The Role of Physical Exercise in Opioid Substitution Therapy: Mechanisms of Sequential Effects
Abstract
:1. Introduction
2. Role of Internal Activation—Self-Regulation—Commitment in Opioid Substitution Programs
3. The Role of Temporal Placement (Serialization) of the Sequence of Internal Activation—Self-Regulation—Commitment in Opioid Substitution Programs
4. Mechanisms of Sequential Effects of Exercise in Opioid Substitution Therapy—Biological Background
4.1. Exercise as an Internal Activation Factor
4.2. Exercise as a Self-Regulation and Management Factor
4.3. Exercise as a Factor of Commitment and Adherence (Compliance)
5. Mechanisms of Sequential Effects of Exercise in Opioid Substitution Therapy—Psychosocial Background
5.1. Exercise as an Internal Activation Factor
5.2. Exercise as a Self-Regulation and Management Factor
5.3. Exercise as a Factor of Commitment and Adherence (Compliance)
6. A Conspectus
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerrigan, S.; Goldberger, B.A. Opioids. In Principles of Forensic Toxicology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 347–369. [Google Scholar]
- Owiti, J.A.; Benson, M.; Maplanka, M.; Oluseye, L.; Carvalho, D. Is Methadone Safe for Patients with Opioid Use Disorder and Coronavirus Disease 2019 Infection? J. Addict. Nurs. 2022, 33, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Niles, J.K.; Gudin, J.; Radcliff, J.; Kaufman, H.W. The Opioid Epidemic within the COVID-19 Pandemic: Drug Testing in 2020. Popul. Health Manag. 2021, 24, S43–S51. [Google Scholar] [CrossRef] [PubMed]
- Haley, D.F.; Saitz, R. The Opioid Epidemic during the COVID-19 Pandemic. JAMA 2020, 324, 1615–1617. [Google Scholar] [CrossRef]
- Wainwright, J.J.; Mikre, M.; Whitley, P.; Dawson, E.; Huskey, A.; Lukowiak, A.; Giroir, B.P. Analysis of Drug Test Results before and after the US Declaration of a National Emergency Concerning the COVID-19 Outbreak. JAMA 2020, 324, 1674–1677. [Google Scholar] [CrossRef] [PubMed]
- Ochalek, T.A.; Cumpston, K.L.; Wills, B.K.; Gal, T.S.; Moeller, F.G. Nonfatal Opioid Overdoses at an Urban Emergency Department during the COVID-19 Pandemic. JAMA 2020, 324, 1673–1674. [Google Scholar] [CrossRef]
- Jalal, H.; Buchanich, J.M.; Roberts, M.S.; Balmert, L.C.; Zhang, K.; Burke, D.S. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science 2018, 361, eaau1184. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.A.P.S.; Gold, M. Treatment resistant opioid use disorder (TROUD): Definition, rationale, and recommendations. J. Neurol. Sci. 2020, 411, 116718. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, Q.; Zheng, C.; John Rush, A.; Volkow, N.D.; Xu, R. Drug repurposing for opioid use disorders: Integration of computational prediction, clinical corroboration, and mechanism of action analyses. Mol. Psychiatry 2021, 26, 5286–5296. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Cousins, G.; Durand, L.; Barry, J.; Boland, F. Retention of patients in opioid substitution treatment: A systematic review. PLoS ONE 2020, 15, e0232086. [Google Scholar] [CrossRef]
- Hedegaard, H.; Warner, M.; Minino, A.M. Drug Overdose Deaths in the United States, 1999–2016; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2017; pp. 1–8.
- Dansie, E.J.; Turk, D.C.; Martin, K.R.; Van Domelen, D.R.; Patel, K.V. Association of chronic widespread pain with objectively measured physical activity in adults: Findings from the National Health and Nutrition Examination survey. J. Pain 2014, 15, 507–515. [Google Scholar] [CrossRef]
- Beitel, M.; Stults-Kolehmainen, M.; Cutter, C.J.; Schottenfeld, R.S.; Eggert, K.; Madden, L.M.; Kerns, R.D.; Liong, C.; Ginn, J.; Barry, D.T. Physical activity, psychiatric distress, and interest in exercise group participation among individuals seeking methadone maintenance treatment with and without chronic pain. Am. J. Addict. 2016, 25, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.L.; Sniehotta, F.F.; Vadiveloo, T.; Donnan, P.T.; Witham, M.D. Association Between Objectively Measured Physical Activity and Opioid, Hypnotic, or Anticholinergic Medication Use in Older People: Data from the Physical Activity Cohort Scotland Study. Drugs Aging 2018, 35, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, O.; Borchgrevink, P.C.; Fredheim, O.M.; Mahic, M.; Romundstad, P.; Skurtveit, S. Prevalence of use of non-prescription analgesics in the Norwegian HUNT3 population: Impact of gender, age, exercise and prescription of opioids. BMC Public Health 2015, 15, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, R.E.; Higgins, S.T.; Silverman, K.; Thomas, C.S.; Badger, G.J.; Bigelow, G.; Stitzer, M. Abstinence-contingent reinforcement and engagement in non-drug-related activities among illicit drug abusers. Psychol. Addict. Behav. 2008, 22, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Etten, M.L.; Higgins, S.T.; Budney, A.J.; Badger, G.J. Comparison of the frequency and enjoyability of pleasant events in cocaine abusers vs. non-abusers using a standardized behavioral inventory. Addiction 1998, 93, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Golna, X.; Mallioris, M.; Souliotis, K. Papadimitriou Opioid Addiction, Incidence of Opioid Addiction, Social and Economic Costs. Arch. Greek Med. 2014, 31, 13–18. [Google Scholar]
- Blake, D.; Pooley, S.; Lyons, A. Stigma and disaster risk reduction among vulnerable groups: Considering people receiving opioid substitution treatment. Int. J. Disaster Risk Reduct. 2020, 48, 101588. [Google Scholar] [CrossRef]
- Stotts, A.L.; Dodrill, C.L.; Kosten, T.R. Opioid dependence treatment: Options in pharmacotherapy. Expert Opin. Pharmacother. 2009, 10, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.J.; Cao, J.; Newman, A.H.; Xi, Z.X. Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology 2019, 158, 107609. [Google Scholar] [CrossRef]
- Taylor, J.L.; Samet, J.H. Opioid Use Disorder. Ann. Intern. Med. 2022, 175, ITC1–ITC16. [Google Scholar] [CrossRef]
- Blum, K.; Baron, D. Opioid Substitution Therapy: Achieving Harm Reduction While Searching for a Prophylactic Solution. Curr. Pharm. Biotechnol. 2019, 20, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Mattick, R.P.; Breen, C.; Kimber, J.; Davoli, M. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst. Rev. 2009, 3, CD002209. [Google Scholar] [CrossRef] [PubMed]
- Mattick, R.P.; Breen, C.; Kimber, J.; Davoli, M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst. Rev. 2014, 2, CD002207. [Google Scholar] [CrossRef] [PubMed]
- Lawrinson, P.; Ali, R.; Buavirat, A.; Chiamwongpaet, S.; Dvoryak, S.; Habrat, B.; Jie, S.; Mardiati, R.; Mokri, A.; Moskalewicz, J.; et al. Key findings from the WHO collaborative study on substitution therapy for opioid dependence and HIV/AIDS. Addiction 2008, 103, 1484–1492. [Google Scholar] [CrossRef]
- Ward, J.; Hall, W.; Mattick, R.P. Role of maintenance treatment in opioid dependence. Lancet 1999, 353, 221–226. [Google Scholar] [CrossRef]
- Mitchell, C.; Dolan, N.; Dursteler, K.M. Management of dependent use of illicit opioids. BMJ 2020, 368, m710. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, L.; Grebely, J.; Stone, J.; Hickman, M.; Vickerman, P.; Marshall, B.D.L.; Bruneau, J.; Altice, F.L.; Henderson, G.; Rahimi-Movaghar, A.; et al. Global patterns of opioid use and dependence: Harms to populations, interventions, and future action. Lancet 2019, 394, 1560–1579. [Google Scholar] [CrossRef]
- Fischer, B.; Rehm, J.; Kim, G.; Kirst, M. Eyes wide shut? --A conceptual and empirical critique of methadone maintenance treatment. Eur. Addict. Res. 2005, 11, 10–14. [Google Scholar] [CrossRef]
- Maruyama, A.; Macdonald, S.; Borycki, E.; Zhao, J. Hypertension, chronic obstructive pulmonary disease, diabetes and depression among older methadone maintenance patients in British Columbia. Drug Alcohol Rev. 2013, 32, 412–418. [Google Scholar] [CrossRef]
- Wapf, V.; Schaub, M.; Klaeusler, B.; Boesch, L.; Stohler, R.; Eich, D. The barriers to smoking cessation in Swiss methadone and buprenorphine-maintained patients. Harm Reduct. J. 2008, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Best, D.; Lehmann, P.; Gossop, M.; Harris, J.; Noble, A.; Strang, J. Eating too little, smoking and drinking too much: Wider lifestyle problems among methadone maintenance patients. Addict. Res. 1998, 6, 489–498. [Google Scholar] [CrossRef]
- Clarke, J.G.; Stein, M.D.; McGarry, K.A.; Gogineni, A. Interest in smoking cessation among injection drug users. Am. J. Addict. 2001, 10, 159–166. [Google Scholar] [CrossRef]
- Demarie, D.; Marletta, G.; Imazio, M.; Cappa, C.; Ferro, S.; Compostino, R.; De Vivo, E.; Trinchero, R.; Bignamini, E. Cardiovascular-associated disease in an addicted population: An observation study. J. Cardiovasc. Med. 2011, 12, 51–54. [Google Scholar] [CrossRef]
- Teichtahl, H.; Wang, D.; Cunnington, D.; Kronborg, I.; Goodman, C.; Prodromidis, A.; Drummer, O. Cardiorespiratory function in stable methadone maintenance treatment (MMT) patients. Addict. Biol. 2004, 9, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Troberg, K.; Hakansson, A.; Dahlman, D. Self-Rated Physical Health and Unmet Healthcare Needs among Swedish Patients in Opioid Substitution Treatment. J. Addict. 2019, 2019, 7942145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Chen, Y.; Wang, X.; Zhou, X.; Xu, Y.; Ma, Z.; Sun, Y.; Jiang, M. A comparison of bone quality and its determinants in young opioid-dependent women with healthy control group. Drug Alcohol Depend. 2017, 175, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Gotthardt, F.; Huber, C.; Thierfelder, C.; Grize, L.; Kraenzlin, M.; Scheidegger, C.; Meier, C. Bone mineral density and its determinants in men with opioid dependence. J. Bone Miner. Metab. 2017, 35, 99–107. [Google Scholar] [CrossRef]
- Dunn, K.E.; Brooner, R.K.; Clark, M.R. Severity and interference of chronic pain in methadone-maintained outpatients. Pain Med. 2014, 15, 1540–1548. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.M.; Antoine, D.G.; Nanda, L.; Geniaux, H.; Lofwall, M.R.; Bigelow, G.E.; Umbricht, A. Increases in body mass index and cardiovascular risk factors during methadone maintenance treatment. J. Opioid Manag. 2019, 15, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Peles, E.; Schreiber, S.; Sason, A.; Adelson, M. Risk factors for weight gain during methadone maintenance treatment. Subst. Abus. 2016, 37, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.E.; Finan, P.H.; Andrew Tompkins, D.; Strain, E.C. Frequency and correlates of sleep disturbance in methadone and buprenorphine-maintained patients. Addict. Behav. 2018, 76, 8–14. [Google Scholar] [CrossRef]
- Barry, D.T.; Beitel, M.; Breuer, T.; Cutter, C.J.; Savant, J.; Schottenfeld, R.S.; Rounsaville, B.J. Conventional and unconventional treatments for stress among methadone-maintained patients: Treatment willingness and perceived efficacy. Am. J. Addict. 2011, 20, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millson, P.E.; Challacombe, L.; Villeneuve, P.J.; Fischer, B.; Strike, C.J.; Myers, T.; Shore, R.; Hopkins, S.; Raftis, S.; Pearson, M. Self-perceived health among Canadian opiate users: A comparison to the general population and to other chronic disease populations. Can. J. Public Health 2004, 95, 99–103. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Department of Mental Health, World Health Organization, International Narcotics Control Board, United Nations Office on Drugs, & Crime. Guidelines for the Psychosocially Assisted Pharmacological Treatment of Opioid Dependence; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Rounsaville, B.J.; Weissman, M.M.; Kleber, H.; Wilber, C. Heterogeneity of psychiatric diagnosis in treated opiate addicts. Arch. Gen. Psychiatry 1982, 39, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.; Weinberg, T.; Caboral-Stevens, M. The 21st Century Opioid Addiction: A Concept Analysis and Implications for Nursing. J. Addict. Nurs. 2020, 31, 17–22. [Google Scholar] [CrossRef]
- Papantos, D.; Kafetzopoulos, E. The biopsychosocial model of addiction. Arh. Hell. Med. 2019, 36, 393–411. [Google Scholar]
- Jake-Schoffman, D.E.; Berry, M.S.; Donahue, M.L.; Christou, D.D.; Dallery, J.; Rung, J.M. Aerobic Exercise Interventions for Patients in Opioid Maintenance Treatment: A Systematic Review. Subst. Abuse. 2020, 14, 1178221820918885. [Google Scholar] [CrossRef]
- Brat, G.A.; Agniel, D.; Beam, A.; Yorkgitis, B.; Bicket, M.; Homer, M.; Fox, K.P.; Knecht, D.B.; McMahill-Walraven, C.N.; Palmer, N.; et al. Postsurgical prescriptions for opioid naive patients and association with overdose and misuse: Retrospective cohort study. BMJ 2018, 360, j5790. [Google Scholar] [CrossRef] [Green Version]
- Brellenthin, A.G.; Lee, D.C. Physical Activity and the Development of Substance Use Disorders: Current Knowledge and Future Directions. Prog. Prev. Med. 2018, 3, e0018. [Google Scholar] [CrossRef]
- Farisco, M.; Evers, K.; Changeux, J.P. Drug Addiction: From Neuroscience to Ethics. Front. Psychiatry 2018, 9, 595. [Google Scholar] [CrossRef]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Collins, F.S. The Role of Science in Addressing the Opioid Crisis. N. Engl. J. Med. 2017, 377, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Elman, I.; Zubieta, J.K.; Borsook, D. The missing p in psychiatric training: Why it is important to teach pain to psychiatrists. Arch. Gen. Psychiatry 2011, 68, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, C.M. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 2011, 61, 1109–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elman, I.; Borsook, D.; Volkow, N.D. Pain and suicidality: Insights from reward and addiction neuroscience. Prog. Neurobiol. 2013, 109, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Boyle, M. Neuroscience of Addiction: Relevance to Prevention and Treatment. Am. J. Psychiatry 2018, 175, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiatry Rep. 2011, 13, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Patel, S. Translational evidence for the involvement of the endocannabinoid system in stress-related psychiatric illnesses. Biol. Mood Anxiety Disord. 2013, 3, 19. [Google Scholar] [CrossRef]
- Allsop, D.J.; Copeland, J.; Lintzeris, N.; Dunlop, A.J.; Montebello, M.; Sadler, C.; Rivas, G.R.; Holland, R.M.; Muhleisen, P.; Norberg, M.M.; et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: A randomized clinical trial. JAMA Psychiatry 2014, 71, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Justinova, Z.; Panlilio, L.V.; Moreno-Sanz, G.; Redhi, G.H.; Auber, A.; Secci, M.E.; Mascia, P.; Bandiera, T.; Armirotti, A.; Bertorelli, R.; et al. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse. Neuropsychopharmacology 2015, 40, 2185–2197. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.; Strang, J. Medication Treatment of Opioid Use Disorder. Biol. Psychiatry 2020, 87, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Leshner, A.I.; Dzau, V.J. Medication-Based Treatment to Address Opioid Use Disorder. JAMA 2019, 321, 2071–2072. [Google Scholar] [CrossRef] [PubMed]
- Connery, H.S. Medication-assisted treatment of opioid use disorder: Review of the evidence and future directions. Harv. Rev. Psychiatry 2015, 23, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlisle, V.; Maynard, O.; Padmanathan, P.; Hickman, M.; Thomas, K.; Kesten, J. Factors influencing recovery in opioid substitution treatment: A systematic review and thematic synthesis. arXiv, 2020, in press. [CrossRef]
- Shreffler, J.; Genova, G.; Huecker, M. Physical activity and exercise interventions for individuals with opioid use disorder: A scoping review. J. Addict. Dis. 2022, 40, 452–462. [Google Scholar] [CrossRef]
- Alpers, S.E.; Furulund, E.; Pallesen, S.; Mamen, A.; Dyrstad, S.M.; Fadnes, L.T. The Role of Physical Activity in Opioid Substitution Therapy: A Systematic Review of Interventional and Observational Studies. Subst. Abuse. 2022, 16, 11782218221111840. [Google Scholar] [CrossRef]
- Torres, E.; Hillman, A.R. Clinical Exercise Considerations for Opioid Addiction Recovery. J. Clin. Exerc. Physiol. 2021, 10, 117–125. [Google Scholar] [CrossRef]
- Fong, T. Aerobic Exercise: An Adjunctive Therapy for Buprenorphine/Naloxone Retention in Opioid Use Disorder. Ph.D. Thesis, Yale University, New Haven, CT, USA, 2020. [Google Scholar]
- Rosa, H.Z.; Barcelos, R.C.S.; Segat, H.J.; Roversi, K.; Dias, V.T.; Milanesi, L.H.; Burger, M.E. Physical exercise modifies behavioral and molecular parameters related to opioid addiction regardless of training time. Eur. Neuropsychopharmacol. 2020, 32, 25–35. [Google Scholar] [CrossRef]
- Greenwood, B.N. The role of dopamine in overcoming aversion with exercise. Brain Res. 2019, 1713, 102–108. [Google Scholar] [CrossRef]
- Zhanga, L.; Yuanb, T.F. Exercise and substance abuse. Exerc. Brain Health 2019, 147, 269–280. [Google Scholar]
- Weinstock, J.; Farney, M.R.; Elrod, N.M.; Henderson, C.E.; Weiss, E.P. Exercise as an Adjunctive Treatment for Substance Use Disorders: Rationale and Intervention Description. J. Subst. Abuse. Treat. 2017, 72, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Caviness, C.M.; Bird, J.L.; Anderson, B.J.; Abrantes, A.M.; Stein, M.D. Minimum recommended physical activity, and perceived barriers and benefits of exercise in methadone maintained persons. J. Subst. Abuse. Treat. 2013, 44, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Stein, M.D.; Caviness, C.M.; Anderson, B.J.; Abrantes, A. Sitting Time, But Not Level Of Physical Activity, Is Associated With Depression In Methadone-Maintained Smokers. Ment. Health Phys. Act. 2013, 6, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Abrantes, A.M.; Van Noppen, D.; Bailey, G.; Uebelacker, L.A.; Buman, M.; Stein, M.D. A Feasibility Study of a Peer-Facilitated Physical Activity Intervention in Methadone Maintenance. Ment. Health Phys. Act. 2021, 21. [Google Scholar] [CrossRef]
- Uebelacker, L.A.; Van Noppen, D.; Tremont, G.; Bailey, G.; Abrantes, A.; Stein, M. A pilot study assessing acceptability and feasibility of hatha yoga for chronic pain in people receiving opioid agonist therapy for opioid use disorder. J. Subst. Abuse Treat. 2019, 105, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Colledge, F.; Vogel, M.; Dursteler-Macfarland, K.; Strom, J.; Schoen, S.; Puhse, U.; Gerber, M. A pilot randomized trial of exercise as adjunct therapy in a heroin-assisted treatment setting. J. Subst. Abuse Treat. 2017, 76, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutter, C.J.; Schottenfeld, R.S.; Moore, B.A.; Ball, S.A.; Beitel, M.; Savant, J.D.; Stults-Kolehmainen, M.A.; Doucette, C.; Barry, D.T. A pilot trial of a videogame-based exercise program for methadone maintained patients. J. Subst. Abuse Treat. 2014, 47, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Moreno, F.; Camara-Sanchez, M.; Tremblay, J.F.; Riera-Rubio, V.J.; Gil-Paisan, L.; Lucia, A. Benefits of exercise training in Spanish prison inmates. Int. J. Sports Med. 2007, 28, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Ma, Z.; Yang, X.; Sun, Y. Effect of Eight-Month Exercise Intervention on Bone Outcomes of Young Opioid-Dependent Women. Int. J. Environ. Res. Public Health 2021, 18, 11336. [Google Scholar] [CrossRef]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L., 3rd. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chegol, R.; Gholami, M.; Matinhomaee, H.; Abednatanzi, H.; Ghazalian, F. The effect of aerobic and resistance training with different dose of Methadone on fibrinogen and lipid profile in addicted men. J. Sport Biosci. 2020, 12, 291–305. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Physical Activity for a Healthy Weight. 2019. Available online: https://www.cdc.gov/healthyweight/physical_activity/index.html (accessed on 10 December 2022).
- Dolezal, B.A.; Neufeld, E.V.; Boland, D.M.; Martin, J.L.; Cooper, C.B. Interrelationship between Sleep and Exercise: A Systematic Review. Adv. Prev. Med. 2017, 2017, 1364387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngstedt, S.D.; O’Connor, P.J.; Dishman, R.K. The effects of acute exercise on sleep: A quantitative synthesis. Sleep 1997, 20, 203–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, L.J.; Rawson, R.A. Exercise for Substance Use Disorders. In Textbook of Addiction Treatment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 493–503. [Google Scholar]
- Abdullah, M.; Huang, L.C.; Lin, S.H.; Yang, Y.K. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: A mini review. Biomarkers 2022, 27, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Meseguer, J.; Tortosa-Martínez, J.; Cortell-Tormo, J.M. The Benefits of Physical Exercise on Mental Disorders and Quality of Life in Substance Use Disorders Patients. Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3680. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, T.; Chen, J.; Lu, Y.; Zhou, C.; Chang, Y.K. Acute Aerobic Exercise Ameliorates Cravings and Inhibitory Control in Heroin Addicts: Evidence from Event-Related Potentials and Frequency Bands. Front. Psychol. 2020, 11, 561590. [Google Scholar] [CrossRef]
- Barha, C.K.; Davis, J.C.; Falck, R.S.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocrinol. 2017, 46, 71–85. [Google Scholar] [CrossRef]
- Weinstock, J.; Wadeson, H.K.; VanHeest, J.L. Exercise as an adjunct treatment for opiate agonist treatment: Review of the current research and implementation strategies. Subst. Abus. 2012, 33, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Cooney, G.M.; Dwan, K.; Greig, C.A.; Lawlor, D.A.; Rimer, J.; Waugh, F.R.; McMurdo, M.; Mead, G.E. Exercise for depression. Cochrane Database Syst. Rev. 2013, 2013, CD004366. [Google Scholar] [CrossRef]
- Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev. 2013, 37, 1622–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, S.; Borg, B.; Cuttler, C.; Crombie, K.M.; Rabinak, C.A.; Hill, M.N.; Marusak, H.A. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res. 2022, 7, 388–408. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X. A Systematic Review of Exercise Intervention Program for People with Substance Use Disorder. Front. Psychiatry 2022, 13, 817927. [Google Scholar] [CrossRef] [PubMed]
- Bardo, M.T.; Compton, W.M. Does physical activity protect against drug abuse vulnerability? Drug Alcohol Depend. 2015, 153, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Galeano, H.; Sanchis-Gomar, F.; Mayero, S. Exercise as an adjuvant intervention in opiate dependence. Subst. Abus. 2013, 34, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Mourtakos, S.; Vassiliou, G.; Kontoangelos, K.; Philippou, A.; Tzavellas, E.; Tornero-Aguilera, J.F.; Clemente-Suarez, V.J.; Papageorgiou, C.; Sidossis, L.S.; Papageorgiou, C. Endocannabinoids and Heart Rate Variability Alterations after Exposure to Prolonged Intensive Physical Exercise of the Hellenic Navy SEALs. Int. J. Environ. Res. Public Health 2021, 19, 28. [Google Scholar] [CrossRef]
- Heyman, E.; Gamelin, F.X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; Di Marzo, V.; Meeusen, R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—Possible implications for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Crombie, K.M.; Hillard, C.J.; Koltyn, K.F. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels. Med. Sci. Sports Exerc. 2017, 49, 1688–1696. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Stojanovska, L.; Polenakovic, M.; Bosevski, M.; Apostolopoulos, V. Exercise and mental health. Maturitas 2017, 106, 48–56. [Google Scholar] [CrossRef]
- Richard, A.; Rohrmann, S.; Vandeleur, C.L.; Schmid, M.; Barth, J.; Eichholzer, M. Loneliness is adversely associated with physical and mental health and lifestyle factors: Results from a Swiss national survey. PLoS ONE 2017, 12, e0181442. [Google Scholar] [CrossRef] [Green Version]
- Wakeman, S.E. Harm Reduction Approaches for Opioid Use Disorder. In Treating Opioid Addiction; Kelly, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 169–180. [Google Scholar]
- Quested, E.; Kritz, M.; Hancox, J.E.; Ntoumanis, N.; Thøgersen-Ntoumani, C. Promoting self-determined motivation for physical activity: From theory to intervention work. In Essentials of Exercise and Sport Psychology: An Open Access Textbook; Zenko, Z., Jones, L., Eds.; Society for Transparency Openness and Replication in Kinesiology, School of Population Health, Curtin University, Australia 2Division of Primary Care, School of Medicine, University of Nottingham: Nottingham, UK, 2021; pp. 37–61. [Google Scholar] [CrossRef]
- Greenwood, B.N.; Foley, T.E.; Le, T.V.; Strong, P.V.; Loughridge, A.B.; Day, H.E.; Fleshner, M. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav. Brain Res. 2011, 217, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, E.A.; Shaw, K.N.; Saari, L.M.; Latham, G.P. Goal setting and task performance: 1969–1980. Psychol. Bull. 1981, 90, 125. [Google Scholar] [CrossRef]
- Dishman, R.K.; Berthoud, H.R.; Booth, F.W.; Cotman, C.W.; Edgerton, V.R.; Fleshner, M.R.; Gandevia, S.C.; Gomez-Pinilla, F.; Greenwood, B.N.; Hillman, C.H.; et al. Neurobiology of exercise. Obesity 2006, 14, 345–356. [Google Scholar] [CrossRef] [PubMed]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Daw, N.D.; Tobler, P.N. Value learning through reinforcement: The basics of dopamine and reinforcement learning. In Neuroeconomics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 283–298. [Google Scholar]
- Neale, J.; Nettleton, S.; Pickering, L. Heroin users’ views and experiences of physical activity, sport and exercise. Int. J. Drug Policy 2012, 23, 120–127. [Google Scholar] [CrossRef]
- Diamantis, P.X. The Role of Physical Exercise in the Treatment of Addiction to Psychotropic Substances. Ph.D. Thesis; Institutional Repository—Library & Information Centre-University of Thessaly: Volos, Greece, 2017. Available online: https://ir.lib.uth.gr/xmlui/bitstream/handle/11615/49024/16165.pdf?sequence=1&isAllowed=y (accessed on 10 December 2022).
- Niv, Y.; Daw, N.D.; Joel, D.; Dayan, P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology 2007, 191, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, A.G.; Schinke, R.J.; Chang, Y.K.; Kim, Y.H.; Duda, J.L. Physical activity, health and well-being in an imposed social distanced world. Int. J. Sport Exerc. Psychology 2020, 18, 414–419. [Google Scholar] [CrossRef]
- Beierholm, U.; Guitart-Masip, M.; Economides, M.; Chowdhury, R.; Duzel, E.; Dolan, R.; Dayan, P. Dopamine modulates reward-related vigor. Neuropsychopharmacology 2013, 38, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- OKANA. 2012. Available online: https://www.okana.gr/sites/default/files/inline-files/AgglikoTriptyxo.pdf (accessed on 23 December 2022).
- Ainslie, P.N.; Reilly, T.; Maclaren, D.P.; Campbell, I.T. Changes in plasma lipids and lipoproteins following 10-days of prolonged walking: Influence of age and relationship to physical activity level. Ergonomics 2005, 48, 1352–1364. [Google Scholar] [CrossRef]
- Craig, S.B.; Bandini, L.G.; Lichtenstein, A.H.; Schaefer, E.J.; Dietz, W.H. The impact of physical activity on lipids, lipoproteins, and blood pressure in preadolescent girls. Pediatrics 1996, 98, 389–395. [Google Scholar] [CrossRef]
- Caponnetto, P.; Casu, M.; Amato, M.; Cocuzza, D.; Galofaro, V.; La Morella, A.; Paladino, S.; Pulino, K.; Raia, N.; Recupero, F.; et al. The Effects of Physical Exercise on Mental Health: From Cognitive Improvements to Risk of Addiction. Int. J. Environ. Res. Public Health 2021, 18, 13384. [Google Scholar] [CrossRef]
- Eckert, M.J.; Abraham, W.C. Effects of environmental enrichment exposure on synaptic transmission and plasticity in the hippocampus. Curr. Top. Behav. Neurosci. 2013, 15, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Gelfo, F.; De Bartolo, P.; Giovine, A.; Petrosini, L.; Leggio, M.G. Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol. Learn. Mem. 2009, 91, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Mandyam, C.D.; Wee, S.; Eisch, A.J.; Richardson, H.N.; Koob, G.F. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J. Neurosci. 2007, 27, 11442–11450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, G.G.; Rodrigues, L.; Americo, J.C.; Hansel, G.; Vargas, R.S.; Biasibetti, R.; Swarowsky, A.; Goncalves, C.A.; Xavier, L.L.; Achaval, M.; et al. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res. 2009, 1274, 47–54. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Koltyn, K.F. Exercise as an adjunctive treatment for cannabis use disorder. Am. J. Drug Alcohol Abuse 2016, 42, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, B.N.; Fleshner, M. Exercise, stress resistance, and central serotonergic systems. Exerc. Sport Sci. Rev. 2011, 39, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, A.M.; Blevins, C.E. Exercise in the context of substance use treatment: Key issues and future directions. Curr. Opin. Psychol. 2019, 30, 103–108. [Google Scholar] [CrossRef]
- Ozdemir, E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev. Med. Chem. 2020, 20, 875–885. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Crombie, K.M.; Hillard, C.J.; Brown, R.T.; Koltyn, K.F. Psychological and endocannabinoid responses to aerobic exercise in substance use disorder patients. Subst. Abus. 2021, 42, 272–283. [Google Scholar] [CrossRef]
- Mello, N.K.; Negus, S.S. Interactions between kappa opioid agonists and cocaine. Preclinical studies. Ann. N. Y. Acad. Sci. 2000, 909, 104–132. [Google Scholar] [CrossRef]
- Linke, S.E.; Ussher, M. Exercise-based treatments for substance use disorders: Evidence, theory, and practicality. Am. J. Drug Alcohol Abuse 2015, 41, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Lynch, W.J. Exercise as a potential treatment for drug abuse: Evidence from preclinical studies. Front. Psychiatry 2011, 2, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplin, A.; Chen, F.S.; Beauchamp, M.R.; Puterman, E. The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology 2021, 131, 105336. [Google Scholar] [CrossRef]
- Lynch, W.J.; Piehl, K.B.; Acosta, G.; Peterson, A.B.; Hemby, S.E. Aerobic exercise attenuates reinstatement of cocaine-seeking behavior and associated neuroadaptations in the prefrontal cortex. Biol. Psychiatry 2010, 68, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F. Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement. Biol. Psychiatry 2020, 87, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, K.G.; Cabral, D.A.; Hohl, R.; Fontes, E.B. Rewiring the Addicted Brain Through a Psychobiological Model of Physical Exercise. Front. Psychiatry 2019, 10, 600. [Google Scholar] [CrossRef] [Green Version]
- Mavridis, I. The role of the nucleus accumbens in neurological disorders. Neurologia-gr 2012, 21, 6–11. [Google Scholar]
- Eddy, M.C.; Stansfield, K.J.; Green, J.T. Voluntary exercise improves performance of a discrimination task through effects on the striatal dopamine system. Learn. Mem. 2014, 21, 334–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, W.J.; Robinson, A.M.; Abel, J.; Smith, M.A. Exercise as a Prevention for Substance Use Disorder: A Review of Sex Differences and Neurobiological Mechanisms. Curr. Addict. Rep. 2017, 4, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Gondre-Lewis, M.C.; Elman, I.; Alim, T.; Chapman, E.; Settles-Reaves, B.; Galvao, C.; Gold, M.S.; Baron, D.; Kazmi, S.; Gardner, E.; et al. Frequency of the Dopamine Receptor D3 (rs6280) vs. Opioid Receptor micro1 (rs1799971) Polymorphic Risk Alleles in Patients with Opioid Use Disorder: A Preponderance of Dopaminergic Mechanisms? Biomedicines 2022, 10, 870. [Google Scholar] [CrossRef]
- Wenzel, J.M.; Rauscher, N.A.; Cheer, J.F.; Oleson, E.B. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: A review of the neurochemical literature. ACS Chem. Neurosci. 2015, 6, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Spanagel, R. Cannabinoids and the endocannabinoid system in reward processing and addiction: From mechanisms to interventions. Dialogues Clin. Neurosci. 2020, 22, 241–250. [Google Scholar] [CrossRef]
- Ceccarini, J.; Hompes, T.; Verhaeghen, A.; Casteels, C.; Peuskens, H.; Bormans, G.; Claes, S.; Van Laere, K. Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J. Neurosci. 2014, 34, 2822–2831. [Google Scholar] [CrossRef] [Green Version]
- Antunes, H.K.; Leite, G.S.; Lee, K.S.; Barreto, A.T.; Santos, R.V.; Souza Hde, S.; Tufik, S.; de Mello, M.T. Exercise deprivation increases negative mood in exercise-addicted subjects and modifies their biochemical markers. Physiol. Behav. 2016, 156, 182–190. [Google Scholar] [CrossRef]
- Dishman, R.K.; O’Connor, P.J. Lessons in exercise neurobiology: The case of endorphins. Ment. Health Phys. Act. 2009, 2, 4–9. [Google Scholar] [CrossRef]
- Aravich, P.F.; Rieg, T.S.; Lauterio, T.J.; Doerries, L.E. Beta-endorphin and dynorphin abnormalities in rats subjected to exercise and restricted feeding: Relationship to anorexia nervosa? Brain Res. 1993, 622, 1–8. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhao, X.; Yue, G.X.; Wang, Z.F. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1-13. Cell. Mol. Neurobiol. 2007, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Boecker, H.; Henriksen, G.; Sprenger, T.; Miederer, I.; Willoch, F.; Valet, M.; Berthele, A.; Tolle, T.R. Positron emission tomography ligand activation studies in the sports sciences: Measuring neurochemistry in vivo. Methods 2008, 45, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Harber, V.J.; Sutton, J.R. Endorphins and exercise. Sports Med. 1984, 1, 154–171. [Google Scholar] [CrossRef]
- Meeusen, R. Exercise and the brain: Insight in new therapeutic modalities. Ann. Transplant. 2005, 10, 49–51. [Google Scholar] [PubMed]
- Boecker, H.; Sprenger, T.; Spilker, M.E.; Henriksen, G.; Koppenhoefer, M.; Wagner, K.J.; Valet, M.; Berthele, A.; Tolle, T.R. The runner’s high: Opioidergic mechanisms in the human brain. Cereb. Cortex 2008, 18, 2523–2531. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.S.; da Silva Fernandes, M.J.; Scorza, F.A.; Persike, D.S.; Scorza, C.A.; da Ponte, J.B.; de Albuquerque, M.; Cavalheiro, E.A.; Arida, R.M. Acute and chronic exercise modulates the expression of MOR opioid receptors in the hippocampal formation of rats. Brain Res. Bull. 2010, 83, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Lyle, M.A. Chronic exercise decreases sensitivity to mu opioids in female rats: Correlation with exercise output. Pharmacol. Biochem. Behav. 2006, 85, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Buck, C.L.; Cohen, A.; Edwards, S.; Park, P.E.; Schlosburg, J.E.; Schmeichel, B.; Vendruscolo, L.F.; Wade, C.L.; Whitfield, T.W., Jr.; et al. Addiction as a stress surfeit disorder. Neuropharmacology 2014, 76 Pt B, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009, 56 (Suppl. S1), 3–8. [Google Scholar] [CrossRef] [Green Version]
- Winters, K.C.; Arria, A. Adolescent brain development and drugs. Prev. Res. 2011, 18, 21. [Google Scholar] [PubMed] [Green Version]
- Gomez-Pinilla, F.; Zhuang, Y.; Feng, J.; Ying, Z.; Fan, G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur. J. Neurosci. 2011, 33, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabel, K.; Fabel, K.; Tam, B.; Kaufer, D.; Baiker, A.; Simmons, N.; Kuo, C.J.; Palmer, T.D. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003, 18, 2803–2812. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Y.; Bressler, S.L. Granger causality: Basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications; Schelter, B., Winterhalder, M., Timmer, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Griffin, E.W.; Mullally, S.; Foley, C.; Warmington, S.A.; O’Mara, S.M.; Kelly, A.M. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 2011, 104, 934–941. [Google Scholar] [CrossRef]
- Patterson, S.D.; Leggate, M.; Nimmo, M.A.; Ferguson, R.A. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur. J. Appl. Physiol. 2013, 113, 713–719. [Google Scholar] [CrossRef]
- Matta Mello Portugal, E.; Cevada, T.; Sobral Monteiro-Junior, R.; Teixeira Guimaraes, T.; da Cruz Rubini, E.; Lattari, E.; Blois, C.; Camaz Deslandes, A. Neuroscience of exercise: From neurobiology mechanisms to mental health. Neuropsychobiology 2013, 68, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chieffi, S.; Messina, G.; Villano, I.; Messina, A.; Esposito, M.; Monda, V.; Valenzano, A.; Moscatelli, F.; Esposito, T.; Carotenuto, M.; et al. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A. Front. Physiol. 2017, 8, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, G.W.; Silverman, D.H.; Siddarth, P.; Ercoli, L.M.; Miller, K.J.; Lavretsky, H.; Wright, B.C.; Bookheimer, S.Y.; Barrio, J.R.; Phelps, M.E. Effects of a 14-day healthy longevity lifestyle program on cognition and brain function. Am. J. Geriatr. Psychiatry 2006, 14, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dürmüş, P.T.; Vardar, M.E.; Oktay, K.A.Y.A.; Tayfur, P.; Necdet, S.Ü.T.; Vardar, S.A. Evaluation of the Effects of High Intensity Interval Training on Cytokine Levels and Clinical Course in Treatment of Opioid Use Disorder. Turk. Psikiyatr. Derg. 2020, 31, 151. [Google Scholar] [CrossRef]
- MacRae, P.G.; Spirduso, W.W.; Walters, T.J.; Farrar, R.P.; Wilcox, R.E. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology 1987, 92, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.E.; Petzinger, G.M.; Nixon, K.; Hogg, E.; Bremmer, S.; Meshul, C.K.; Jakowec, M.W. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J. Neurosci. Res. 2004, 77, 378–390. [Google Scholar] [CrossRef]
- Nock, N.L.; Minnes, S.; Alberts, J.L. Neurobiology of substance use in adolescents and potential therapeutic effects of exercise for prevention and treatment of substance use disorders. Birth Defects Res. 2017, 109, 1711–1729. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Pedersen, A.; Scherbaum, N.; Bening, J.; Patschke, J.; Kugel, H.; Heindel, W.; Arolt, V.; Ohrmann, P. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013, 38, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shahar, O.; Sacramento, A.D.; Miller, B.W.; Webb, S.M.; Wroten, M.G.; Silva, H.E.; Caruana, A.L.; Gordon, E.J.; Ploense, K.L.; Ditzhazy, J.; et al. Deficits in ventromedial prefrontal cortex group 1 metabotropic glutamate receptor function mediate resistance to extinction during protracted withdrawal from an extensive history of cocaine self-administration. J. Neurosci. 2013, 33, 495–506a. [Google Scholar] [CrossRef] [Green Version]
- Meinhardt, M.W.; Hansson, A.C.; Perreau-Lenz, S.; Bauder-Wenz, C.; Stahlin, O.; Heilig, M.; Harper, C.; Drescher, K.U.; Spanagel, R.; Sommer, W.H. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J. Neurosci. 2013, 33, 2794–2806. [Google Scholar] [CrossRef]
- Loweth, J.A.; Tseng, K.Y.; Wolf, M.E. Using metabotropic glutamate receptors to modulate cocaine’s synaptic and behavioral effects: mGluR1 finds a niche. Curr. Opin. Neurobiol. 2013, 23, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.L.; Tseng, K.Y.; Uejima, J.L.; Reimers, J.M.; Heng, L.J.; Shaham, Y.; Marinelli, M.; Wolf, M.E. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008, 454, 118–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, M.P.; Johnson, K.E.; O’Connor, P.J. Exercise training and health-related quality of life in generalized anxiety disorder. Psychol. Sport Exerc. 2016, 27, 138–141. [Google Scholar] [CrossRef]
- Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry 2011, 16, 974–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Hu, Y.S.; Wu, Y.; Liu, G.; Yu, H.X.; Zheng, Q.P.; Zhu, D.N.; Xia, C.M.; Cao, Z.J. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life Sci. 2009, 84, 505–511. [Google Scholar] [CrossRef]
- Guezennec, C.Y.; Abdelmalki, A.; Serrurier, B.; Merino, D.; Bigard, X.; Berthelot, M.; Pierard, C.; Peres, M. Effects of prolonged exercise on brain ammonia and amino acids. Int. J. Sports Med. 1998, 19, 323–327. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. The” what” and” why” of goal pursuits: Human needs and the self-determination of behavior. Psychol. Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Schulkin, J. Addiction and stress: An allostatic view. Neurosci. Biobehav. Rev. 2019, 106, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruchas, M.R.; Land, B.B.; Chavkin, C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res. 2010, 1314, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, C.; Van Uum, S.H.; O’Dell, L.E.; Lutfy, K.; Friedman, T.C. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr. Rev. 2010, 31, 98–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickar, D.; Davis, G.C.; Schulz, S.C.; Extein, I.; Wagner, R.; Naber, D.; Gold, P.W.; van Kammen, D.P.; Goodwin, F.K.; Wyatt, R.J.; et al. Behavioral and biological effects of acute beta-endorphin injection in schizophrenic and depressed patients. Am. J. Psychiatry 1981, 138, 160–166. [Google Scholar] [CrossRef]
- Facchinetti, F.; Volpe, A.; Farci, G.; Petraglia, F.; Porro, C.A.; Barbieri, G.; Cioni, A.; Balestrieri, A.; Genazzani, A.R. Hypothalamus-pituitary-adrenal axis of heroin addicts. Drug Alcohol Depend. 1985, 15, 361–366. [Google Scholar] [CrossRef]
- Eisenman, A.J.; Fraser, H.F.; Brooks, J.W. Urinary excretion and plasma levels of 17-hydroxycorticosteroids during a cycle of addiction to morphine. J. Pharmacol. Exp. Ther. 1961, 132, 226–231. [Google Scholar]
- Cami, J.; Gilabert, M.; San, L.; de la Torre, R. Hypercortisolism after opioid discontinuation in rapid detoxification of heroin addicts. Br. J. Addict. 1992, 87, 1145–1151. [Google Scholar] [CrossRef]
- Walter, M.; Gerber, H.; Kuhl, H.C.; Schmid, O.; Joechle, W.; Lanz, C.; Brenneisen, R.; Schachinger, H.; Riecher-Rossler, A.; Wiesbeck, G.A.; et al. Acute effects of intravenous heroin on the hypothalamic-pituitary-adrenal axis response: A controlled trial. J. Clin. Psychopharmacol. 2013, 33, 193–198. [Google Scholar] [CrossRef]
- Bearn, J.; Buntwal, N.; Papadopoulos, A.; Checkley, S. Salivary cortisol during opiate dependence and withdrawal. Addict. Biol. 2001, 6, 157–162. [Google Scholar] [CrossRef]
- Gerra, G.; Fantoma, A.; Zaimovic, A. Naltrexone and buprenorphine combination in the treatment of opioid dependence. J. Psychopharmacol. 2006, 20, 806–814. [Google Scholar] [CrossRef]
- Shi, J.; Li, S.X.; Zhang, X.L.; Wang, X.; Le Foll, B.; Zhang, X.Y.; Kosten, T.R.; Lu, L. Time-dependent neuroendocrine alterations and drug craving during the first month of abstinence in heroin addicts. Am. J. Drug Alcohol Abuse 2009, 35, 267–272. [Google Scholar] [CrossRef]
- Errico, A.L.; King, A.C.; Lovallo, W.R.; Parsons, O.A. Cortisol dysregulation and cognitive impairment in abstinent male alcoholics. Alcohol Clin. Exp. Res. 2002, 26, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive impairments in alcohol-dependent subjects. Front. Psychiatry 2014, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besson, M.; Forget, B. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective. Front. Psychiatry 2016, 7, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spronk, D.B.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J. Characterizing the cognitive effects of cocaine: A comprehensive review. Neurosci. Biobehav. Rev. 2013, 37, 1838–1859. [Google Scholar] [CrossRef] [PubMed]
- Georgakouli, K.; Manthou, E.; Fatouros, I.G.; Deli, C.K.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. HPA-Axis Activity and Nutritional Status Correlation in Individuals with Alcohol Use Disorder. Nutrients 2022, 14, 4978. [Google Scholar] [CrossRef] [PubMed]
- Georgakouli, K.; Manthou, E.; Georgoulias, P.; Ziaka, A.; Fatouros, I.G.; Mastorakos, G.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. Exercise training reduces alcohol consumption but does not affect HPA-axis activity in heavy drinkers. Physiol. Behav. 2017, 179, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgakouli, K.; Manthou, E.; Georgoulias, P.; Ziaka, A.; Deli, C.K.; Draganidis, D.; Batrakoulis, A.; Papanikolaou, K.; Tsimeas, P.; Mastorakos, G.; et al. HPA axis responses to acute exercise differ in smokers and non-smokers. Physiol. Behav. 2021, 229, 113258. [Google Scholar] [CrossRef]
- Armario, A. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: Different pathways, common outcome. Trends Pharmacol. Sci. 2010, 31, 318–325. [Google Scholar] [CrossRef]
- Cole, G.; Tucker, L.; Friedman, G.M. Relationships among measures of alcohol drinking behavior, life-events and perceived stress. Psychol. Rep. 1990, 67, 587–591. [Google Scholar] [CrossRef]
- Ayer, L.A.; Harder, V.S.; Rose, G.L.; Helzer, J.E. Drinking and stress: An examination of sex and stressor differences using IVR-based daily data. Drug Alcohol Depend. 2011, 115, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F. A role for brain stress systems in addiction. Neuron 2008, 59, 11–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Luger, A.; Deuster, P.A.; Kyle, S.B.; Gallucci, W.T.; Montgomery, L.C.; Gold, P.W.; Loriaux, D.L.; Chrousos, G.P. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N. Engl. J. Med. 1987, 316, 1309–1315. [Google Scholar] [CrossRef]
- Heijnen, S.; Hommel, B.; Kibele, A.; Colzato, L.S. Neuromodulation of Aerobic Exercise-A Review. Front. Psychol. 2015, 6, 1890. [Google Scholar] [CrossRef] [Green Version]
- Costa Rosa, L.F. Exercise as a Time-conditioning Effector in Chronic Disease: A Complementary Treatment Strategy. Evid. Based Complement. Alternat. Med. 2004, 1, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Throne, L.C.; Bartholomew, J.; Craig, J.; Farrar, R. Stress reactivity in fire fighters: An exercise intervention. Int. J. Stress Manag. 2000, 7, 235–246. [Google Scholar] [CrossRef]
- Mathes, W.F.; Nehrenberg, D.L.; Gordon, R.; Hua, K.; Garland, T., Jr.; Pomp, D. Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behav. Brain Res. 2010, 210, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.L.; Vujanovic, A.A.; Smits, J.A.; Irons, J.G.; Zvolensky, M.J.; Bonn-Miller, M.O. Exercise and coping-oriented alcohol use among a trauma-exposed sample. Addict. Behav. 2011, 36, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, M.E. Exercise can seriously improve your mental health: Fact or Fiction? Adv. Physiother. 2007, 9, 76–88. [Google Scholar] [CrossRef]
- Taylor, I.M.; Ntoumanis, N.; Standage, M.; Spray, C.M. Motivational predictors of physical education students’ effort, exercise intentions, and leisure-time physical activity: A multilevel linear growth analysis. J. Sport Exerc. Psychol. 2010, 32, 99–120. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, N.B.; Buckner, J.D.; Keough, M.E. Anxiety sensitivity as a prospective predictor of alcohol use disorders. Behav. Modif. 2007, 31, 202–219. [Google Scholar] [CrossRef]
- Lejuez, C.W.; Paulson, A.; Daughters, S.B.; Bornovalova, M.A.; Zvolensky, M.J. The association between heroin use and anxiety sensitivity among inner-city individuals in residential drug use treatment. Behav. Res. Ther. 2006, 44, 667–677. [Google Scholar] [CrossRef]
- Fuchs, R.A.; Lasseter, H.C.; Ramirez, D.R.; Xie, X. Relapse to drug seeking following prolonged abstinence: The role of environmental stimuli. Drug Discov. Today Dis. Model. 2008, 5, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Drumm, R.D.; McBride, D.; Metsch, L.; Neufeld, M.; Sawatsky, A. “I’m a Health Nut!” Street Drug Users’ Accounts of Self-Care Strategies. J. Drug Issues 2005, 35, 607–629. [Google Scholar] [CrossRef]
- Holt, M.; Treloar, C. Managing mental health problems in everyday life: Drug treatment clients’ self-care strategies. Int. J. Ment. Health Addict. 2008, 6, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Neale, J.; Bloor, M.; McKeganey, N. How do heroin users spend their spare time. Drugs Educ. Prev. Policy 2007, 14, 231–246. [Google Scholar] [CrossRef]
- Avants, S.K.; Warburton, L.A.; Margolin, A. The influence of coping and depression on abstinence from illicit drug use in methadone-maintained patients. Am. J. Drug Alcohol Abuse 2000, 26, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Belding, M.A.; Iguchi, M.Y.; Lamb, R.J.; Lakin, M.; Terry, R. Coping strategies and continued drug use among methadone maintenance patients. Addict. Behav 1996, 21, 389–401. [Google Scholar] [CrossRef]
- Courneya, K.S.; Stevinson, C.; Vallance, J.K. Exercise and psychosocial issues for cancer survivors. In Handbook of Sport Psychology; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 578–597. [Google Scholar]
- Bershad, A.K.; Jaffe, J.H.; Childs, E.; de Wit, H. Opioid partial agonist buprenorphine dampens responses to psychosocial stress in humans. Psychoneuroendocrinology 2015, 52, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Maremmani, I.; Perugi, G.; Pacini, M.; Akiskal, H.S. Toward a unitary perspective on the bipolar spectrum and substance abuse: Opiate addiction as a paradigm. J. Affect. Disord. 2006, 93, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kosten, T.R.; George, T.P. The neurobiology of opioid dependence: Implications for treatment. Sci. Pract. Perspect. 2002, 1, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, O.; Koob, G.F. Individual differences in the neuropsychopathology of addiction. Dialogues Clin. Neurosci 2017, 19, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.B.; Piper, M.E.; McCarthy, D.E.; Majeskie, M.R.; Fiore, M.C. Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychol. Rev. 2004, 111, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, J.; Xu, G.; Zhang, J.; Chen, Z.; Lu, Z.; Deng, H. Elevated Hair Cortisol Levels among Heroin Addicts on Current Methadone Maintenance Compared to Controls. PLoS ONE 2016, 11, e0150729. [Google Scholar] [CrossRef]
- Correia, C.J.; Benson, T.A.; Carey, K.B. Decreased substance use following increases in alternative behaviors: A preliminary investigation. Addict. Behav. 2005, 30, 19–27. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Wang, Y.; Li, R.; Zhou, C. Impact of physical exercise on substance use disorders: A meta-analysis. PLoS ONE 2014, 9, e110728. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.K.; Sengupta, A.; Zhang, C.; Boyadjieva, N.; Murugan, S. Opiate antagonist prevents mu- and delta-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth. J. Biol. Chem. 2012, 287, 16734–16747. [Google Scholar] [CrossRef] [Green Version]
- Silveri, M.M. GABAergic contributions to alcohol responsivity during adolescence: Insights from preclinical and clinical studies. Pharmacol. Ther. 2014, 143, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Gilman, J.M.; Ramchandani, V.A.; Davis, M.B.; Bjork, J.M.; Hommer, D.W. Why we like to drink: A functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J. Neurosci. 2008, 28, 4583–4591. [Google Scholar] [CrossRef] [Green Version]
- Berrettini, W. Opioid pharmacogenetics of alcohol addiction. Cold Spring Harb. Perspect. Med. 2013, 3, a012203. [Google Scholar] [CrossRef] [Green Version]
- Dajas-Bailador, F.; Wonnacott, S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol. Sci. 2004, 25, 317–324. [Google Scholar] [CrossRef]
- Sala, M.; Braida, D.; Pucci, L.; Manfredi, I.; Marks, M.J.; Wageman, C.R.; Grady, S.R.; Loi, B.; Fucile, S.; Fasoli, F.; et al. CC4, a dimer of cytisine, is a selective partial agonist at alpha4beta2/alpha6beta2 nAChR with improved selectivity for tobacco smoking cessation. Br. J. Pharmacol. 2013, 168, 835–849. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Strean, W.B. Physical activity as a helpful adjunct to substance abuse treatment. J. Soc. Work Pract. Addict. 2004, 4, 83–100. [Google Scholar] [CrossRef]
- Chou, R.; Huffman, L.H. Nonpharmacologic therapies for acute and chronic low back pain: A review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann. Intern. Med. 2007, 147, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Barry, D.T.; Beitel, M.; Joshi, D.; Schottenfeld, R.S. Pain and substance-related pain-reduction behaviors among opioid dependent individuals seeking methadone maintenance treatment. Am. J. Addict. 2009, 18, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Weiss, L.; Gass, J.; Egan, J.E.; Ompad, D.C.; Trezza, C.; Vlahov, D. Understanding prolonged cessation from heroin use: Findings from a community-based sample. J. Psychoact. Drugs 2014, 46, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Braverman, E.R.; Dennen, C.A.; Gold, M.S.; Bowirrat, A.; Gupta, A.; Baron, D.; Roy, A.K.; Smith, D.E.; Cadet, J.L.; Blum, K. Proposing a “Brain Health Checkup (BHC)” as a Global Potential “Standard of Care” to Overcome Reward Dysregulation in Primary Care Medicine: Coupling Genetic Risk Testing and Induction of “Dopamine Homeostasis”. Int. J. Environ. Res. Public Health 2022, 19, 5480. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Logan, J.; Childress, A.R.; Jayne, M.; Ma, Y.; Wong, C. Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. J. Neurosci. 2006, 26, 6583–6588. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F.; Baler, R. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays 2010, 32, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalla, A.; Homberg, J.R.; Lipina, T.V.; Sescousse, G.; Luijten, M.; Ivanova, S.A.; Schellekens, A.F.A.; Loonen, A.J.M. The role of the habenula in the transition from reward to misery in substance use and mood disorders. Neurosci. Biobehav. Rev. 2017, 80, 276–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Ma, Y.; Fowler, J.S.; Wong, C.; Ding, Y.S.; Hitzemann, R.; Swanson, J.M.; Kalivas, P. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: Relevance to addiction. J. Neurosci. 2005, 25, 3932–3939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, T.W.; Ersche, K.D.; Everitt, B.J. Drug addiction and the memory systems of the brain. Ann. N. Y. Acad. Sci. 2008, 1141, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, R.; Ziaee, V.; Akbari, H.; Haji-Hosseini, S. The Effects of SPARK Physical Education Program on Fundamental Motor Skills in 4–6 Year-Old Children. Iran. J. Pediatr. 2013, 23, 216–219. [Google Scholar] [PubMed]
- American Academy of Pediatrics. Committee on Public, E. American Academy of Pediatrics: Children, adolescents, and television. Pediatrics 2001, 107, 423–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segrave, J.O. Sport as escape. J. Sport Soc. Issues 2000, 24, 61–77. [Google Scholar] [CrossRef]
- Wipfli, B.M.; Rethorst, C.D.; Landers, D.M. The anxiolytic effects of exercise: A meta-analysis of randomized trials and dose-response analysis. J. Sport Exerc. Psychol. 2008, 30, 392–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaioannou, A.; Karastogiannidou, C.; Theodorakis, Y. Sport involvement, sport violence and health behaviours of Greek adolescents. Eur. J. Public Health 2004, 14, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Theodorakis, G. Exercise, Mental Health and Quality of Life. Christodoulidis Publications, Thessaloniki. 2010. Available online: http://research.pe.uth.gr/nutrition/index.php?option=com_content&view=article&id=109&Itemid=265&lang=el (accessed on 23 December 2022).
- Kunstler, R. TR’s role in treating substance abuse. Park. Recreat. 1992, 27, 58–60. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psarianos, A.; Chryssanthopoulos, C.; Paparrigopoulos, T.; Philippou, A. The Role of Physical Exercise in Opioid Substitution Therapy: Mechanisms of Sequential Effects. Int. J. Mol. Sci. 2023, 24, 4763. https://doi.org/10.3390/ijms24054763
Psarianos A, Chryssanthopoulos C, Paparrigopoulos T, Philippou A. The Role of Physical Exercise in Opioid Substitution Therapy: Mechanisms of Sequential Effects. International Journal of Molecular Sciences. 2023; 24(5):4763. https://doi.org/10.3390/ijms24054763
Chicago/Turabian StylePsarianos, Alexandros, Costas Chryssanthopoulos, Thomas Paparrigopoulos, and Anastassios Philippou. 2023. "The Role of Physical Exercise in Opioid Substitution Therapy: Mechanisms of Sequential Effects" International Journal of Molecular Sciences 24, no. 5: 4763. https://doi.org/10.3390/ijms24054763
APA StylePsarianos, A., Chryssanthopoulos, C., Paparrigopoulos, T., & Philippou, A. (2023). The Role of Physical Exercise in Opioid Substitution Therapy: Mechanisms of Sequential Effects. International Journal of Molecular Sciences, 24(5), 4763. https://doi.org/10.3390/ijms24054763