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Abstract: Bacillus cereus, a Gram-positive bacterium, is a food contaminant that threatens the health of
thousands of people around the world. Because of the continuous emergence of drug-resistant strains,
the development of new classes of bactericides from natural products is of high priority. In this study,
two novel cassane diterpenoids (pulchins A and B) and three known ones (3–5) were elucidated
from the medicinal plant Caesaplinia pulcherrima (L.) Sw. Pulchin A, with a rare “6/6/6/3” carbon
skeleton, showed significant antibacterial activity against B. cereus and Staphylococcus aureus, with
MIC values of 3.13 and 6.25 µM, respectively. Further investigation of its mechanism of antibacterial
activity against B. cereus is also discussed in detail. The results revealed that the antibacterial activity
of pulchin A against B. cereus may be caused by pulchin A interfering with bacterial cell membrane
proteins, affecting membrane permeability and causing cell damage or death. Thus, pulchin A may
have a potential application as an antibacterial agent in the food and agricultural industries.
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1. Introduction

Food safety is a major public concern. A group of food-related health threats is
caused by food pathogens and their toxins that result in disease and death worldwide [1].
Bacillus cereus, an example of a foodborne pathogen, is a Gram-positive, spore-forming
rod bacterium. It is able to contaminate a variety of foods throughout the world due
to the high resistance of its endospore to various stresses, which allows it to survive
in unfavorable environments [2,3]. As the causative agent of many foodborne diseases,
B. cereus, ingested as viable cells or spores, produces and secretes enterotoxins - which
induces food poisoning, primarily manifested as diarrhea and emesis [4]. Moreover, the
intestinal infection B. cereus also causes severe nongastrointestinal infections, including
central nervous system infections, endocarditis, respiratory and urinary tract infections,
and endophthalmitis in both immunocompromised and immunocompetent individuals [5].
Notably, B. cereus is an important health threat to the infant demographic. During a period
of 7 years, 0.61% of bacteria-related acute diarrhea cases in infants were attributed to B.
cereus in Kosovo [2]. Natural products feature an enormous diversity of complex chemical
scaffolds that play a vital role in the drug discovery and development process [6,7]. The
drug resistance of the pathogen represented by B. cereus seriously threatens the health of
all human beings. Therefore, the need to develop new classes of bactericides with novel
chemical scaffolds, binding targets, and antimicrobial mechanisms from natural products
is urgent [8].

Cassane-type diterpenoids feature a backbone of three fused cyclohexane rings and
a furan ring or an α, β-lactone ring and are the most distinctive specialized metabolites
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of medicinal plants from the genus Caesalpinia. Most of these cassane derivatives have
a wide range of bioactivities, such as antiproliferative, anti-inflammatory, antimalarial,
antiviral, and antibacterial effects [9]. In recent years, cassane compounds have attracted
considerable interest from the medicinal chemistry community owing to their diverse
structures and notable pharmacological profiles [10,11]. However, literature reporting on
their antibacterial mechanism specifically against B. cereus is lacking. In this study, two
new cassane diterpenoids (pulchins A and B), including one featuring a cyclopropane D
ring (1), together with three known ones (3–5), were isolated from the medicinal plant C.
pulcherrima. The antibacterial mechanism of pulchin A against B. cereus was further studied
to fully understand its mode of action and the possible applications of pulchin A. Notably,
this is the first time that the mode of action of pulchin A against B. cereus has been studied
through physiological and biochemical experiments combined with electron microscopy.

2. Results and Discussion
2.1. Structural Elucidation of the Compounds

Pulchin A (1) was obtained in the form of white needles. Its molecular formula was
assigned as C27H36O4 by the HREISMS spectrum in agreement with its 1H and 13C NMR
data (Table 1). The 1H NMR spectral data exhibited four tertiary methyl groups at δH 0.91,
0.94, 1.05, and 1.18 (each 3H of singlet), and an oxymethylene at δH 3.48 (dd, J = 11.6, 7.7)
and 3.74 (dd, J = 11.6, 5.8), together with an oxymethine at δH 4.71 (m). In the spectrum,
a series of signals from the benzoyloxy group at values between δH 7.54 and 8.04 was
also clearly observed. Other overlapping signals centered between 1.05 and 2.06 ppm are
attributed to resonance from either methine or methylene signals. Seven carbon signals
corresponding to the benzoyloxy group were not present in the 13C NMR spectrum. The
20 carbon resonances in the spectrum were further classified by DEPT experiments as four
methyls (δC 14.4, 14.5, 17.1, and 28.5), six methylene groups with one oxygenated carbon (δC
61.7), six methines containing one oxygenated methine (δC 81.9), as well as four quaternary
carbons including one keto carbonyl carbon (δC 210.6). The presence of a cyclopropane
ring was deduced from the 1H-1H COSY cross-peaks of H-15 (δH 1.57, dd, J = 7.7, 5.8) with
H-14 (δH 1.05, m) and H2-16 (δH 3.48, dd, J = 11.6, 7.7 and 3.74, dd, J = 11.6, 5.8); the HMBC
correlations from H2-16 to C-13(δC 34.1), C-14 (δC 38.5), and C-15 (δC 37.9); and from Me-17
(δH 1.18, s) to C-12(δC 210.6), C-13, and C-14 (Figure 1). While the data implied a carbonyl
group at C-12 and a hydroxyl group at C-16, a cyclopropane ring between the C-13, C-14,
and C-15 formations was observed. Further analysis of the 1D and 2D NMR spectral data
(Figures S1–S6) of compound 1 revealed similarities to those of pucherrin R (3) [12], which
featured a cleistanthane backbone similar to compound 1, but without a benzoyloxy group
at C-3. This evidence was confirmed by the HMBC interactions of H-3 (δH 4.71, m) with C-2
(δC 24.4), C-4 (δC 38.8), Me-18 (δC 17.1), Me-19 (δC 28.5), and carbonyl carbon (δC 166.4). In
the NOESY experiment, the correlations of H-3/Me-18 and Me-17/H2-16/Me-18 supported
the α orientation of H-3, H2-16, Me-17, and Me-18 (Figure 1). The absolute configuration
of 1 was established based on the comparison of experimental and calculated ECD data
(Figure 2). Eventually, the absolute stereochemistry of this compound was defined as 3S,
5S, 8R, 9S, 10R, 13R, 14R, and 15R, as shown in Figure 3, owing to the agreement of the
calculated ECD curve with the experimental one; this compound was named pulchin A.
Notably, pulchin A with an exclusive cleistanthane backbone represents a rare class of
cassane diterpenes.

Pulchin B (2) was obtained in the form of a white amorphous powder with the
molecular formula C36H42O10, as determined by a combination of HREISMS (measured:
m/z 657.2670 [M+Na]+, calculated: 657.2670) and NMR spectra, including 1H, 13C, and
DEPT. The absorption bands at 3365 and 1716 cm−1 in the IR spectrum were ascribed
to hydroxyl and ester carbonyl units, respectively. The 1H NMR spectrum revealed the
presence of three methyls at δH 1.08 (3H, d, J = 7.3), 1.41 (3H, s), and 1.46 (3H, s); two
methoxys at δH 3.13 (3H, s) and 3.41 (3H, s); and two oxygenated methines/olefinic protons
at δH 5.90 (1H, dd, J = 11.3, 3.7) and 6.15 (1H, d, J = 3.7) and a pair of AB doublets at δH
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5.33 and 5.63 (d, J = 1.1). Ten aromatic signals between δH 7.37 and 7.84 ppm and one
singlet at δH 4.39 were also clearly observed in the 1H NMR spectrum. The combined
analysis of 13C NMR (including its DEPT), HSQC, and HMBC of 2 showed 36 carbons,
including two benzoyloxy groups (δC 166.6, 132.3, 2 × 130.4, 2 × 129.2, and 133.7; δC 166.0,
131.4, 2 × 130.3, 2 × 129.1, and 133.3); two methoxy groups (δC 50.4 and 55.9); one carboxyl
carbon (δC 178.4); three methyls (δC 13.2, 17.5, and 25.0); four methines; seven methylenes,
including three oxygen-occurring ones (δC 70.4, 72.3, and 106.6) and an olefinic carbon (δC
122.5); and five quaternary carbons involving two oxygenated ones (δC 78.8, and 110.5) and
one olefinic carbon (δC 147.5). Further analysis of the HSQC data confirmed the assignment
of all proton signals except for one at δH 4.39. This, in turn, confirmed that this signal
corresponded to the free hydroxyl moiety. The above spectroscopic evidence suggests that
compound 2 was also a highly oxygenated cassane diterpenoid.

Table 1. 1H and 13C NMR spectroscopic data of compounds 1 and 2 (δH, δC [ppm], J [ Hz]).

Position 1 [a] 2 [b]

δH δC δH δC

1 1.16 m,1.71 m 36.6 t 1.80 m, 1.90 m 34.6 t
2 1.16 m, 1.81 m 24.4 t 1.52 m, 2.30 m 20.0 t
3 4.71 m 81.9 d 1.65 m, 1.86 m 34.8 t
4 38.9 s 49.8 s
5 1.14 m 57.5 d 78.8 s
6 1.32 m, 2.07 m 37.0 t 6.15 d (3.6) 70.4 d
7 1.51 m,1.75 m 22.4 t 5.90 dd (11.3,3.7) 72.3 d
8 1.14 m 54.4 d 2.21 td (11.3,4.9) 40.8 d
9 1.77 m 37.4 d 2.53 td (12.5,3.0) 38.3 d
10 37.6 s 42.1 s
11 1.32 m, 2.12 m 35.8 t 1.33 m, 2.29 m 40.1 t
12 210.6 s 110.5 s
13 34.1 s 147.5 s
14 1.05 m 38.5 d 2.95 m 31.9 d
15 1.57 m 37.9 d 5.63 d (1.1) 122.5 d

16 3.48 dd (11.6,7.7),
3.74 dd (11.6,5.8) 61.7 t 5.33 d (1.1) 106.6 d

17 1.18 s 14.4 q 1.08 d (7.3) 13.2 q
18 1.05 s 17.1 q 1.41 s 25.0 q
19 0.94 s 28.5 q 178.4 s
20 0.91s 14.5 q 1.46 s 17.5 q

5-OH 4.39 s
12-OCH3 3.41 s 55.9 q
16-OCH3 3.13 s 50.4 q

1’ 166.4 s 166.6 s
2’ 131.7 s 132.3 s
3’ 8.04 d (6.4) 130.1 d 7.84 d (6.7) 130.4 d
4’ 7.53 t (7.7) 129.4 d 7.47 t (7.7) 129.2 d
5’ 7.65 t (7.4) 133.8 d 7.6 1overlap 133.7 d
6’ 7.53 t (7.7) 129.4 d 7.47 t (7.7) 129.2 d
7’ 8.04 d (6.4) 130.1 d 7.84 d (6.7) 130.4 d

[a] 1H (400 MHz) and 13C (100 MHz) NMR recorded in methanol-d4; [b] 1H (400 MHz) and 13C (100 MHz) NMR
recorded in acetone-d6. The other benzoyloxy moiety signals of 2: δH7.81 d (6.9), 7.37 t (7.8), 7.58 overlap, 7.37 t
(7.8), 7.81 d (6.9); δC 166.0 s, 131.4 s, 130.3 d, 129.1 d, 133.3 d, 130.3 d (7-OCOPh).



Int. J. Mol. Sci. 2023, 24, 4917 4 of 11Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Key 1H-1H COSY, HMBC, and NOESY correlations of compounds 1 and 2. 

 

 
Figure 2. Calculated and experimental ECD for 1 and experimental ECD for 2. 

 

1 2

H

H

H H

O

CH2OH

PhOCO

O

COOH
OH

OCOPh

H3CO

OCOPh

OCH3

1H-1H COSY HMBC

1

2

NOESY

Figure 1. Key 1H-1H COSY, HMBC, and NOESY correlations of compounds 1 and 2.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Key 1H-1H COSY, HMBC, and NOESY correlations of compounds 1 and 2. 

 

 
Figure 2. Calculated and experimental ECD for 1 and experimental ECD for 2. 

 

1 2

H

H

H H

O

CH2OH

PhOCO

O

COOH
OH

OCOPh

H3CO

OCOPh

OCH3

1H-1H COSY HMBC

1

2

NOESY

Figure 2. Calculated and experimental ECD for 1 and experimental ECD for 2.



Int. J. Mol. Sci. 2023, 24, 4917 5 of 11Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 3. Structures of compounds 1–5 

Pulchin B (2) was obtained in the form of a white amorphous powder with the molec-
ular formula C36H42O10, as determined by a combination of HREISMS (measured: m/z 
657.2670 [M+Na]+, calculated: 657.2670) and NMR spectra, including 1H, 13C, and DEPT. The 
absorption bands at 3365 and 1716 cm−1 in the IR spectrum were ascribed to hydroxyl and 
ester carbonyl units, respectively. The 1H NMR spectrum revealed the presence of three me-
thyls at δH 1.08 (3H, d, J = 7.3), 1.41 (3H, s), and 1.46 (3H, s); two methoxys at δH 3.13 (3H, s) 
and 3.41 (3H, s); and two oxygenated methines/olefinic protons at δH 5.90 (1H, dd, J = 11.3, 
3.7) and 6.15 (1H, d, J = 3.7) and a pair of AB doublets at δH 5.33 and 5.63 (d, J = 1.1). Ten 
aromatic signals between δH 7.37 and 7.84 ppm and one singlet at δH 4.39 were also clearly 
observed in the 1H NMR spectrum. The combined analysis of 13C NMR (including its DEPT), 
HSQC, and HMBC of 2 showed 36 carbons, including two benzoyloxy groups (δC 166.6, 
132.3, 2 × 130.4, 2 × 129.2, and 133.7; δC 166.0, 131.4, 2 × 130.3, 2 × 129.1, and 133.3); two meth-
oxy groups (δC 50.4 and 55.9); one carboxyl carbon (δC 178.4); three methyls (δC 13.2, 17.5, 
and 25.0); four methines; seven methylenes, including three oxygen-occurring ones (δC 70.4, 
72.3, and 106.6) and an olefinic carbon (δC 122.5); and five quaternary carbons involving two 
oxygenated ones (δC 78.8, and 110.5) and one olefinic carbon (δC 147.5). Further analysis of 
the HSQC data confirmed the assignment of all proton signals except for one at δH 4.39. This, 
in turn, confirmed that this signal corresponded to the free hydroxyl moiety. The above 
spectroscopic evidence suggests that compound 2 was also a highly oxygenated cassane 
diterpenoid. 

A detailed analysis of the 1D and 2D NMR data (Figures S7–S14) of 2 revealed that its 
structure closely resembled that of caesalpulcherrin B, the first 2,5-dimethoxyfuranocassane 
diterpenoid, which was previously isolated from the aerial parts of C. pulcherrima [13]. The 
obvious difference between the two compounds was that an additional benzoyloxy group 
replaced the hydroxyl moiety located at C-7, as indicated by the HMBC correlations from 
H-7 (δH 5.90, dd, J = 11.3, 3.7) with C-6 (δC 70.4), C-8 (δC 40.8), C-14 (δC 31.9), and ester carbonyl 
carbon (C-1′’, δC 166.0); and the 1H-1H COSY interactions of H-7 with H-6 (δH 6.15, d, J= 3.7) 

O

OH
OCOPh

1 2

1

3
4

7

9

12

18 19

O

COOH
OH

OCOPh

OCH3

H3CO

H

OCOPh

H
H

H

H

PhOCO

H

CH2OH

O

14

15 16

17
13

5
10

10

H

H

H H

CH2OH
AcO

3

H

H

H H

CH2OH

O

4

O

HO

5

H

H

11

15

9

12

13

14

16

17

Figure 3. Structures of compounds 1–5.

A detailed analysis of the 1D and 2D NMR data (Figures S7–S14) of 2 revealed that its
structure closely resembled that of caesalpulcherrin B, the first 2,5-dimethoxyfuranocassane
diterpenoid, which was previously isolated from the aerial parts of C. pulcherrima [13]. The
obvious difference between the two compounds was that an additional benzoyloxy group
replaced the hydroxyl moiety located at C-7, as indicated by the HMBC correlations from
H-7 (δH 5.90, dd, J = 11.3, 3.7) with C-6 (δC 70.4), C-8 (δC 40.8), C-14 (δC 31.9), and ester
carbonyl carbon (C-1′’, δC 166.0); and the 1H-1H COSY interactions of H-7 with H-6 (δH 6.15,
d, J= 3.7) and H-8 (δH 2.21, td, J = 11.3, 4.9) (Figure 1). Moreover, the long-range correlations
between δH 1.41 (s, Me-18) and C-3 (δC 34.8), C-4 (δC 49.8), C-5 (δC 78.8), and carboxyl
carbon (δC 178.4) revealed that Me-19 was carboxylated in compound 2, conforming to its
molecular formula. In the ROESY spectrum, the correlations of H-6/Me-17, H-6/Me-18,
Me-17/H-7, Me-18/H-7, H-7/H-9, H-7/12-OMe, 12-OMe/Me-17, 12-OMe/16-OMe, 16-
OMe/Me-17, and 16-OMe/H-9 clarified that H-6, H-7, H-9, Me-17, Me-18, 12-OMe, and
16-OMe were all in the same orientation (α) (Figure 2). Further analysis of the ROESY
spectrum showed that the configurations of the remaining functional groups in 2 were the
same as those in caesalpulcherrin B. The absolute configuration of 2 was then deduced as
4S, 5S, 6S, 7S, 8s, 9S, 10R, 12R, 14R, and 16S, as shown in Figure 3.

The structures of the known cassane-type compounds (Figure 3) were elucidated by
a combination of spectroscopic techniques and comparison with references. Compounds
3–5 were identified as pulcherrin R (2) [12], chaenocevhalol (3) [14], and pulcherritam F
(5) [15], respectively. A plausible biosynthetic pathway for all isolated cassane derivatives
is proposed (Figure 4). The precursor of cassane diterpene, pimarane diterpene, might be
derived from geranylgeranyl pyrophosphate (GGPP) via intramolecular cyclization. Pi-
marane diterpene could be transformed into intermediate (A) via cyclization, which would
subsequently undergo a series of oxidations to form compounds 1, 3, and 4. Additionally,
compounds 2 and 5, the lactone-type cassane dierpenoids, could be generated from B by
oxidation and esterification, as shown in Figure 4.
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2.2. Antibacterial Activity of Compounds 1–5 In Vitro

As shown in Table 2, all five cassane derivatives were assessed for antibacterial
effects against B. cereus, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus
(MRSA). The results revealed that compounds 1, 3, and 4, all of which feature a cleistanthane
backbone, exhibited significant inhibitory activity against B. cereus with MICs of 3.13 µM,
6.25 µM, and 12.50 µM, respectively. Additionally, these three compounds exerted potential
inhibitory effects against S. aureus according to their MICs (6.25 µM, 6.25 µM, and 12.50 µM);
however, they displayed mild or no activity against MRSA. Compared with compounds 1,
3, and 4, the other compounds 2 and 5 showed weaker inhibitory activity against both B.
cereus and S. aureus.

Table 2. MIC values of compounds 1–5 against test bacteria.

MICs (µM) [a] MICs (µM)
Compounds

B. cereus S. aureus MRSA
Compounds

B. cereus S. aureus MRSA
1 3.13 6.25 50.00 4 12.50 12.50 >100
2 25.00 75.00 >100 5 12.50 25.00 75.00
3 6.25 6.25 50.00 Gentamicin [b] 3.13 3.13 12.50

[a] MICs (µM): The minimal inhibitory concentration. [b] Positive control of three test bacteria.

2.3. Inhibitory Effect of Compound 1 on the Growth of B. cereus and S. aureus

The growth curves of B. cereus and S. aureus treated with pulchin A (1) are shown
in Figure 5A and Figure 5B, respectively. In the negative control groups, the OD600nm
increased at a faster rate in the first 8 h and remained stable until the end of the experiment.
Compared with the control, each treatment with pulchin A at different concentrations (from
0.5 ×MIC to 2 ×MIC) delayed the exponential phase of cells and decreased the value of
the growth curve of both B. cereus and S. aureus. In general, growth curve analysis revealed
that compound 1 exerted remarkable inhibitory effects against these two bacteria, and the
inhibitory effect was demonstrated to be dose- and time-dependent.
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2.4. Effect of Compound 1 on the Cell Membrane Permeability of B. cereus

β-galactosidase is widely found in various bacterial cells. Once the inner membrane
of a bacterium is destroyed, β-galactosidase flows out into the culture medium, catalyzing
a specific substrate, nitrophenyl β-D-galactopyranoside (ONPG), to yield o-introphenol
(ONP), which has a strong absorption at 420 nm. Consequently, the content of extracellular
β-galactosidase was measured to reflect the changes in the cell membrane permeability
of B. cereus. As shown in Figure 5C, the extracellular bacteria treated with 1 ×MIC and
5 × MIC of pulchin A (1) caused significantly higher membrane permeability than that
in the control group. After being treated with 1 × MIC and 5 × MIC of 1 for 10 h, the
OD420 nm values were 5 and 5.6 times higher than that of the blank control, respectively.
Over time, the OD values of B. cereus remained stable, implying that pulchin A may play
an active role in destroying the inner membrane of cells during the first 10 h of contact
with bacteria. Meanwhile, the OD values of B. cereus at 1 × MIC were similar to those
at 5 × MIC, indicating that the inner membrane of cells may be destroyed at 1 × MIC.
Consequently, the above results suggest that the cell membrane permeability increased
after pulchin A treatment.

2.5. Scanning Electron Microscopy (SEM)

To visually analyze the action of pulchin A on the cell membrane, B. cereus morphology
was observed using scanning electron microscopy (SEM). Compared with untreated B.
cereus cells, the cellular morphology of B. cereus treated with compound 1 significantly
changed. As shown in Figure 6A, the untreated B. cereus cells maintained a plump and
smooth appearance, and their cell membranes were intact. In contrast, the yellow arrow
reveals that the B. cereus cells treated with pulchin A (Figure 6B) showed an anomalous
distorted shape and rupture, suggesting that the cell membrane was severely damaged.
Cell membrane integrity is important for maintaining cell morphology and controlling
normal cellular function. The SEM observations of the B. cereus cells revealed that pulchin A
may disrupt the cell membrane by changing the cell permeability and cell integrity, which
is likely to cause cell growth inhibition and death.
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3. Materials and Methods
3.1. General Experimental Procedures

UV and ECD spectra were recorded using an Applied Photophysics Chirascan spec-
trometer (Applied Photophysics Ltd., London, U.K.). Optical rotations were measured on
an MCP 300 photometer (Rudolph Research Aanlytical). The IR spectrum was obtained
using a Bruker-Tensor-27 spectrometer (KBr pellets). The 1D and 2D NMR were obtained
using a Bruker AMX-500spectrometer (Bruker, Rheinstetten, Germany) with TMS as an
internal reference. HRESIMS spectra were obtained on an AB SCIEX Triple TOF 4600+
spectrometer (Thermo Fisher, Woburn, MA, USA). TLC analysis was carried out using
silica gel 60 F254 and RP-18 F254S plates (Merck KGaA, Darmstadt, Germany). Silica gel
(200–300 mesh, Marine Chemical Co., Ltd., Qingdao, China), RP-18 gel (20−45 µM, Fuji
Silysia Chemical Ltd., Kasugai Aichi, Japan), and Sephadex LH-20 (40−70 µM, Amersham
Pharmacia Biotech AB, Staffanstorp, Sweden) were used for column chromatography (CC).
Semipreparative HPLC was achieved on an Agilent 1100 (Agilent T echnologies Inc., Santa
Clara, CA, USA) series system using a 9.4 mm × 250 mm, 5 µM, YMC C18 column.

3.2. Plant Material

Caesalpinia pulcherrima was collected in Yunnan Province, China, in July 2019, and
identified by Dr. Ze-Huan Wang, State Key Laboratory of Phytochemistry and Plant
Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences,
Kunming, China. A voucher specimen (HITBC0021465) was deposited in the Herbarium of
Xishuangbanan Tropical Botanical Garden, Chinese Academy of Sciences.

3.3. Extraction and Isolation

The dried stem (12.1 kg) was extracted with methanol three times. The organic
solvents were evaporated under reduced pressure to yield a crude extract (562 g), which
was suspended in water and partitioned with petroleum ether, EtOAc, and n-BuOH,
successively. The EtOAc extract (193.8 g) was subjected to silica gel column chromatography
eluted with CHCl3-Me2CO (1:0, 9:1, 8:2, 7:3, 1:1, and 0:1, v/v) to afford ten fractions (Frs.
A–G) based on TLC analysis.

Fraction A (28.6 g) was separated over a silica gel column chromatograph (CC),
eluting with a PE- EtOAc gradient system (40:1–2:1, v/v) to yield six fractions (Frs. A1–A6).
Hereafter, the subfraction A2 (1.8 g) was chromatographed with Sephadex LH-20 (CHCl3-
MeOH, 1:1) to provide four subfractions A2.1-A2.4. A2.2 was subjected to semipreparative
RP-HPLC with MeOH-H2O (88:12, v/v) to obtain compounds 1 (7.4 mg) and 4 (11.2 mg).
A2.3 was repeated via ODS CC (MeOH-H2O, 85:15) and further purified with a MeOH-H2O
system (78:22) using semipreparative HPLC to afford compound 5 (13.8 mg). Subfraction
A2.4 (455 mg) was further applied to RP-C18 Me2CO/H2O (3:1–1:0, v/v) to obtain 2 (6.8 mg)
and 3 (12.2 mg).
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Pulchin A (1): white needles; [α]D
25+91.49 (c = 0.4, MeOH); CD (MeOH) λmax (∆ε):

277 (+2.5), 196 (−2.7); UV (MeOH) λmax (log ε) 190 (4.22) nm; IR (KBr) νmax 3611, 2966, 2847,
1079, 1668, 1385, 1278,757cm−1; HR-ESI-MS m/z 447.2501 [M+Na]+ (calcd for C27H36O4Na,
447.2499).

Pulchin A (2): white amorphous powder; [α]D
25+2.77 (c = 0.3, MeOH); CD (MeOH)

λmax (∆ε): 238 (+42.3), 205 (−18.5); UV (MeOH) λmax (log ε) 202 (2.53) nm; IR (KBr)
νmax 3365, 2928, 2384, 2311, 1716 cm−1; HR-ESI-MS m/z 657.2670 [M+Na]+ (calcd for
C36H42O10Na, 657.2670).

3.4. Assay for Antibacterial Activity

The minimal inhibitory concentration (MIC) was determined as an indicator of the
antibacterial properties of the compounds [16,17]. Three test bacteria (B. cereus, S. aureus,
and MRSA) were deposited at the College of Chemistry and Pharmacy, Northwest A&F
University, China. The antibacterial activity assay was performed using the method of mi-
crodilution broth method in 96-well flat microtiter plates with minor modifications [11,16].
The MIC was defined as the lowest concentration of compounds capable of inhibiting the
tested visible bacterial growth. Briefly, logarithmic-phase bacterial cells were adjusted to
a concentration of 106 CFU/mL. All compounds were dissolved in dimethyl sulfoxide
(DMSO) to prepare the stock solution. The bacterial suspension (100 µL, 2 × 106 CFU/mL)
and 100 µL of compound solutions at concentrations ranging from 3.125 to 100 µM were
gently added to the 96-well plate, successively. The absorbance at 600 nm was then ex-
amined with a microplate reader after incubation at 37 ◦C for 16 h. The MIC was defined
as the lowest concentration of these compounds capable of inhibiting the tested visible
bacterial growth. A system (DMSO) without samples was used as the negative control,
while gentamicin was applied as the positive control. Each measurement consisted of
three replicates.

3.5. Measurement of the Bacterial Growth Curve

The influence of pulchin A (1) on the growth of bacteria was assessed using a modified
version of the method developed by Lin [18]. First, the logarithmic-phase bacteria cells
(B. cereus and S. aureus) were diluted to 106 CFU/mL. Then, 100 µL of the above bacterial
suspension and 100 µL of different concentrations (0.5 ×MIC, 1 ×MIC, and 2 ×MIC) of
sample solutions were incubated at 37 ◦C in a 96-well plate. Meanwhile, an equivalent
volume of DMSO was added to the tube as the negative control. All tubes were cultured at
150 rpm at 37 ◦C. The absorbance values of 600 nm were then recorded every hour.

3.6. Measurement of Cell Membrane Permeability

When a bacterial membrane is damaged, small molecules as well as larger molecules,
such as β-D-galactosidase, flow out [19]. Therefore, the integrity of the bacterial membrane
can be evaluated by detecting the contents of β-D-galactosidase in solution over time. In
brief, the logarithmic phase of B. cereus cells was collected by centrifugation at 4000 rpm
for 5 min, washing twice with PBS (0.1M, pH7.0), and resuspending to 106 CFU/mL.
The bacterial suspension (106 CFU/mL), o-nitrophenol-β-D-galactoside (ONPG), with the
addition of two concentrations of pulchin A (0 × MIC, 1 × MIC, and 5 × MIC), were
first incubated for 10, 40, 70, 100, and 130 min at 37 ◦C. An equivalent volume of LB
medium liquid containing DMSO was used as the negative control. The UV absorption was
then measured at 420 nm to determine the content change of β- galactosidase in solution
over time.

3.7. Scanning Electron Microscopy (SEM)

SEM studies were conducted to observe the cellular morphological changes of B. cereus
treated with pulchin A based on the method of Lin et al., with minor modifications [18,20].
Logarithmic-phase B. cereus cells (approximately 2 × 106 CFU/mL) were treated with
pulchin A at levels of 0 × MIC and 1 × MIC at 37 ◦C for 10 h. Then, the bacteria were
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collected, washed with PBS (0.1M, pH7.0), and anchored with glutaraldehyde. Specimens
were dehydrated in various concentrations of a water–alcohol solutions (10, 30, 50, 70, 80,
90, and 100%) for 10 min each, and then coated with gold–palladium under vacuum. A
field-emission scanning electron microscope (Nova Nano SEM-450, FEI Instruments, Inc.,
Hillsboro, Oregon) was used for the microstructural valuation of B. cereus.

3.8. Statistical Analysis

All experiments were performed at least 3 times. Statistical comparisons were per-
formed using the SPSS version 16.0 (IBM, Armonk, NY, USA). The data are expressed as
the mean values ± standard deviation. A probability value of p < 0.05 was considered
statistically significant.

4. Conclusions

Two novel cassane diterpenoids (pulchins A and B), as well as three known ones (3–5),
were discovered from the stem of the medicinal plant C. pulcherrima. Currently, pulchin A
belongs to a rare group of cassane diterpenes that feature a clesitanthane backbone. The
antibacterial mechanism of pulchin A against B. cereus was investigated by measuring
the growth curve, membrane permeability, and SEM analysis. Based on the results, the
antimicrobial effect of pulchin A against B. cereus can likely be attributed to the action of
pulchin A on the cell membrane permeability of B. cereus. By increasing cell membrane
permeability, pulchin A inhibited growth and caused cell death of B. cereus. To the best of
our knowledge, this is the first time that the mode of action of pulchin A against B. cereus
has been elucidated through physiological and biochemical experiments combined with
electron microscopy. This work provides a novel insight for studying the antimicrobial
action of pulchin A against B. cereus and has potential applications as a potential alternative
food preservative in the food industry.
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