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Abstract: Long non-coding RNAs (lncRNAs) are emerging as key regulators in many biological
processes. The dysregulation of lncRNA expression has been associated with many diseases, including
cancer. Mounting evidence suggests lncRNAs to be involved in cancer initiation, progression, and
metastasis. Thus, understanding the functional implications of lncRNAs in tumorigenesis can aid in
developing novel biomarkers and therapeutic targets. Rich cancer datasets, documenting genomic
and transcriptomic alterations together with advancement in bioinformatics tools, have presented
an opportunity to perform pan-cancer analyses across different cancer types. This study is aimed at
conducting a pan-cancer analysis of lncRNAs by performing differential expression and functional
analyses between tumor and non-neoplastic adjacent samples across eight cancer types. Among
dysregulated lncRNAs, seven were shared across all cancer types. We focused on three lncRNAs,
found to be consistently dysregulated among tumors. It has been observed that these three lncRNAs of
interest are interacting with a wide range of genes across different tissues, yet enriching substantially
similar biological processes, found to be implicated in cancer progression and proliferation.
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1. Introduction

Cancer is a complex disease that continues to be a health burden globally [1]. It is
characterised by dynamic genomic alterations, including somatic mutations, epigenetic
modifications, copy number variations, and changes in expression profiles [2–4]. The emer-
gence of massively parallel sequencing technologies has enabled systematic documentation
of the genetic changes in tumors and introduced the concept of the cancer genome [5–7].
Considered a landmark in cancer genomics, The Cancer Genome Atlas (TCGA) program
has produced, to date, more than 2.5 PB of multi-layered omic data, along with clinical
profiles for more than 11,000 patients across 33 cancer types [8–10]. TCGA has improved
our understanding of cancer genomics, revolutionised cancer classification and identified
therapeutic targets [8,11,12].

Although cancers have their own genetic identity with distinct, tissue-specific changes,
many tumors share similar genetic alterations that disrupt common biological processes [13,14].
Emerging computational technologies and rich datasets present an opportunity to explore
the differences and similarities of genetic and molecular changes across different tumor
types using a set of techniques collectively referred to as pan-cancer analyses [14,15]. The
importance of pan-cancer profiling lies in its ability to provide a comprehensive analysis of
the genetic changes associated with multiple cancers. In addition, not only does it identify
shared patterns that aid in the development of uniform treatments strategies, but also
distinguishes those unique alterations and enhances personalised care [14].
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With the decreasing cost of whole genome sequencing, there is a growing focus on
performing pan-cancer analysis on non-coding regions of the genome. An increasing body
of evidence suggests non-coding RNAs (ncRNAs) play an important role in biogenesis of
cancer [16]. While some ncRNAs have been well studied, such as microRNAs [17], other
types have been studied less extensively, including long ncRNAs (lncRNAs). LncRNAs
are transcripts with a length greater than 200 nucleotides, exhibiting similar molecular
characteristics to messenger RNAs (mRNAs) but lacking an appreciable potential to code
for proteins [18,19]. Localised either in the nucleus or cytoplasm, lncRNAs form a complex
network of interactions with DNA, RNA, and proteins [20]. Although it is still debatable
whether the majority of lncRNAs are simply transcriptional noise, some have been found
to be associated with important biological roles. For example, lncRNA XIST is known
to initiate silencing of the inactive X chromosome during X inactivation [21,22]. More
generally, studies have suggested lncRNAs as cis- and trans-acting regulators of gene
expression via chromatin reprogramming [23,24]. They have also been implicated in post-
transcriptional regulation, including mRNA translation [25], as well as cell differentiation
and development [26]. Despite these findings, lncRNA functions remain poorly understood.

LncRNAs are engaged in many cellular functions, and their dysregulation has been
linked to diseases, including cancer [16,27]. Aberrant expression of lncRNAs has been iden-
tified in different tumors including brain, breast, and colon cancer [28,29]. Many lncRNAs
have also been shown to be regulated by oncogenes and tumor suppressors, suggesting a
role in oncogenesis [30]. Furthermore, functional studies have revealed validated cancer
roles for more than hundred lncRNAs in tumors [31]. A wide range of cancer treatments
are currently available [32,33]; chemotherapy, however, continues to be preferred despite its
diminishing effectiveness when cancer has advanced or metastasised [33,34]. Poor progno-
sis is probably due to late diagnoses of cancer, together with tumors having acquired drug
resistance, and continues to be a major challenge in treating malignancies [34]. It is thus
important to search for new biomarkers for early diagnosis and therapeutic targets for more
effective treatments. A plethora of evidence has revealed dysregulation of lncRNAs to be
associated with cell proliferation, apoptosis, invasion and drug resistance, processes found
implicated in the pathogenesis of cancer [35,36]. These findings put forward lncRNAs as
potential biomarkers and therapy agents.

At present, there is an increasing focus on identifying lncRNAs associated with tu-
morigenesis and elucidating their functional implications. Rich RNA-seq datasets are a
promising tool for this purpose, but their use can be computationally challenging. To high-
light the importance of lncRNA association with cancer and overcome these challenges, The
Atlas of Noncoding RNAs in Cancer (TANRIC) was developed [37]. TANRIC is a free and
interactive database which gives users access to genomic, proteomic, clinical and lncRNAs
expression data of 8143 samples (tumorous and non-neoplastic) from TCGA and others.

In order to characterise common, aberrantly expressed lncRNAs we performed a pan-
cancer analysis on lncRNA expression profiles from a TCGA derived dataset using TANRIC
platform. We hypothesise that those found to be implicated in different cancer types may ex-
hibit similar functional implications across cancers. To assess this hypothesis, we sought to
identify dysregulated lncRNAs across eight TCGA cancer types and explored commonality
among different malignancies. We then investigated their functional implications, by per-
forming functional analysis and exploiting the similarity of enriched biological processes.
Previous pan-cancer studies have focused on somatic mutations of whole genomes [15],
tumor microenvironments [38] as well as proteomic profiles [39]. Putative functions have
been studied for onco-lncRNAs dysregulated in multiple cancers [40] without focusing on
common consistently dysregulated lncRNAs or exploring the similarity of gene ontologies
across different cancer types as performed in our study.
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2. Results
2.1. Common Dysregulated lncRNAs

In total, 9616 lncRNAs manifested significant differential expression across cancers
(Table S1). Whilst similarity between pairs of cancers, represented by the Jaccard index,
appears low (Figure S1), collectively the number of shared lncRNAs of one cancer type
with the remaining types is quite high, with overlap ranging from ~80% to ~97% (Table S2).
Of the large number of lncRNAs found to be overlapping among different cancer pairs,
seven were observed to be differentially expressed in all cancer types (Table S3). Often
the same lncRNA deemed upregulated in one cancer type can be found downregulated in
another, or the other way around. Nonetheless, three lncRNAs were found to be consistently
dysregulated across all cancers: ENSG00000235904 (RBMS3-AS3) (hereafter, “Antisense”)
and ENSG00000261472 (Novel transcript) (hereafter, “Novel”) are both upregulated, and
ENSG00000272455 (MRPL20-DT) (hereafter, “Divergent”) is downregulated (Table S4).
We chose to focus in the present study on the three consistently dysregulated lncRNAs:
Antisense, Novel and Divergent. Correlation analysis revealed in total, 3141 coding genes
(|rs|≥ 0.5 and p-value≤ 0.01), with 2185 mRNAs found to be co-expressed with Antisense,
69 mRNAs with Novel and 1026 mRNAs with Divergent (Figure 1a,b). We found little
overlap between correlated mRNAs across different cancers. It appears that for a given
lncRNA, the group of co-expressed mRNAs is specific for each cancer type (Figure 1c).
The full list of correlated mRNAs can be found in Table S5.

a

b

c

Figure 1. Bar plots showing the number of mRNAs related to the three lncRNAs, per cancer type.
Red represents Antisense, purple represents Novel and blue represents Divergent. (a) number
of positively correlated mRNAs. (b) number of negatively correlated mRNAs. (c) Venn diagram
showing the overlap between lists of positively and negatively correlated mRNAs with lncRNAs:
Antisense, Novel and Divergent, across different cancer types: breast (BRCA), thyroid (THCA),
stomach (STAD), prostate (PRAD), lung (LUAD and LUSC) and liver (LIHC).

2.2. Gene Ontologies (GO) for Inference of Functional Similarity

After identifying and combining GO terms enriched by each lncRNA, additional
filtering (FDR ≤ 0.05) resulted in the acquisition of three GO terms lists: Two lists of GO
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terms associated with Antisense and one list with Divergent, with no records linked with
lncRNA Novel (Figure S2). In order to provide functional elucidation of the remaining
lncRNAs of interest, we explored similarity between GO term pairs using NaviGO and GO
pairwise similarity networks were created (RSS ≥ 0.05).

Similarity Networks

Starting with GO list enriched by mRNAs positively correlated with Antisense,
three clusters in the network of functionally similar GO terms were identified (Figure 2a).
The first cluster contains GO terms predominantly involved in tissues and vessel morpho-
genesis, together with tissues and vasculature development (Figure 2b). The second cluster
includes system and cellular processes such as actin-mediated cell contraction in addition
to localisation and movement of cell and/or subcellular component (Figure 2c). Finally,
GO terms in the third cluster found of extracellular matrix, structure organisation along
with cell adhesion (Figure 2d). Network of mRNAs negatively correlated with Antisense,
displayed GO terms appear to be mainly associated with ncRNA metabolic processes,
particularly ribosomal RNA (rRNA), ribosome biogenesis, and ubiquitination (Figure 3).
Lastly, mRNAs positively correlated with Divergent have enriched substantially similar GO
terms, immersed with mRNA processing, splicing and metabolism, in addition to processes
associated with cell cycle (Figure 4).
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Figure 2. Functional similarity of GO terms associated with mRNAs of positive correlation with lncRNA
Antisense. Network visualisation of functional similarity of GO terms enriched by positively correlated
mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05). (a) Three clusters
can be visually identified. (b) Close up of cluster 1. (c) Close up of cluster 2. (d) Close up of cluster 3.
(b–d): Each node indicates a GO term and the edges (lines in between) represent a functional similarity,
representing relationships, such as “is a” or “part of”. The color(s) of nodes represent the cancer type(s)
in which GO term was found to be enriched, green for breast cancer (BRCA), orange for liver cancer
(LIHC), blue for prostate cancer (PRAD) and purple for stomach cancer (STAD).
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Figure 3. Functional similarity of GO terms associated with mRNAs of negative correlation with
lncRNA Antisense. Network visualisation of functional similarity of GO terms enriched by nega-
tively correlated mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05).
The color(s) of nodes represent the cancer type(s) in which GO term was found to be enriched, orange
for liver cancer (LIHC) and purple for stomach cancer (STAD).
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Figure 4. Functional similarity of GO terms associated with mRNAs of positive correlation with
lncRNA Divergent. Network visualisation of functional similarity of GO terms enriched by nega-
tively correlated mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05).
The color(s) of nodes represent the cancer type(s) in which GO term was found to be enriched, orange
for liver cancer (LIHC), blue for prostate cancer (PRAD), purple for stomach cancer (STAD) and
yellow for thyroid cancer (THCA).

Finally, when GO terms enriched by both lncRNAs were compared, high similarity was
found between GO terms enriched by mRNAs negatively correlated with Antisense and
those enriched by mRNAs positively correlated with Divergent (Figure S3). Interestingly,
after further scrutinisation of the different networks, four GO terms were found to be
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shared between the two: DNA metabolic process, chromosome organisation, cell cycle and
RNA processing (Figure 5).
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Figure 5. Comparison of Antisense and Divergent GO terms similarity networks. Similarity networks
among GO terms enriched by mRNAs related negatively to Antisense (left) and mRNAs related
positively to Divergent (right). Shared GO terms in both networks are encircled in red.

3. Discussion
3.1. Dysregulation of lncRNAs among Cancers

The identification of 9616 dysregulated lncRNAs suggests pervasive variation of
lncRNA expression in cancers, consistent with previous studies [17,41]. Therefore, under-
standing functional implications of lncRNAs in malignancies is of high importance, as
not only can this serve in developing diagnostic tools, but it can also lead to new treat-
ment strategies. Upon exploring commonality of dysregulated lncRNAs, it was observed
that tumors share a substantial number of genes (average overlap ~90%), suggesting that
potentially the same lncRNAs could be associated with different tumors across different
tissues. Whilst it has been suggested that lncRNAs are cancer specific, with tumors of
different types and subtypes exhibiting different expression patterns [41,42], some evidence
show otherwise. For instance, MALAT1 was suggested to be involved in multiple tumors;
inhibition of the well-studied lncRNA was found to prevent lung cancer metastasis [43].
Conversely, a more recent study showed that knocking out MALAT1 actually promotes
metastasis in breast cancer, suggesting its role as a metastasis suppressant [44]. Addition-
ally, an oncogenic role has also been proposed for MALAT1 in colorectal carcinoma [45].
Nonetheless, we observed 2855 lncRNAs to be dysregulated uniquely in one cancer type,
denoting some level of specificity.

3.2. Three Consistently Dysregulated lncRNAs

Intriguingly, three lncRNAs showed striking consistent dysregulation: ENSG00000235904,
known as RBMS3-AS3 gene and ENSG00000261472, a novel transcript, both exhibited up-
regulation in all tumor samples whilst ENSG00000272455, known as MRPL20-DT gene,
manifested downregulation.

3.2.1. ENSG00000235904, RBMS3-AS3 “Antisense”

As with the majority of lncRNAs, little is known about the functional implication
of RBMS3-AS3 or its association with tumors. According to lncATLAS [46], RBMS3-AS3
is found to be expressed mainly in the cytoplasm. Generally, cytoplasmic lncRNAs are
believed, through formation of complexes with RNA binding proteins, to be involved
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in different mechanisms, such as mRNA translation and stability [47–49] and protein
localisation [50,51]. With regard to cancer, RBMS3-AS3 has been proposed as a competing
endogenous RNA (ceRNA), targeted by several miRNAs in breast cancer [52]. In addition,
RBMS3-AS3 was shown to be serving as miRNA sponge, acting as a tumor suppressor in
prostate cancer [53]. We explored TANRIC’s survival analysis for both of these cancer types
and found the survival rate across patients to be higher in those who have lower expression
of RBMS3-AS3 (Kaplan–Meier analysis and log-rank test, p-value < 0.05). Furthermore, both
gastric and colorectal cancers exhibited dysregulation of RBMS3-AS3 and involvement in
ceRNA network [54,55]. Taken together, RBMS3-AS3 seems to display aberrant expression
patterns across tumors; further studies are required to investigate its function and potential
involvement in cancer.

3.2.2. ENSG00000261472 “Novel”

Although this lncRNA was also found to be consistently upregulated across tumors, lit-
tle is known about its association with cancer. ENSG00002614172 is small in size (<500 bp),
and unlike RBMS3-AS3, no localisation information was found in lncATLAS [46]. Ex-
pression across tissues was almost negligible, with body fat having the highest value of
only 1.7 TPM, according to the Genotype Tissue Expression project GTEX [56]. Lack of
information on this transcript is possibly due to it being newly annotated, and most importantly
minimally expressed across tissues. In the literature, we came across a breast cancer analysis
where ENSG00000261472 was listed among other enriched lncRNAs [57]. However, to the best
of our knowledge, no other studies have been published with reference to cancer. Concisely,
ENSG00000261472 is a novel lncRNA whose cellular function is yet to be discovered.

3.2.3. ENSG00000272455, MRPL20-DT “Divergent”

Similar to Novel, no localisation information was detected in lncATLAS for MRPL20-
DT [46]. A recent study, however, found that MRPL20-DT promoter is consistently upregu-
lated across 13 tumors [58]. Likewise, its upregulation amid other lncRNAs was reported
in muscle invasive bladder cancer [59]. In contradiction, TANRIC’s survival analysis
displayed better survival probability for those with higher expression of MRPL20-DT in
bladder cancer (Kaplan–Meier analysis and log-rank test, p-value < 0.05), which comes in
conformity with our results of it being downregulated in malignancy. In essence, MRPL20-
DT role is still undetermined, but evidence suggest its possible association with cancer.
Future research is needed to investigate its dysregulation in tumors and better understand
the molecular mechanisms involved.

3.3. Specificity of Correlated mRNAs

Co-expressed mRNAs lists, classified between positively and negatively correlated,
ranged in size across different cancers and different lncRNAs, proposing a wide and di-
verse network of gene interactions across tumors. In addition, the number of correlated
mRNAs of a given lncRNA was dependent on the tissue type. For instance, 1428 mRNAs
were positively correlated with Antisense in stomach cancer sample set, compared to only
353 and 30 mRNAs in prostate and breast cancer, respectively (Figure 1a), suggesting some
level of tissue specificity, which comes in accordance with previous findings [60]. Although
there is little intersect between malignancies, mRNAs were noted to be predominantly
different (Figure 1c), suggesting that, despite the commonality of the three lncRNAs of
interest, they appear to be interacting with different mRNAs in different tissues. Taken to-
gether, lncRNAs seem to manifest both tissue-specific and ubiquitous relations, interacting
with a broad range of genes across tumors.

3.4. Enriched GO Terms

GO enrichment analysis differentiated three GO term lists; no GO terms were found to
be notably associated with Novel post-filtration, possibly because the number of correlated
mRNAs was the lowest compared to Antisense and Divergent, hence, as a consequence
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no significant ontology enrichment was detected. The absence of GO terms is somewhat
surprising but does not undermine the possible involvement of this lncRNA with tumors.
It is worth noting that there is evidence of enrichment of Novel in breast cancer [57],
in addition to the present study where consistent upregulation was outlined across all eight
cancer types. These initial findings are promising; further studies would make a worthwhile
contribution, to better understand the underlying mechanisms related to cancer.

3.5. Networks of Functionally Similar GO Terms

In order to understand the functional similarities of the two remaining lncRNAs,
Antisense and Divergent, we identified three GO similarity networks. It is worth noting
that the scoring scheme (RSS) we adopted in creating these networks showed minimal
variation when compared with Resnik and Lin’s semantic similarity, another two widely
used and known measures [61,62]. Whilst this increases our confidence with results
presented here, a caveat with this approach is that network representation differs slightly
based on the cut-off used with these scoring schemes. With that said, this is generally the
case with many analyses and statistical tests which rely on arbitrary cut-off values, and in
our analysis, cut-off value does not change the number or nature of biological processes
involved, rather the way they are represented in a network.

3.5.1. GO Terms of Positively Related mRNAs with “Antisense”

Three clusters can be identified in this network (Figure 2a). The first cluster comprised
of biological processes linked to angiogenesis, blood vessel and tissue morphogenesis as
well as vasculature development, all known to be critical for cancer growth (Figure 2b).
For instance, it is well-established that angiogenesis is one of the hallmarks of cancer [3];
tumor cells recruit new blood vessels to allow for nutrients and oxygen delivery, as well to
be able to metastasise to other tissues [63,64], and this also involves the development of
new blood vessels and tissues. This is of importance as it implies that Antisense might be
involved with pivotal mechanisms of tumorigenesis. Simultaneously, the second cluster
encompassed GO terms of cell motility and migration along with actin filament-based
processes (Figure 2c). These processes are also linked to those seen in the first cluster; taking
cell motility for example, this is essential in allowing tumor cells to enter the vasculature,
transport through blood vessels and invade other sites [65]. Moreover, networks of actin
protein filaments form actin cytoskeleton, involved primarily in cell migration and motility
in cancer, leading to metastasis [66,67]. Finally, the third cluster involved extracellular
matrix and structure organisation together with cell adhesion, processes also associated
with cancer progression (Figure 2d). Indeed, there has been a focus on understanding the
dysregulation of the extracellular matrix in complex diseases such as cancer. Being the
major component of the tumor ‘microenvironment’, it has been suggested to modulate
cell behavior and influence adhesion and migration of cells [68,69]. Collectively, the GO
terms presented in this network appear to be closely related, describing vital processes for
the proliferation and progression of malignancies. The question remains though, whether
Antisense is exerting a regulatory role in this network or is simply a by-pass product.
Further investigation is required to understand its potential role.

3.5.2. GO Terms of Negatively Related mRNAs with “Antisense”

The smaller list of negatively correlated mRNAs with Antisense enriched important
functions relating to ncRNA metabolic processes, particularly rRNA, ribosome biogenesis,
and ubiquitination (Figure 3). Mounting evidence suggests that impaired ribosomal activity
drives tumorigenesis [70,71]. Ribosome biogenesis is an important regulator of cellular
activities, including cell growth and cell cycle progression [72,73]; an increase in rRNA
processing is observed during G1 of interphase, in preparation for protein translation,
whilst during mitosis, downregulation of ribosomal activity is needed to signal the ending
of cell cycle. Uncontrolled cell proliferation, a common feature in cancer, is a consequence of
impaired ribosomal activity. Furthermore, it is now believed that perturbation of ribosomal
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biogenesis is sufficient to lead to malignant transformation [74]. Another process found is
ubiquitination (also known as ubiquitylation), a post-translational mechanism in which
proteins are tagged by the conjugation of ubiquitin, for modification. Ubiquitin is a small
regulatory protein that is highly conserved in eukaryotes, most commonly found to initiate
proteins degradation, apart from also altering protein–protein interactions and modulating
cellular processes such as cell cycle, apoptosis cell signaling and DNA repair [75,76]. It has
been shown that cytoplasmic lncRNAs interfere with protein expression by either obstruct-
ing or promoting ubiquitination [77]. With a balanced ribosomal genesis for instance, tumor
suppressor protein p53 is usually post-translationally downregulated through ubiquitina-
tion. However, studies have revealed that disruption of ribosomal biogenesis primarily
causes activation of p53, and consequently disrupts its degradation through ubiquitina-
tion [70]. Hence, it comes as no surprise that these processes are interconnected, and their
perturbation is associated with carcinogenesis. lncRNA Antisense, identified in this study,
has been shown to be associated with a range of important biochemical processes, explicitly
ubiquitination. Currently, novel strategies are being developed to target certain pathways
in which ubiquitin is primarily involved, resulting in potentiation of drug efficacy, and
overcoming multi drug resistance [78].

3.5.3. GO Terms of Positively Related mRNAs with “Divergent”

Finally, the network similar GO terms related with “Divergent” displayed processes,
enriched in more than one cancer type, relating to mRNA processing, in particular, splicing
pathways in addition to cell cycle regulation, specifically mitosis (Figure 4). Accounting
primarily for protein diversity, splicing is a fundamental step of mRNA processing where
the same coding gene can have different, even at times, opposing functional transcripts
called isoforms. It has been revealed that aberrant splicing is linked with cancer, yielding
cancer-specific isoforms favorable for tumor growth [79,80]. In addition, defective splicing
also perturbs the cell cycle, which is also enriched in this network. Consistent with the literature,
lncRNAs have been suggested to influence splicing in diseases such as cancer [81]. Moreover,
new mechanism of cell death modulation has also been linked to lncRNA through interaction
with protein factors, leading to apoptosis resistance [82]. However, the downfall of these findings
is that the underlying mechanisms still remain largely unknown. Nonetheless, Divergent has
been presented in this study to be consistently downregulated across tumors and seems to be
associated with pivotal processes, involved in cancer growth and development; investigating its
possible role in splicing events and cell growth may be of benefit.

3.5.4. GO Terms Shared across Networks

We reported four processes to be shared by both lncRNAs (Figure 5). Interestingly,
these processes were found in the network of negatively correlated mRNAs with Antisense,
reported to be upregulated, and that of positively correlated mRNAs with Divergent,
found to be downregulated in cancers. Taken together, it appears that although these
two lncRNAs are interacting with different sets of mRNAs across different cancers, and
possibly through different mechanisms with one being upregulated and the other shown
to be downregulated; they are both enriching substantially similar processes, found to be
fundamental in cancer proliferation and progression.
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3.6. Evaluation of lncRNA DE on Independent Datasets

We were interested to evaluate if our findings are generalisable to other cancer types
not included in the discovery phase of the three lncRNAs. Accordingly, we assessed the
dysregulation of Antisense, Novel, and Divergent on independent TCGA and non-TCGA
datasets obtained from TANRIC repository. These include the total of 1047 tumor samples
and their related adjacent 218 non-neoplastic tissue samples across five cancer subtypes,
four of which are sourced from TCGA including urothelial bladder carcinoma, BLCA
(19 non-neoplastic and 252 tumor samples), kidney chromophobe, KICH (25 non-neoplastic
and 66 tumor), kidney renal clear cell carcinoma, KIRC (67 non-neoplastic and 448 tumor),
and cervical kidney renal papillary cell carcinoma, KIRP (30 non-neoplastic and 198 tumor
samples), and one is a non-TCGA dataset collected in Seoul, South Korea comprising
77 non-neoplastic and 83 tumor samples of lung adenocarcinoma (LUAD_KOREA) [83].
We investigated the DE of the three lncRNAs of interest across each dataset. In addition to
the t-test, we estimated p-values using a non-parametric test (i.e., the two-sample Wilcoxon
test or the Mann–Whitney test) to mitigate the biases associated with the underlying
assumptions of hypothesis tests. The p-values were adjusted for multiple hypothesis
testing using the Bonferroni correction. In agreement with our results, we observed the
three lncRNAs to be consistently dysregulated across all five cancer types, with adjusted
p-value ≤ 0.01 (Figure 6 and Table S6). While the direction of dysregulation can be different
in the validation datasets compared to the discovery datasets, the significance of DE
(independent of the hypothesis test) supports the potential role of these lncRNAs across
diverse cancer types and provides more evidence that lncRNAs identified in this study
could serve in potentially developing new pan-cancer biomarkers or therapeutic agents.

3.7. Future Direction

The foundational processes identified in this study, such as angiogenesis, underly all
tumors regardless of tissue type. Understanding the role of lncRNAs in enriching these
perturbations is thus very important and can be advantageous, particularly when malignant
cells spread to other tissues, leading to current treatment strategies in becoming somewhat
ineffective. A possible future direction would be to use other computational approaches and
databases to decipher putative functions of lncRNAs. For instance, taking an integrative
approach considering transcriptomic and epigenomic data (e.g., methylation profile [84]),
or genomic changes such as copy number alterations (CNAs) [85]. In addition, using UCSC
genome browser [86], we could also examine the genomic location of lncRNAs along with
co-expressed coding genes in order to explore cis and trans-relationships, which can be an
initial step in discovering potential regulatory roles. Further analysis of the dysregulation
of the identified lncRNAs can also be performed across other datasets, allowing further
evidence to be provided for their dysregulation across other cancer types. Moreover, we
have focused in the present study on commonly dysregulated lncRNAs, the complimentary
future approach could be to explore lncRNAs that are specific to each cancer type/subtype,
with the aim of investigating cancer-specific functions, which can also be of benefit.
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Figure 6. Boxplots of normalised expression values of lncRNAs Antisense, Novel and Divergent,
in tumor versus non-neoplastic samples across five other cancer types which have not been used
during the discovery phase of these lncRNAs. These include TCGA datasets, namely urothelial
bladder carcinoma (BLCA), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),
and cervical kidney renal papillary cell carcinoma (KIRP), and one non-TCGA lung adenocarcinoma
dataset collected in Seoul, South Korea (LUAD_KOREA). Significant adjusted p-values (adj p ≤ 0.01)
are represented by a star, from left to right: the t-test and the Wilcoxon test.
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4. Materials and Methods
4.1. Data Source

We used TANRIC to access expression data of lncRNAs of 3326 tumor samples and
their related adjacent 416 non-neoplastic tissue samples for eight cancer subtypes as cat-
egorised in TCGA. Included were 105 non-neoplastic and 837 tumor samples of breast
invasive carcinoma (BRCA), 58 non-neoplastic and 488 tumor samples of lung adenocarci-
noma (LUAD); 17 non-neoplastic and 220 tumor samples of lung squamous cell carcinoma
(LUSC); 52 non-neoplastic and 374 tumor samples of prostate adenocarcinoma (PRAD);
59 non-neoplastic and 497 tumor samples of thyroid carcinoma (THCA); 33 non-neoplastic
and 285 tumor samples of stomach adenocarcinoma (STAD), 50 non-neoplastic and 200 tumor
samples of liver hepatocellular carcinoma (LIHC); and 42 non-neoplastic and 425 tumor
samples of head and neck squamous cell carcinoma (HNSC). An overview of the workflow of
this study is shown in Figure S4.

4.2. Differential Exprssion Analysis and Commonality Exploration

We carried out differential expression analysis by comparing lncRNA expression levels
between tumor and related adjacent non-neoplastic samples of a given set. Expression
data for a total of 12,727 lncRNAs was downloaded from TANRIC v2.0 for each of the
eight TCGA cancer types. Differentially expressed lncRNAs (up- and downregulated) were
identified (|log2(FC)| > 1) and Student’s t-test was applied to calculate p-values followed
by the Benjamini and Hochberg method to control the false discovery rate (FDR) [87].
Differentially expressed lncRNAs with adjusted p-value≤ 0.01 were considered statistically
significant. We then identified common dysregulated lncRNAs (found in 2+ cancers)
and unique dysregulated lncRNAs (specific to a given cancer type). Commonality was
evaluated between each pair of cancers and represented by the Jaccard index (J) [88]. These
analyses were implemented in MATLAB with the code available on the GitHub repository
(https://github.com/VafaeeLab/PanCancer-lncRNAs).

4.2.1. mRNA Correlation Analysis

Guided by the “guilt by association” principle [89], we utilised TANRIC to explore
mRNAs correlated with common dysregulated lncRNAs across each cancer type. Spearman
rank correlation coefficient (rs) were calculated to examine correlation relationships between
lncRNAs of interest and mRNAs expression. Lists of correlated mRNAs were extracted
based on cut-offs of rs ≥ 0.5 or rs ≤ −0.5, for positive and negative correlation, respectively,
with correlation p-value ≤ 0.01.

4.2.2. Functional Enrichment Analysis

Exploration of large sets of genes can be achieved by organising them based on
common functional features and one of the most widely used ways to understand genes
and their products is to explore gene ontologies (GO) [90,91]. Thus, to investigate functional
implications of lncRNAs of interest, we performed GO enrichment analysis with particular
focus on biological processes. We exploited WebGestalt (WEB-based gene set analysis toolkit), to
identify GO terms enriched by mRNAs lists, found to be correlated with common differentially
expressed lncRNAs, with the aim of perusing their functional role [92,93]. Statistical analysis
of GO enrichment was performed using a Fisher’s exact test with a hypergeometric null
distribution [94,95]. Significantly enriched GO terms were determined as FDR ≤ 0.05.

4.2.3. GO Similarity Analysis

GO, considered as a universal vocabulary, is structured as a hierarchical directed
acyclic graph where each node represents a class of gene function (GO term), and the
connection between two GO terms indicates different relationships. This hierarchy allows
exploring semantic similarities among enriched GO terms, which could imply functional
similarities between the associated genes [61,96]. Following the annotation of mRNAs
lists by ontology, we merged GO terms enriched by each lncRNA across different cancers

https://github.com/VafaeeLab/PanCancer-lncRNAs
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and distinguished two separate groups: GO terms enriched by positively and negatively
correlated genes. After additional filtering, based on FDR ≤0.05, GO terms were then
further investigated. In order to measure closeness of GO terms using NaviGO, an inter-
active software that allows the retrieval of functional similarity scores and visualisation
as networks [97]. From the six different scoring schemes offered by NaviGO, we relied
on Relevance Semantic Similarity (RSS), which measures the relative depth and rareness
of the biological processes involved [61]. RSS ranges from 0 to 1, with 0 representing
zero similarity and 1 indicating very high similarity. Functional similarity networks were
created using the NaviGO visualiser based on threshold RSS ≥ 0.5.

5. Conclusions

Once seen as transcriptional by-products, lncRNAs are now emerging as key players
in cellular function, regulating a wide range of biological processes, and involved in
their disruption. Our study provides evidence that lncRNAs may be contributing to the
hallmarks of cancer, regardless of cancer type. These results are promising, suggesting
that lncRNAs can serve as potential therapeutic targets to be applied in multiple cancer
subtypes; future treatment strategies may potentially include non-coding genes in addition
to specific protein targets. Indeed, lncRNAs have brought a promising new era to cancer
biology, especially in terms of diagnosis and therapy.
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