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Abstract: Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of my-
ocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action.
iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous sub-
stances and mediate the interaction between iPSCs and target cells. In recent years, more and more
studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may
be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial
ischemia–reperfusion injury, coronary heart disease, and heart failure. In the current research on
myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely
used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifu-
gation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection
and intraductal administration are the most widely used routes of iPSCs-sEV administration. The
characteristics of sEVs derived from iPSCs which were induced from different species and organs,
including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of
iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the
abundance and expression diversity of them. This review focused on the strategies and mechanisms
of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research
and the application of iPSCs-sEVs.

Keywords: induced pluripotent stem cells; extracellular vesicles; exosome; myocardial injury;
heart; mechanisms

1. Introduction

Cardiovascular disease (CVD) is the leading cause of global morbidity and mortality [1,2],
with a 50% increase in associated mortality over the last 30 years [3]. In view of the heavy
social burden, there is an urgent need for effective prevention and control measures. At
present, surgery and drugs are the standard methods for the treatment of CVD, but they
cannot promote the regeneration of damaged myocardial tissue [4]. The myocardial injury
caused by a large number of cardiomyocyte apoptoses is irreversible [5]. Induced pluripo-
tent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem
cells, such as self-regeneration without restriction and differentiation into different tissue
or cell types [6–8]. Compared with embryonic stem cells, they have abundant sources and
have no ethical issues. Moreover, iPSCs induced by autologous cells can also reduce the
risk of immune rejection and can be used as a potential treatment for CVD [9,10].

Like other cell therapies, iPSCs also have disadvantages such as low cell survival,
retention and implantation rates of cells [11]. Recently, many studies have confirmed that
stem cells play a therapeutic role in CVD mainly by inducing paracrine/autocrine growth
factors, immunomodulators, and other bioactive molecules stored in their extracellular
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vesicles (EVs) [12–14]. EVs can be classified into apoptotic bodies (50~1000 nm in diameter),
microvesicles (MVs) (100~1000 nm), and exosomes (40~160 nm, average ~100 nm) based
on their origin [15]. With respect to the biogenesis of EVs, apoptotic bodies are released
by dying cells, which are seldomly used for study possibly due to their large and uneven
particle size. MVs are formed by the direct outward budding of plasma membranes. The
specific process of exosome biogenesis is recognized as a “swallow and spit” process [16]
(Figure 1A). Given that the latest MISEV guidelines suggest the use of “EVs” to generally
denote a heterogeneous extracellular vesicle population, and “exosomes” are defined as
small extracellular vesicles (sEVs), in this review, we focus on exosomes.

Figure 1. Biogenesis of EVs and schematic of exosomal molecular compositions. (A). EVs contain
apoptotic bodies, microvesicles, and exosomes. Apoptotic bodies are formed by membrane folding,
invagination, and shedding with organelles and nuclear debris. MVs are formed by the direct
outward budding of plasma membranes. As for exosomes, at the very beginning, the invagination of
the plasma membrane forms a cup-shaped structure termed early endosome containing cell surface
proteins and other biological substances. Early endosomes then develop into late endosomes, which
invaginate to form multivesicular bodies (MVBs) that finally fuse with the plasma membrane and
release the exosomes. (B). Exosome contains various important biomarkers, such as proteins, lipids,
and miRNAs.

In the myocardial infarction (MI), myocardial ischemia–reperfusion injury (MIRI),
and heart failure (HF) models, studies using stem cell EVs have shown that they can
improve cardiac contractile function in the long term by reducing the initial infarct size,
promoting angiogenesis, reducing fibrosis, and remodeling [17]. EVs derived from stem
cells regulate gene expression by transferring different substances (including protein, DNA,
mRNA, microRNA (miRNA), long-stranded non-coding RNA (lncRNA), and circular
RNA (circRNA)) to achieve targeted regulation between cells [18,19], and they have the
advantages of high biocompatibility, circulatory stability, and low immunogenicity [20],
which open up a new field for resolving the obstacles of stem cell therapy (Figure 1B).

IPSC-derived extracellular vesicles (iPSCs-EVs) can play a therapeutic role similar to
that of iPSCs, and iPSCs-EVs are easier to store and transport [21]. At the same time, some
limitations of cell therapy, such as embolism and tumor occurrence, are avoided [22,23].
According to the comparison of EVs secreted from mesenchymal stem cells (MSCs) and
iPSCs, it was found that while iPSC-EVs enclose proteins that modulate RNA and mi-
croRNA stability and protein sorting, MSC-derived EVs are rich in proteins that organize
the extracellular matrix, regulate locomotion, and influence cell–substrate adhesion. More-
over, compared to their respective cells, iPSC-EVs share 76.63% of proteins with iPSCs [24],
including proteins involved in angiogenesis signaling pathways (VEGF, TGFB1, and An-
giogenin) [25], proteins related to membrane organization and the wound-healing process
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(HSPA5, RAB10, and CLIC1) [26], and proteins involved in cardiac development and
cardiac mechanical and electrical function (GSTM, ARGBP2, CDH11, and ACTA2) [27].

2. Isolation of sEVs from Induced Pluripotent Stem Cells

The efficacious extraction of iPSC-derived extracellular vesicles (iPSC-sEVs) is a pre-
requisite for them to play a therapeutic role. How the high yield, high purity, and high
biological activity of small extracellular vesicles can be obtained is directly related to future
research and applications [28,29]. At present, many techniques for isolating sEVs have
been developed, which depend to a large extent on the physical and chemical properties
of sEVs, and the choice of methods should also take into account specific research needs.
The isolation methods of iPSC-sEVs for the treatment of CVD include ultracentrifugation
(UCF) [30,31], size-exclusion chromatography (SEC) [32], polymer-based precipitation [33],
affinity capture [34], magnetic [35,36] and anion-exchange-based methods [37], or a combi-
nation of the aforementioned methods [38]. In this mini review, we will introduce three of
the most common ones in detail.

UCF is the “gold standard” for isolating sEVs and the most commonly used tech-
nology [39]. The substances with different densities and sizes are separated by using
different centrifugal forces and velocities (Figure 2A). First, larger cells, cell debris, and
dead cells are removed by low-speed centrifugation [40]; then, resuspension with PBS is
performed, and finally, ultracentrifugation is carried out to remove contaminated proteins
to obtain granular exosomes [41]. The temperature of the whole centrifugation process is
kept at 4 ◦C to ensure that proteases, DNA enzymes, and ribonucleases are inactivated [42].
The concentration of exosomes is determined using an enhanced BCA protein analysis
kit [43,44] or nanoparticle tracking analysis, which is an optical particle tracking method
developed to determine the concentration and size distribution of particles [45]. In addition,
Western blotting can provide useful information on the size of the different proteins [46].
ELISA is another established technique for protein quantification and could be executed in
multiple different assay formats [47]. Unlike Western blotting and ELISA, which quantify
targeted proteins on a relatively small scale, mass spectrometry enables high-throughput
peptide profiling [48]. Additionally, small EVs can be characterized by observation under a
transmission electron microscope (TEM) [49]. Moreover, a TEM can also be coupled with
immunogold labeling (immuno-EM) to provide molecular characterization [50]. UCF has
advantages of simple operation, low cost, and repeatability, and it is suitable for large
volume samples [51]. Dong et al. [52] found that when exosomes were separated from
plasma, UCF had the highest separation purity.

However, UCF is time-consuming, and different individual operations will also lead
to different results [53]. In particular, repeated ultra-high-speed centrifugation has adverse
effects on the quality and quantity of exosomes [54,55]. Their structural and biological
integrity may also be damaged [56]. The appearance of the isodensity gradient centrifu-
gation method is an improvement of UCF. By constructing a density gradient medium
(gradually increasing from the top to the bottom of the centrifuge tube), exosomes and
the corresponding isodensity area settle together under the effect of centrifugal force, thus
removing most of the contaminated proteins [57] (Figure 2B).

SEC is a widely recognized method that uses polymers to form porous stationary
phases in chromatographic columns. Exosomes are separated according to the different
path lengths of molecules or particles with different sizes [58] (Figure 2C). Compared
with UCF, the exosomes separated via SEC have more complete physical structures and
biological functions [59] and are suitable for various biological fluids [60]. However, the
products obtained via the SEC method may be contaminated by a large number of proteins
with low purity, which means the method is suitable for samples with small size and
high yield.
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Figure 2. Exosome separation diagram. (A). Ultracentrifugation. First, the samples are centrifuged
at 300× g, 2000× g, and 10,000× g to remove larger cells, cell debris, and dead cells. Secondly, the
exosomes are isolated via ultracentrifugation twice at a speed of more than 100,000× g. (B). Isopycnic
density gradient centrifugation. Impurities are firstly removed via low-speed centrifugation, and
then, the separated samples are added to the constructed density medium (3%, 35%, 45%, and 90%)
for separation. (C). Size-exclusion chromatography.

3. Drug Delivery of iPSC-sEVs in the Repair of Myocardial Injury

EVs can transfer encapsulated proteins and genetic information to recipient cells and
act as information messengers between cells [61]. They are natural biologics with autolo-
gous origin, while they also maintain cargo integrity and stability. Furthermore, exosomal
membranes contain certain proteins that have binding affinities to specific receptors on the
surface of the recipient cells. EV uptake may occur through three mechanisms: endocytosis,
ligand–receptor uptake, and fusion [62]. Upon binding to a specific target cell, EVs have the
ability to initiate intracellular signaling via receptor–ligand interactions, undergo internal-
ization via endocytosis and/or phagocytosis, or even fuse with the target cell’s membrane,
resulting in the transfer of their contents to the cytosol of the recipient cell. These processes
ultimately lead to the modification of the physiological state of the recipient cell [63].

Rab GTP enzymes such as Rab11, Rab35, Rab27a, and Rab27b participate in the pro-
duction of exosomes through vesicle budding [64–66]. The expression of exosomal markers
such as CD63 was shown to be reduced by the silencing of Rab27a and Rab27b [67,68].
To demonstrate in vivo EV transfer between cells, a few groups have recently developed
clever modifications of EVs, allowing their behavior and target cells to be tracked in vivo.
For example, Lai et al. combined Gaussia luciferase with metabolic biotinylation to create
a sensitive EV reporter for multimode imaging, showing that the dynamic processing
of EVs has an accurate spatio-temporal resolution [69]. In order to further evaluate the
accuracy of time and space, Lai et al. also designed optical reporters to label multiple EV
populations, and they found that EV-borne mRNA transfer between cells and the process
is dynamic and multidirectional [70]. IPSC-sEVs contain mRNAs which participate in a
variety of biological processes of cell proliferation, promoting angiogenesis and paracrine
response [71]. In addition to proteins and mRNAs, miRNAs and other non-coding RNAs
are also possible active EVs cargoes. The miRNA secreted in sEVs can be functionally
delivered to target cells, resulting in the direct modulation of their mRNA targets [72].
Mendel et al. reported miRNAs to be present in both iPSCs and iPSC-sEVs; they found miR-
19b, miR-20a, miR-126-3p, miR-130a-3p and miR-210-3p were reportedly involved in the
promotion of angiogenesis, adaptation to hypoxic stress, and regulation of cell cycles [73].
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Exosomes are also highly engineerable, and the strategies include genetic engineering
and chemical modification [74,75]. The engineering of exosomal surface proteins confers
cell and tissue specificity [76]. The surface molecules anchored on exosomes from dif-
ferent cell sources vary, which endows them with selectivity for specific recipient cells.
Bobis-Wozowicz et al. showed that iPSC-sEVs are able to transfer bioactive molecules
delivered to human cardiac mesenchymal stromal cells and were found to exert protective
effects by affecting the transcriptomes and proteomic profiles of the recipient cells [77].
Additionally, iPSC-sEVs combined with small-molecule RNA (miR-499) induce myocardial
differentiation and improve cardiac function through the wnt/β-catenin signaling pathway
in rats [78]. Jung et al. found that exosomal cargo containing miR-106a-363 improved
the murine LV ejection fraction and reduced the myocardial fibrosis of the injured my-
ocardium [79]. For the application of an in vivo model, 15–100 µg is the commonly used
dose for the treatment of mouse or rat models [44], while 2–40 µg/mL is the commonly
used intervention dose for in vitro studies [80].

Consequently, EVs from gene-edited patient-specific iPSCs can be directed to the
specific lesions of each individual patient to promote the salvage of the existing injured
cells. IPSC-sEVs hold potential for a wide spectrum of beneficial effects on cell function
recovery to restore the myocardial injury by simulating and activating the endogenous
repair, consisting of the native transfer of proteins, mRNAs, and miRNAs (Table 1). EVs
represent the most feasible approach to translate the enormous potential of pluripotent
stem cell biology.

Table 1. The drug delivery of iPSC-sEVs in various disease models.

Cell Sources Characterization Models Therapeutic Effects Cargos Reference

miPSCs TEM MI
Mitigate cardiac remodeling and

improve cardiac functions
post myocardial infarction

[81]

miPSCs WB (CD63, Tsg101) MIRI Prevent cardiomyocyte apoptosis
in ischemic myocardium

miR21,
HIF-1α-regulated

miR210
[82]

miPSCs EM, FCM,
RT-PCR MIRI Improve LV function and

enhance angiogenesis

global miRNA and
proteomic profiling

performed
[21]

hiPSCs FCM, BCA MI Reduce fibrosis in
infarcted mice hearts CD82 [83]

hiPSCs TEM, NTA MI Facilitate cardiac repair through
circulating miRNAs

circulating
miRNAs [84]

hiPSCs NTA, WB (CD63) HF
Involved in the remodeling process

and observed in primary
cardiomyocytes

miRNA
mRNA [85]

hiPSCs TEM,
WB (CD63, CD9)

Endothelial cell
in vitro Improve cardiac function and repair miRNA [86]

hiPSCs TEM, NTA H9c2
in vitro

Protect against
oxidative-stress-induced apoptosis miRNA [87]

hiCMs WB (CD63, CD81) Dys-iCMs
In vitro

Decrease reactive oxygen species
and delay mitochondrial permeability [88]

hiCMs TEM,
WB (CD63, CD81) MI Facilitate cardiac repair and avoid

immune rejection
miRNA,
LncRNA [89]

hiCMs WB (CD81, CD63,
flotillin-1, TSTG101) MI Improve recovery from

myocardial infarction in swine [12]

hiMSCs EM, NanoFCM MI

Promote cell viability through
activating the Akt/Nrf2/HO-1 axis

and improve
cardiac function

[90]

hiMSCs TEM, immunoblot Rat skin
wound model

Promote collagen synthesis and
angiogenesis [91]

hiMSCs EM, NTA HF
Improve cardiac function and

increased
EF relative to baseline values

miRNA [92]

hiMSCs TEM, NTA,
RT-PCR

Ischemic Adult
Human

Cardiomyocytes
Alter cardiac tissue-level remodeling miR21-5p [93]
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4. Mechanism of iPSC-sEVs in the Repair of Myocardial Injury

Studies have found that iPSC-sEVs play a protective role in the treatment of CVD by
regulating apoptosis, inflammation, and fibrosis, as well as promoting angiogenesis [94–96].
These are achieved through cell-to-cell communication, which is promoted by substances
such as miRNA, small molecules, and proteins (Figure 3).

Figure 3. Biogenesis and information exchange of exosomes. The invagination of the plasma
membrane forms a cup-shaped structure, which includes proteins on the cell surface and some
components in the extracellular environment, such as proteins, lipids and metabolites, making up
the early endosomes. Early endosomes then develop into late endosomes and invaginate to form
intraluminal vesicles, and the cytoplasmic components also enter intraluminal vesicles, and then, late
endosomes form multivesicular body. Finally, multivesicular body fuses with the plasma membrane
and the exosomes are released. The receptor cells mainly interact with the exosomes through three
ways: (1) the exosomes bind to the receptors on the cell membrane; (2) the exosomes fuse directly
with the cell membrane to release the contents; (3) the exosomes directly enter the cytoplasm in a
complete form through cellular pinocytosis or phagocytosis.

4.1. MI

The death of many CMs after MI leads to strong inflammation. IPSC-sEVs show
angiogenesis and anti-inflammatory potential in the cell therapy of MI [97]. Angiogen-
esis is the main mechanism of improving left ventricular function through cell therapy
after ischemic myocardial injury, which indicates that iPSC-sEVs are a potential target for
MI therapy [98]. More and more studies have shown that exosomes derived from iPSCs
can promote endogenous repair and enhance cardiac function after MI [79,99]. Takeda
et al. [83] isolated exosomes from human iPSCs and administered them successively in
the ischemic myocardial model of mice, which showed that iPSC-sEVs significantly im-
proved myocardial injury after MI by reducing apoptosis and fibrosis. In vitro studies
have also shown that angiogenesis and anti-apoptotic effects depend on the increased
survival of CMs derived from iPSCs, and exosomes from iPSC-derived CMs (iPSC-CMs)
improve myocardial recovery without increasing the probability of arrhythmogenic com-
plications [100]. Gao et al. [101] demonstrated that exosomes from human iPSC-CMs also
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have cardioprotective effects in a swine MI model according to the ejection fraction, wall
stress, myocardial bioenergetics, and cardiac hypertrophy. In vitro studies also showed
their angiogenic and anti-apoptotic effects depending on increased endothelial cell tube
formation and the survival of CMs derived from hiPSCs.

4.2. MIRI

IPSCs-sEVs can promote myocardial regeneration in MIRI, partly due to its ability to
shuttle between cells, which contains a large amount of miRNA, especially miR-146a [102].
MiR-146a inhibits IRAK1 and TNF receptor-related factor 6 to reduce the activation of
NF-κβ to increase cardiac function and reduce myocardial fibrosis after MIRI [103]. Further-
more, miR-21 has been proved to have beneficial effects on damaged myocardium [104,105].
MiR-21 reduces cardiomyocyte apoptosis by regulating the expression of PDCD4 and AKT
pathways [106]. IPSC-sEVs are also involved in regulating signaling pathways such as
WNT [107], which partially remuscularize the injured region, restore cardiac function,
and reduce fibrosis in the infarcted hearts of rats by regulating actin cytoskeleton and
immunogenicity. IPSC-sEVs have anti-apoptotic and antioxidant effects [108]. For example,
iPSC-EVs can protect H9c2 cells from H2O2-induced oxidative stress by inhibiting the acti-
vation of caspase3/7. The intramyocardial injection of iPSC-sEVs before reperfusion can
protect against MIRI. Furthermore, IPSC-sEVs deliver cardioprotective miRNAs, including
nanog-regulated miR-21 and HIF-1α-regulated miR-210 [82].

4.3. Coronary Heart Disease

Coronary heart disease (CAD) is caused by coronary artery stenosis or obstruction
due to atherosclerosis. According to the current view, oxidative stress, endothelial dysfunc-
tion, and inflammation are the three key factors for the occurrence and development of
CAD [109,110]. Many studies have focused on the use of natural drugs and biodegradable
synthetic materials for scaffolds. However, recent studies have combined the use of EVs
derived from iPSCs, providing a promising solution for vascular tissue engineering [111].
IPSC-sEVs participate in paracrine and autocrine communication between cardiovascular
cells through miRNAs and other mediators [112]. EVs released from iPSCs have been
shown to have myocardial protective effects, which can improve the survival rate of CMs.
This process is achieved by inducing macrophage polarization and reducing the transcrip-
tion level of protein kinase by miR-181b [113]. Wang et al. [114] pointed out that iPSC-sEVs
can increase type III collagen and fibronectin, increase vascular permeability, optimize
the vascular environment, and improve cardiac function. More and more studies have
confirmed that EVs from mesenchymal stem cells (MSCs) are effective drug carriers for
the treatment of CAD, but their application is hindered by donor variation and traditional
tissue-derived MSC expansion limitations [102,115]. While small EVs prepared from stan-
dardized MSCs derived from iPSCs (iMSC-sEVs) have unlimited scalability and have the
ability to target CAD therapy [116], some studies show that they have a better protein
structure than iPSC-sEVs, providing more possibilities for the prevention and treatment of
CAD [117,118].

4.4. HF

The lost myocardium after MI is usually replaced by non-contractile scar tissue, which
can lead to congestive heart failure (HF). As CMs are terminally differentiated cells with
minimal regenerative capacity, heart transplantation is the gold standard for the treat-
ment of HF, which faces the obstacles of the shortage of donor hearts, complications after
transplantation, and the long-term failure of the transplanted heart [119]. Tian et al. [120] re-
viewed that the regulation of miRNAs rich in iPSCs-sEVs on Nrf2 and antioxidant proteins
in the heart and brain mediates cardiac function and sympathetic excitation during HF. It is
speculated that the targeted uptake ability of receptor cells can be increased when engi-
neering exosomes with specific miRNAs or antagomirs is used to treat HF. Qiao et al. [121]
confirmed that iPSC-sEVs alleviate cardiac dysfunction by regulating the Akt pathway
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through miR-21-5p. In recent years, lncRNA has become a key regulator of biological
processes involved in the progression of HF [122]. Viereck et al. [123] focused on the
potential of highly conservative lncRNAH19 and found that its expression was down-
regulated in HF. The iMSC-sEVs also play an important role in heart failure. Hou et al. [124]
found that iMSC-sEVs protected endothelial cells from oxidative stress by activating the
Akt/Nrf2/HO-1 signaling pathway in HF models.

5. Challenges in the Treatment of CVD with IPSC-sEVs

It has been confirmed that iPSC-sEVs promote heart repair after MI, which means
they are superior to iPSCs [21]. EVs provide a feasible alternative cell-free therapy in
iPSC medicine. Because of their low immunogenicity, they does not seek a host immune
response, so there is no need to match donor and recipient [125,126]. However, there are
still many problems with the treatment of EVs, such as their production, stability, half-life,
and delivery efficiency. Therefore, it is particularly necessary to comprehensively analyze
the chemical and functional characteristics of the EVs and to study their physiological
characteristics, diversity, and transport mode.

Chandy et al. [127] drew a map of microRNAs in cardiac extracellular secretions
derived from human iPSCs. Human iPSCs were differentiated into iPSC-CMs, iPSC-ECs
and iPSC-CFs, and the EVs were isolated. Their miRNA content was sequenced and
compared with the source cells. Interestingly, only a part of cells miRNAs was found to
be secreted in the EVs and was cell-specific. A comparative analysis showed a decrease
in miR-22 expression in exosomes from cardiac-fibroblast-derived hiPSCs compared with
dermal-fibroblast-derived hiPSC exosomes [27]. Future research needs to conduct in-depth
sequencing analyses to understand the role of other non-coding RNAs in mediating the
improvement of cardiac function. In addition, since iPSC-sEVs carry miRNA and each
miRNA has multiple target genes, it is also necessary to prevent the occurrence of adverse
non-target effects.

IPSCs differentiate into CMs, which are equivalent to fetal CMs, and lack the elec-
trophysiological and ultrastructural characteristics of mature CMs [128,129], such as fully
functional seromuscular reticular structure and transverse canal system. After differenti-
ation, the maximum contractility was lower, calcium storage and circulation decreased,
and the mitochondrial function was immature [130]. In addition, the EVs’ function was
also affected. The current research is mainly focused on using the paracrine function of
iPSCs to play a role, rather than ensuring they differentiate into therapeutic cells [131–133].
Even so, the content and level of iPSC-sEVs will change after serum starvation and hypoxia
treatment [134,135], which makes clinical treatment more difficult. Nachlas et al. [136]
highlight the importance of a 3D culture environment to influence cell phenotype and
function. In addition, 3D-printed cardiac patches and personalized hydrogel can help
iPSCs’ further maturation [136–138]. Furthermore, gene editing technology can be used
to achieve the richness of iPSC cells [26,139]. For instance, CRISPR/Cas9 is used for gene
editing based on homologous recombination to obtain mutation-corrected iPSCs so that
the pathogenic mutation can be corrected without preserving the genetic footprint [26].

However, if these molecules are to be used in clinical therapy, the standard procedures
for purifying exosomes need to be optimized. Overall, small EVs play critical roles in
cell–cell communication through endocytosis, phagocytosis, and membrane fusion. EV
uptake was found to correlate with intracellular and microenvironmental acidity [140,141],
suggesting that the microenvironment influences the delivery efficiency of EVs. In the case
of factors operating at the intracellular level, delivery into the correct cellular compartments
while maintaining the stability, integrity, and biological potency of these factors remains
challenging.

Furthermore, the content of exosomes can be modified by stress preconditioning [142],
serum deprivation [143], or the genetic modification and epigenetic reprogramming of iP-
SCs [144–146]. Recent studies show that exosomes can cross the BBB (blood–brain barrier),
and a leaky BBB state in mental disorders (such as stress, depression, and schizophrenia)
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may be initiated by exosomes released from cells being influenced by this disease state [147].
Chronic stress can cause immune disorders and inflammatory responses. Moreover, exo-
somal components are strongly influenced by inflammatory signals such as LPS, tumor
necrosis factor (TNF)-α [148], and interferon (IFN)-γ [149]. They could modulate the ther-
apeutic efficacy via the regulation of differential gene expressions [150,151] and largely
influence the effect of iPSC-sEV treatment.

6. Prospects and Conclusions

The potential of IPSC-sEVs in the treatment of CVD is exciting. Compared with
cells, EVs cannot self-replicate, which reduces tumor toxicity. The future application of
IPSC-sEVs is likely to be combined with other drugs or systems. With the development of
front-line technologies, including scRNA-seq, multi-omics, genome editing, and machine
learning, they possess great potential for the analysis of exosome contents and their transfer
specificity [152]. Exosomes can be endogenously modified by the genetic modification
of production cells to produce cells overexpressing desired therapeutic substances that
are eventually incorporated into exosomes upon secretion [153]. Alternatively, exosomes
can be loaded exogenously using various techniques, such as sonication [154], membrane
permeabilization [155], and extrusion [156]. Therefore, in order to ensure their safety and
effectiveness, a number of challenges must be addressed, including the characteristics
of the content, specific molecular mechanisms for disease treatment, and biosafety as a
drug delivery system. In short, more basic research and new technologies are needed to
fully realize the therapeutic potential of exosomes derived from iPSCs and accelerate their
clinical application.
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