tissue slide-based
histopathological examination. Histopathological confirmation is essential before systematic
therapy initiation. [4] Treatment of ccRCC can include surgery, percutaneous ablation [5], and
targeted drugs including VEGF inhibitors [6] and mTOR inhibitors [7]. In the case of localized
disease, surgical intervention is the first-line therapy, and depending on the size and stage,
the intervention can range from partial to radical nephrectomy. If the tumor mass is relatively
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small, ablative techniques (such as cryo-, thermo-, or radio-ablation) are also available [5].
Patients with early-stage and lack of distant metastasis have more favorable survival rates
than those with advanced disease [8]. Patients with advanced disease (stage IV) also require
systemic therapy using mTOR inhibitors, VEGF inhibitors, or checkpoint inhibitors such as
nivolumab, avelumab, pembrolizumab, ipilimumab, and interleukin 2 therapy [9].

MS was introduced almost half a century ago in endocrinology and toxicology for
drug, steroid, and organic acid quantitation and got its main medical application in the
widespread newborn screening [10,11]. Although the setup of MS-based diagnostic appli-
cations can be costly and complicated at the beginning, their versatility and reliability lead
to new applications in clinical settings. In recent years, MS has been proven to be a compar-
atively cost-effective, precise, and quick analysis tool in microbial identification [12]. With
the advent of proteomics and proteogenomics, MS-based techniques have an increasing
role in cancer diagnostics, as well [13].

Uncovering a protein abundance-based panel specific to ccRCC could provide valuable
support for the everyday clinical diagnostic and therapeutic decision-making process. Our
study aimed to utilize large-scale transcriptomic studies to find genes showing higher ex-
pression in ccRCC. Then, by using our patient cohort with available proteomic and clinical
data, we investigated the abundance of expressed proteins and the effect of these proteins on
survival. By specifically focusing on markers with higher expression in tumor tissues, we aim
to increase the specificity of our analysis to solidify future clinical application of the results.

2. Results
2.1. Database Setup

Altogether, we included 23 GEO series which contained 715 samples. Out of these
715 samples, 277 were from normal kidney tissues, and 438 were from ccRCC. Out of the
entire gene array database, 414 samples were paired samples (207 pairs), and we used the
paired specimens for the identification of differentially expressed genes. The entire analysis
pipeline is summarized in Figure 1. Patient characteristics are listed in Table 1.
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Figure 1. Analysis pipeline. Using gene chip data, we identified the top differentially expressed
genes discriminating normal kidney tissue and ccRCC. We verified the identified gene panel using an
independent validation cohort. We performed targeted LC-MS/MS to measure protein abundance for
the selected top genes in the Semmelweis cohort. Using proteomic data, we established an optimal
gene panel and the most accurate model for ccRCC detection. CV: K-fold cross-validation, RFE: recursive
feature elimination, KNN: k-nearest neighbors, RF: random forest, LOGIT: logistic regression, and SVM:
support vector machines.
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Table 1. Patient characteristics of the two datasets with normal and tumor tissues including the Semmelweis
cohort (n = 81 patients) used for MS and the gene chip cohort (n = 207 patients) collected from NCBI GEO.

Semmelweis Cohort Gene Chip Cohort

Min age 37 Min age 35
Median age 62 Median age 64

Max age 89 Max age 85
Mean age 61.5 ± 10.8 Mean age 63.96 ± 13.12

Stage N % Stage N %

Stage I 30 37% Stage I 46 22.2%
Stage II 8 9.9% Stage II 27 13%
Stage III 38 46.9% Stage III 29 14%
Stage IV 2 2.5% Stage IV 18 8.7%

NA 3 3.7% NA 87 57.9%

Gender N % Gender N %

Male 50 61.7% Male 40 19.2%

Female 31 38.3% Female 22 10.6%
NA 145 70.2

Race N Smoker N %

Caucasian 81 yes 23 11.1%

no 40 19.3%
NA 144 79.6%

Obese N %

yes 19 9.2%
no 44 21.3%
NA 144 69.5%

2.2. Genes Over-Expressed in ccRCC

We uncovered significantly differentially expressed genes between paired ccRCC
and adjacent normal tissues. IGFBP3 was found to be the most upregulated gene in
tumor tissues (FC gene chip = 8.15, p = 5.88 × 10−32). The most significant genes include
previously established molecular targets like VEGFA (FC gene chip = 3.02, p = 5.1 × 10−31)
and CCND1 (FC gene chip = 4.12, p = 4.1 × 10−31). PLIN2 and PLOD2 also showed
notable gene expression differences with FC values of 3.85 and 4.2 and adjusted p values
of 3.09 × 10−31 and 5.24 × 10−32, respectively. The top differentially expressed genes are
shown in Figure 2 and listed in detail in Supplementary Table S2.

2.3. Proteomic Analysis

Proteomic analysis was performed using 162 normal and malignant tissue samples.
Of the complete list of the 31 selected genes from gene chip results, we were able to
successfully measure 22 in the targeted LC-MS/MS. Top differentially expressed genes
include PLIN2 (FC = 26.01, p = 3.9 × 10−39), PLOD2 (FC = 15.83, p = 6.51 × 10−36), PFKP
(FC = 12.78, p = 1.01 × 10−47), IGFBP3 (FC = 3.04, p = 7.53 × 10−18), CCND1(FC = 7.9,
p = 1.04 × 10−24) and VEGFA (FC = 3.5, p = 1.4 × 10−22) shown in Figure 3. Differential
analysis between male and female patients resulted in no significant differences. Regression
analysis of age and protein expression showed a significant result only in the case of IGFBP2,
however, the adjusted R-squared value was 0.064. Thus, we can conclude that neither age
nor gender can be considered as a covariate factor. Further results are provided in the
Supplementary Table S4. Using the clusterProfiler R package, we performed an enrichment
analysis; mostly enriched GO terms are connected to migration and adhesion. Results of
the enrichment analysis are presented in Figure 4 and Supplemental Figure S1. Detailed
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results of the protein expression changes are also presented in Table 2. Intensities of the
22 best protein-specific peptides are presented in Supplemental Figure S2.

Table 2. Summary table of differential expression analysis of the twenty genes reaching significance in all
cohorts. The nine genes used in the final SVM model building to detect ccRCC are highlighted with bold.

Gene Chip Cohort SE-MS Cohort

Fold-Change Adjusted p Fold-Change Adjusted p

ANXA1 2.89 1.02 ∗ 10−31 2.26 1.46 ∗ 10−13

ARHGDIB 3.07 6.39 ∗ 10−32 1.68 4.83 ∗ 10−7

C1S 3.64 1.40 ∗ 10−24 1.22 0.1042807
CCND1 4.12 4.09 ∗ 10−31 7.89 1.04 ∗ 10−24

FN1 5.21 5.24 ∗ 10-32 1.99 2.31 ∗ 10−8

GPNMB 3.48 2.07 ∗ 10−28 2.11 1.02 ∗ 10−7

HLA-DPB1 3.45 3.13 ∗ 10−31 1.37 0.012
HLA-DRA 3.17 1.44 ∗ 10−31 1.31 0.056

HMOX1 2.95 4.14 ∗ 10−28 1.32 0.081
HPCAL1 2.86 4.26 ∗ 10−31 1.75 5.33 ∗ 10−6

IGFBP3 8.15 5.88 ∗ 10−32 3.04 7.53 ∗ 10−18

LGALS1 4.57 5.24 ∗ 10−32 1.76 6.03 ∗ 10−8

LIPA 3.07 5.24 ∗ 10−32 1.62 7.13 ∗ 10−7

MYOF 2.86 5.24 ∗ 10−32 1.87 5.39 ∗ 10−8

P4HA1 2.96 5.24 ∗ 10−32 3.15 2.30 ∗ 10−22

PFKP 5.69 5.24 ∗ 10−32 12.78 1.01 ∗ 10−47

PLIN2 3.85 3.09 ∗ 10−31 26.09 3.90 ∗ 10−39

PLOD2 4.21 5.24 ∗ 10−32 15.84 6.51 ∗ 10−36

RARRES2 3.35 2.11 ∗ 10−30 0.53 2.11 ∗ 10−7

TIMP1 3.61 5.24 ∗ 10−32 1.21 0.213
VEGFA 3.02 5.11 ∗ 10−31 3.49 1.40 ∗ 10−22

VIM 2.88 7.36 ∗ 10−32 2.06 4.09 ∗ 10−8
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Figure 4. Gene ontology of the top genes. Gene ontology (GO) analysis of the strongest genes which
discriminate normal kidney and ccRCC in all investigated cohorts. In the Gene-concept network plot
(cnet plot) the linkages of genes and biological concepts are presented as a circular-shaped network.
The color of the genes represents the FC values, and the size of the GO terms represents the associated
genes.

2.4. Survival Analysis Using Proteome-Level Data

To estimate the potential effects of protein expression on patient survival, we per-
formed a survival analysis using all available proteins. Five out of the investigated pro-
teins showed a correlation with survival. Patients with elevated expression of PLOD2
protein showed significantly worse overall survival compared to subjects with lower ex-
pression (p = 2.42 × 10−7, HR = 5.03). Overexpression of further proteins such as TIMP1
(p < 3 × 10−2, HR = 4.71), VIM (p < 3 × 10−2, HR = 2.49), LGALS1 (p < 3 × 10−2, HR = 2.47),
and P4HA1 p < 3 × 10−2, HR = 2.6) also showed significant correlation with impaired
overall survival. Kaplan–Meier curves of the best-performing proteins are shown in
Figure 5; further results of survival analysis are presented in Supplemental Table S3 and as
supplementary figures.

2.5. Validation Using Data from CPTAC

To further support our analysis, we validated our results using CPTAC data from
the study of Clark et al. [14]. Out of the 22 proteins identified by our current study, 21
were also available in the CPTAC dataset. The FC values between the two MS analyses
had comparable results. Correlation analysis of the log2FC values of the CPTAC and SE
cohorts resulted in a significant correlation (R = 0.91, p = 3.7 × 10−9, Figure 6). Top proteins
identified, such as PLIN2 (FC = 6.92, p = 1.7 × 10−33), PLOD2 (FC = 4.89, p = 7.4 × 10−33),
PFKP (FC = 4.2, p = 4.3 × 10−56), IGFBP3 (FC = 2.28, p = 2.1 × 10−31), and VEGFA (FC = 3.12,
p = 3 × 10−32), had significant differences between normal kidney and ccRCC in the CPTAC
study. Further results are displayed in Table 3.



Int. J. Mol. Sci. 2023, 24, 4488 7 of 14

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 14 
 

 

TIMP1 3.61 5.24 ∗ 10−32 1.21 0.213 

VEGFA  3.02 5.11 ∗ 10−31 3.49 1.40 ∗ 10−22 

VIM  2.88 7.36 ∗ 10−32 2.06 4.09 ∗ 10−8 

2.4. Survival Analysis Using Proteome-Level Data 

To estimate the potential effects of protein expression on patient survival, we per-

formed a survival analysis using all available proteins. Five out of the investigated pro-

teins showed a correlation with survival. Patients with elevated expression of PLOD2 

protein showed significantly worse overall survival compared to subjects with lower 

expression (p = 2.42 × 10−7, HR = 5.03). Overexpression of further proteins such as TIMP1 

(p < 3 × 10−2, HR = 4.71), VIM (p < 3 × 10−2, HR = 2.49), LGALS1 (p < 3 × 10−2, HR = 2.47), and 

P4HA1 p < 3 × 10−2, HR = 2.6) also showed significant correlation with impaired overall 

survival. Kaplan–Meier curves of the best-performing proteins are shown in Figure 5; 

further results of survival analysis are presented in Supplemental Table S3 and as sup-

plementary figures 

 
Figure 5. Kaplan–Meier plots of VIM (A), PLOD2 (B), TIMP1 (C), P4HA1 (D), LGALS1 (E), each
protein shows a significant correlation with impaired overall survival.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 14 
 

 

Figure 5. Kaplan–Meier plots of VIM (A), PLOD2 (B), TIMP1 (C), P4HA1 (D), LGALS1 (E), each 

protein shows a significant correlation with impaired overall survival.  

2.5. Validation Using Data from CPTAC 

To further support our analysis, we validated our results using CPTAC data from 

the study of Clark et al. [14]. Out of the 22 proteins identified by our current study, 21 

were also available in the CPTAC dataset. The FC values between the two MS analyses 

had comparable results. Correlation analysis of the log2FC values of the CPTAC and SE 

cohorts resulted in a significant correlation (R = 0.91, p = 3.7 × 10−9, Figure 6). Top proteins 

identified, such as PLIN2 (FC = 6.92, p = 1.7 × 10−33), PLOD2 (FC = 4.89, p = 7.4 × 10−33), 

PFKP (FC = 4.2, p = 4.3 × 10−56), IGFBP3 (FC = 2.28, p = 2.1 × 10−31), and VEGFA (FC = 3.12, p 

= 3 × 10−32), had significant differences between normal kidney and ccRCC in the CPTAC 

study. Further results are displayed in Table 3. 

 

Figure 6. Correlation analysis of log-transformed CPTAC and SE Fold-change values. Each dot 

represents a FC value of a protein, we also added a trend line using a linear model. 

Table 3. Summary table of own MS data and CPTAC protein expression differences. 

SE Data MS CPTAC Protein Data 
 Fold-Change Adjusted p-Value Fold-Change Adjusted p-Value 

ANXA1 2.26 1.46 ∗ 10−13 2.31 6.60 ∗ 10−41 

ARHGDIB 1.68 4.83 ∗ 10−7 1.87 7.10 ∗ 10−42 

C1S 1.22 0.10 1.03 0.49 

FN1 1.99 2.31 ∗ 10−8 1.91 1.90 ∗ 10−25 

GPNMB 2.11 1.02 ∗ 10−7 2.23 2.60 ∗ 10−17 

HLA-DPB1 1.37 0.01 1.96 3.10 ∗ 10−32 

HLA-DRA 1.31 0.06 2.22 7.80 ∗ 10−36 

HMOX1 1.32 0.08 1.67 1.20 ∗ 10−29 

HPCAL1 1.75 5.33 ∗ 10−6 2.50 5.00 ∗ 10−45 

IGFBP3 3.04 7.53 ∗ 10−18 2.28 2.10 ∗ 10−31 

LGALS1 1.76 6.03 ∗ 10−8 1.77 1.60 ∗ 10−33 

LIPA 1.62 7.13 ∗ 10−7 1.91 9.40 ∗ 10−31 

MYOF 1.87 5.39 ∗ 10−8 1.88 2.00 ∗ 10−39 

P4HA1 3.15 2.30 ∗ 10−22 3.20 9.90 ∗ 10−57 

PFKP 12.78 1.01 ∗ 10−47 4.20 4.30 ∗ 10−56 

PLIN2 26.09 3.90 ∗ 10−39 6.92 1.70 ∗ 10−33 

PLOD2 15.84 6.51 ∗ 10−36 4.89 7.40 ∗ 10−33 

RARRES2 0.53 2.11 ∗ 10−7 0.76 1.20 ∗ 10−13 

TIMP1 1.21 0.21 1.10 0.17 

VEGFA 3.49 1.40 ∗ 10−22 3.12 3.00 ∗ 10−32 

Figure 6. Correlation analysis of log-transformed CPTAC and SE Fold-change values. Each dot
represents a FC value of a protein, we also added a trend line using a linear model.
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Table 3. Summary table of own MS data and CPTAC protein expression differences.

SE Data MS CPTAC Protein Data

Fold-Change Adjusted p-Value Fold-Change Adjusted p-Value

ANXA1 2.26 1.46 ∗ 10−13 2.31 6.60 ∗ 10−41

ARHGDIB 1.68 4.83 ∗ 10−7 1.87 7.10 ∗ 10−42

C1S 1.22 0.10 1.03 0.49
FN1 1.99 2.31 ∗ 10−8 1.91 1.90 ∗ 10−25

GPNMB 2.11 1.02 ∗ 10−7 2.23 2.60 ∗ 10−17

HLA-DPB1 1.37 0.01 1.96 3.10 ∗ 10−32

HLA-DRA 1.31 0.06 2.22 7.80 ∗ 10−36

HMOX1 1.32 0.08 1.67 1.20 ∗ 10−29

HPCAL1 1.75 5.33 ∗ 10−6 2.50 5.00 ∗ 10−45

IGFBP3 3.04 7.53 ∗ 10−18 2.28 2.10 ∗ 10−31

LGALS1 1.76 6.03 ∗ 10−8 1.77 1.60 ∗ 10−33

LIPA 1.62 7.13 ∗ 10−7 1.91 9.40 ∗ 10−31

MYOF 1.87 5.39 ∗ 10−8 1.88 2.00 ∗ 10−39

P4HA1 3.15 2.30 ∗ 10−22 3.20 9.90 ∗ 10−57

PFKP 12.78 1.01 ∗ 10−47 4.20 4.30 ∗ 10−56

PLIN2 26.09 3.90 ∗ 10−39 6.92 1.70 ∗ 10−33

PLOD2 15.84 6.51 ∗ 10−36 4.89 7.40 ∗ 10−33

RARRES2 0.53 2.11 ∗ 10−7 0.76 1.20 ∗ 10−13

TIMP1 1.21 0.21 1.10 0.17
VEGFA 3.49 1.40 ∗ 10−22 3.12 3.00 ∗ 10−32

VIM 2.06 4.09 ∗ 10−8 2.27 1.70 ∗ 10−63

CCND1 7.89 1.04 ∗ 10−24 - -

2.6. ccRCC-Specific Model Creation

MS-based protein abundance data of the investigated proteins in the 162 patient samples
were used for establishing the most robust classification algorithm. We investigated multiple
machine learning methods (including k-nearest neighbors, random forest, logistic regression,
and support vector machines) to build a model which can differentiate between normal and
malignant kidney tissues. For the proper estimation of the optimal gene panel, we performed
recursive feature elimination. Of the four methods, SVM delivered the best performance in
both test and training cohorts using nine proteins as input. SVM was able to identify tumor
tissues from MS quantification data with a classification accuracy of 0.98 in the test set (Kappa
= 0.95, sensitivity = 0.95, specificity = 1). Results of all four methods (SVM, k-nearest neighbors,
random forest, and logistic regression) in both training and test sets are displayed in Table 4;
the list of optimal genes is provided in Table 5, and the accuracy of each method with different
gene panels is presented in Supplemental Figure S3.

Table 4. Summary table of classification accuracy, sensitivity, specificity, and Kappa values in the test set
by each applied method. KNN: k-nearest neighbors, RF: random forest, LOGIT: logistic regression, and
SVM: support vector machines.

RF SVM KNN LOGIT

Accuracy 0.958 0.979 0.9375 0.958
Kappa 0.916 0.958 0.8750 0.916

Sensitivity 0.916 0.958 0.8750 0.916
Specificity 1.0 1.0 1.0 1.0
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Table 5. Summary table of ideal gene panels in each algorithm. KNN: k-nearest neighbors, RF:
random forest, LOGIT: logistic regression, and SVM: support vector machines.

RF PFKP PLOD2 PLIN2

SVM PFKP PLIN2 PLOD2 IGFBP3 VEGFA P4HA1 CCND1 VIM ANXA1

KNN PFKP PLIN2 PLOD2 IGFBP3 VEGFA P4HA1 CCND1

LOGIT PFKP PLIN2 PLOD2

3. Discussion

Current clinical diagnostics of cancer rely mainly on pathological examination using
tissue slide staining or immune histochemistry. The importance of tissue inspection is
undoubted. However, with the increasing burden of workload in pathological diagnostics,
the need for further potent diagnostic possibilities and tools capable to provide sufficient
pathological decision support is necessary. While transcriptome-based methods are useful
for this purpose, several studies with promising results were published recently in the
proteome field as well. Establishing proteins with differential abundance in malignant
samples compared to healthy tissues can provide valuable information in diagnostics and
therapeutic target identification. For example, a breast cancer study comparing malignant
breast cancer samples to adjacent normal samples using MS identified a novel luminal
subtype [15]. A comparison of normal prostate and prostate adenocarcinoma samples was
performed to identify a new prognostic biomarker [16].

Like other cancer types, early surgical intervention is the best solution for total recovery
in ccRCC as well. Especially in the early stages, when the disease is localized, partial or
radical nephrectomy is the most frequently performed treatment option [5]. In the present
study, by using transcriptomic data, we uncovered genes with higher expression in ccRCC,
and we then developed an algorithm capable of identifying ccRCC tissues with accuracy
high enough for future clinical application. We focused on genes having higher expression
in the tumor tissues. By using targeted MS data of the selected proteins, our algorithm can
differentiate between normal and malignant tissues and could provide valuable decision
support during the pathological diagnostic process.

The final discriminative algorithm is based on the differential expression of nine
proteins. Of these, VEGFA and CCND1 are well-known cancer biomarkers. VEGFA
(vascular endothelial growth factor A) is used as a target molecule in ccRCC treatment [6].
CCND1 (cyclin D1), a member of the cyclin family, acts as a regulator of cyclin-dependent
kinases (CDKs). CDK inhibitors are widely used in the treatment of breast cancer [17].
PLOD2 (procollagen-lysin 2-oxoglutarate 5-dioxygenase) has a role in the maintenance of
intermolecular collagen cross-links [18]. The aberrant function of PLOD2 might have a
role in ovarian cancer [18] and gastric cancer progression [19]. PFKP (phosphofructokinase
platelet isoform) is responsible for one of the early steps of glycolysis [20]. It might also have
a crucial part in metabolic reprogramming in multiple cancer types like breast cancer [21]
and non-small cell lung cancer [22]. IGFBP3 (insulin-like growth factor binding protein 3)
acts as a carrier protein of several types of IGF molecules, and it is related to cell growth
and differentiation [23]. IGFBP3 has been shown to be important in the development of
colorectal and breast cancer [23,24]. PLIN2 (perilipin 2) is a member of the perilipin family
and takes part in the formation of intracellular lipid storage droplets in multiple tissue
types [25]. It has been connected to the development of atherosclerosis [26] but it has
relevance in cancer initiation and progression as well [25]. Using Western blot technique,
an earlier study has proposed PLIN2 as a potential plasma biomarker in ccRCC [27]. As
both IGFP3 and PLIN2 can be detected in the plasma, we hypothesize that they could also
serve as potential diagnostic biomarkers of ccRCC. Using our current knowledge, however,
we lack any robust evidence for our hypothesis.

By survival analysis, we identified five proteins with a high expression which corre-
lates with poor survival outcomes. Out of these five, PLOD2, VIM, and P4HA1 are also
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highlighted by our model. Both PLOD2 and P4HA1 are enzymes involved in collagen-
related pathways and proved to be a biomarker of epithelial-to-mesenchymal transition
(EMT) in multiple types of cancers [28,29]. While vimentin acts as an important structural
protein and a known marker of EMT, overexpression of these proteins in patients with poor
survival outcomes implies their involvement in EMT and metastasis formation in renal cell
clear carcinoma.

We must note an important limitation of our approach. Although transcriptome-based
examinations can provide valuable input of new potential biomarkers, due to mechanisms
like alternative splicing, mutations, and post-translational modifications, RNA expression
only moderately correlates with protein expression [30]. A further limitation of our model
is the incapability of tumor stage estimation, as staging is usually based on imaging,
pathological examination, and further clinical characteristics.

In conclusion, we used a database of renal samples of paired normal and tumor tissues
to identify biomarkers differentiating renal clear cell cancer (ccRCC) and normal kidney
tissues. With a support vector machine-based machine learning algorithm using nine genes,
we set up a model which can differentiate between normal and malignant ccRCC tissues
using proteomic data. Finally, a set of proteins showed a significant correlation with poor
survival outcomes and might serve as potential biomarkers of progression.

4. Materials and Methods
4.1. Gene Chip Database Comprising Normal and Tumor Tissues

To set up the gene chip cohort, we searched the NCBI GEO repository (https://www.
ncbi.nlm.nih.gov/geo/, accessed on 21 January 2021) for potential ccRCC and normal spec-
imens using keywords “ccRCC” AND “normal” OR “GPL570” OR “GPL571” OR “GPL96”.
Only those datasets involved contained normal tissues adjacent to tumors from HGU133,
HGU133A_2, and HGU133A platforms. We filtered the datasets to exclude xenograft
experiments, pooled samples, and cell line studies. Samples with insufficient description,
nonexistent raw data, and repeatedly published data with distinct identifiers have been
removed. To achieve this, the expression of the first twenty genes was determined, and
samples with identical values were identified. In each case, the first published version was
retained in the dataset. After the manual selection, the remaining samples were normalized
using the MAS5 algorithm by utilizing the Affy Bioconductor library [31]. Finally, a second
scaling normalization was executed to set the mean expression on each array to 1000. JetSet
correction and annotation package was used to pick the proper probe set for each gene [32].

4.2. Determining Differentially Expressed Genes

Data processing and analysis were performed in R version 4.1.0 (https://www.r-
project.org, accessed on 6 June 2021). Wilcoxon test was used to compare the tumorous and
adjacent normal samples. Genes showing significant differences according to the Wilcoxon
test (p < 0.01) have been selected and ranked based on their fold-change values (FC). The
Benjamini–Hochberg method was used for p-value adjustment. Finally, the top 31 genes
with an FC over two were selected for further investigation.

4.3. Ethics Statement

ccRCC samples were collected at the Department of Urology of the Semmelweis
University. An institutional ethical review board approved the study under the number
ID 7852-5/2014/EKU by Semmelweis University Regional and Institutional Committee of
Science and Research Ethics. All subjects were treated under the tenets of the Declaration
of Helsinki and written informed consents were obtained before sample collection.

4.4. Sample Collection

Clear cell renal carcinoma and adjacent normal samples were collected during surgical
resection, and the tissue samples were stored immediately at −80 ◦C.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org
https://www.r-project.org
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Protein isolation was performed using the AllPrep DNA/RNA/Protein Mini Kit by
the manufacturer’s protocol using 30 mg of tissue samples.

4.5. Targeted Liquid Chromatography Coupled Tandem Mass Spectrometry (LC-MS/MS) Analysis

The expression of selected target proteins was verified by targeted LC/MS-MS. After
isolation, protein samples were stored in guanidine isothiocyanate and stored at −80 ◦C.
For targeted quantification, we used stable isotope labeled (SIL) peptides (1–5 respectively
for each protein, labeled at Arg:13C6;15N4, Lys:13C6;15N2); the peptide sequences of the
75 SIL peptides are listed in Supplementary Table S1. Protein concentration was determined
by the bicinchoninic acid (BCA) test. Samples were reduced by dithiothreitol (DTT) and
alkylated using iodoacetamide followed by protein precipitation; then, samples were re-
dissolved in 5% SDS/50 mM ammonium-bicarbonate for the BCA test. Sample volumes
representing 50 µg protein content were digested by trypsin according to the S-trap protocol
(https://files.protifi.com/protocols/s-trap-mini-long-4-1.pdf, accessed on 9 January 2023).

LC-MS/MS analysis was performed using an ACQUITY UPLC M-Class system (Wa-
ters, Milford, MA, USA) with HPLC coupled to an Orbitrap Fusion Lumos Tribrid (Thermo
Fisher Scientific, Waltham, MA, USA) mass spectrometer on the mixture of the protein
digests spiked with the mixture of the SIL peptides. Samples were loaded onto a trap
column, ACQUITY UPLC M-Class Symmetry C18 Trap (100 Å, 5 µm, 180 µm × 20 mm,
2G, V/M); the sample loading time was 5 min; the flow rate was 5 µL/min, and separa-
tion was performed on an ACQUITY UPLC M-Class Peptide BEH C18 (130 Å, 1.7 µm,
75 µm × 250 mm) column with a flow rate of 400 nL/min. MS data acquisition was per-
formed in an internal standard triggered parallel reaction monitoring fashion [33], where
the presence of the corresponding SIL peptides, verified by their expected retention time
and MS2 fragmentation pattern, triggers data acquisition of the targeted peptides with high
sensitivity and resolution. MS signal intensities of the SIL peptides were between 1–5 × 107.
Raw MS data were analyzed using the Skyline software and the MSstats statistical analysis
tool. During the data processing steps, we performed the inbuilt normalization steps of the
MSstats software package, which includes median polishing and log2 transformation.

4.6. Statistical and Functional Analysis, Data Visualization

T-test was used to compare the log2 transformed protein intensity values between the
tumorous and adjacent normal samples. In order to examine if any of the gene candidates
are affected by covariates, we performed a t-test to see if any of the proteins show differential
expression between male and female patients. To examine age as a covariate factor, we
performed regression analysis to see if any of the examined proteins are influenced by age.
Functional analysis was performed using the clusterProfiler R package [34]. For each protein,
we performed Cox proportional hazard regression analysis. To estimate the best cutoff
value for each protein, we examined each possible cutoff values between the lower and the
upper quartiles; these cutoff values have been used for Kaplan–Meier plot visualization. The
Benjamini–Hochberg method was used for p-value adjustment. For survival analysis, we
used the survminer and survival R packages. Further visualization has been done using the R
packages ggplot2 [35], ComplexHeatmap [36], and ggrepel (https://cran.r-project.org/web/
packages/ggrepel/index.html, accessed on 13 December 2022).

4.7. Building a Model for ccRCC Detection

Using the results of the targeted LC/MS-MS log2 intensity values, we tried four
supervised AI methods, k-nearest neighbors (KNN), random forest (RF), logistic regression
(LOGIT), and support vector machines (SVM), to set up the most accurate model for cancer
detection. The data matrix from MS data was the input for the classification model, and we
used the “caret” R package for data preparation and model establishment [37,38]. From
all available patients with MS data, we had to remove one patient due to a missing value.
The entire cohort was split into training and test cohorts with a ratio of 0.7:0.3. Repeated
K-fold cross-validation was used for training cohort resampling with 10 folds and 5 repeats.

https://files.protifi.com/protocols/s-trap-mini-long-4-1.pdf
https://cran.r-project.org/web/packages/ggrepel/index.html
https://cran.r-project.org/web/packages/ggrepel/index.html
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Within the resampling mechanism, we performed recursive feature elimination to specify
the ideal number of used genes for each of the SVM, KNN, LOGIT, and RF algorithms.
Model prediction capability was validated using the test set. The caret package’s built-in
methods were used to determine accuracy, specificity, sensitivity, and kappa value, as well
as for visualization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24054488/s1.
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