Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Fluorescence Quenching
2.2.1. Stern–Volmer Analysis
2.2.2. Binding Constants
2.2.3. Thermodynamic Interactions
2.2.4. Binding Site Identification
2.3. UV Absorption Spectroscopy
2.4. Forster Resonance Energy Transfer (FRET) between BSA and 2C
2.5. In Vitro Toxicity Prediction of 2C
2.6. Synchronous Fluorescence Studies
2.7. Molecular Docking
3. Materials and Methods
3.1. Chemicals
3.2. Sample Preparation
3.3. Fluorescence Spectroscopy
3.4. Thermodynamics
3.5. Site Markers’ Elucidation and Microenvironmental Changes
3.6. Forster Resonance Energy Transfer (FRET)
3.7. UV-Vis Absorption Spectra
3.8. Toxicity Predictions
3.9. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullo, A. Invasive fungal infections. Drugs 2009, 69, 65–73. [Google Scholar] [CrossRef] [PubMed]
- El Yazbi, F.A.; Mahrous, M.E.; Hammud, H.H.; Sonji, G.M.; Sonji, N.M. Kinetic spectrophotometric determination of betaxolol, clopidogrel and imidapril in pharmaceutical preparations. Curr. Anal. Chem. 2010, 6, 228–236. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Verweij, P.; Arendrup, M.; Arikan-Akdagli, S.; Bille, J.; Donnelly, J.; Jensen, H.E.; Lass-Flörl, C.; Richardson, M.; Akova, M. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Diagnostic procedures. Clin. Microbiol. Infect. 2012, 18, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoch, D.; Ludlam, H.; Brown, N. Invasive fungal infections: A review of epidemiology and management options. J. Med. Microbiol. 2006, 55, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Faidallah, H.M.; Rostom, S.A. Synthesis, in vitro antitumor evaluation and DNA-binding study of novel tetrahydroquinolines and some derived tricyclic and tetracyclic ring systems. Eur. J. Med. Chem. 2013, 63, 133–143. [Google Scholar] [CrossRef]
- Çapan, G.; Ulusoy, N.; Ergenç, N.; Kiraz, M. New 6-phenylimidazo [2,1-b] thiazole derivatives: Synthesis and antifungal activity. Mon. Für Chem./Chem. Mon. 1999, 130, 1399–1407. [Google Scholar] [CrossRef]
- Salgın-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, Ö.; Köysal, Y.; Kılıç, E.; Işık, Ş.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5 (4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Biorg. Med. Chem. 2007, 15, 5738–5751. [Google Scholar] [CrossRef]
- Bhat, M.A.; Khan, A.A.; Khan, S.; Al-Omar, M.A.; Parvez, M.K.; Al-Dosari, M.S.; Al-Dhfyan, A. Synthesis and anti-Candidal activity of N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide. Bioorg. Med. Chem. Lett. 2014, 24, 1299–1302. [Google Scholar] [CrossRef]
- Wani, T.A.; Alsaif, N.; Alanazi, M.M.; Bakheit, A.H.; Zargar, S.; Bhat, M.A. A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. Eur. J. Pharm. Sci. 2021, 158, 105686. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Al-Majed, A.A.; Altwaijry, N.; Baquaysh, A.; Aljuraisy, A.; Zargar, S. Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. J. Mol. Liq. 2021, 333, 115934. [Google Scholar] [CrossRef]
- Alsaif, N.A.; Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Wani, T.A. A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. S. Afr. J. Chem. 2020, 73, 44–50. [Google Scholar] [CrossRef]
- Wani, T.A.; Alsaif, N.; Bakheit, A.H.; Zargar, S.; Al-Mehizia, A.A.; Khan, A.A. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg. Chem. 2020, 100, 103957. [Google Scholar] [CrossRef]
- Wani, T.A.; Alsaif, N.A.; Alanazi, M.M.; Bakheit, A.H.; Khan, A.A.; Zargar, S. Binding of colchicine and ascorbic acid (vitamin C) to bovine serum albumin: An in-vitro interaction study using multispectroscopic, molecular docking and molecular dynamics simulation study. J. Mol. Liq. 2021, 342, 117542. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Khayyat, A.I.A.; Al-Majed, A.A. Influence of Rutin, Sinapic Acid, and Naringenin on Binding of Tyrosine Kinase Inhibitor Erlotinib to Bovine Serum Albumin Using Analytical Techniques Along with Computational Approach. Appl. Sci. 2022, 12, 3575. [Google Scholar] [CrossRef]
- Khayyat, A.I.A.; Zargar, S.; Wani, T.A.; Rehman, M.U.; Khan, A.A. Association mechanism and conformational changes in trypsin on its interaction with atrazine: A multi-spectroscopic and biochemical study with computational approach. Int. J. Mol. Sci. 2022, 23, 5636. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Bakheit, A.H.; Almutairi, F.M.; AlRabiah, H.; Kadi, A.A. Biophysical and In Silico Studies of the Interaction between the Anti-Viral Agents Acyclovir and Penciclovir, and Human Serum Albumin. Molecules 2017, 22, 1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, S.; Wani, T.A.; Alsaif, N.A.; Khayyat, A.I.A. A comprehensive investigation of interactions between antipsychotic drug quetiapine and human serum albumin using multi-spectroscopic, biochemical, and molecular modeling approaches. Molecules 2022, 27, 2589. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, R.; Zhao, X.; Yang, B.; Gao, C.; Hao, X.; Wu, Y. New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin. Sci. Total Environ. 2009, 407, 5019–5023. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, G.A.; Siddiqi, M.K.; Khan, R.H.; Naeem, A. Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 40–47. [Google Scholar] [CrossRef]
- Tayyab, S.; Min, L.H.; Kabir, M.Z.; Kandandapani, S.; Ridzwan, N.F.W.; Mohamad, S.B. Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. Chem. Pap. 2020, 74, 1633–1646. [Google Scholar] [CrossRef]
- Venn-Watson, S.K.; Butterworth, C.N. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLoS ONE 2022, 17, e0268778. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.C.; Taylor, S. Hazard identification of strong dermal sensitizers. Toxicol. Mech. Methods 2011, 21, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef]
- Evoli, S.; Mobley, D.L.; Guzzi, R.; Rizzuti, B. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys. Chem. Chem. Phys. 2016, 18, 32358–32368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrea, E.; Oancea, P.; Leonties, A.; Maria, U.A.; Avram, S.; Raducan, A. Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin. J. Photochem. Photobiol. A Chem. 2023, 438, 114512. [Google Scholar] [CrossRef]
- Moriyama, Y.; Ohta, D.; Hachiya, K.; Mitsui, Y.; Takeda, K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Protein Chem. 1996, 15, 265–272. [Google Scholar] [CrossRef]
- Shi, J.-H.; Chen, J.; Wang, J.; Zhu, Y.-Y.; Wang, Q. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 630–637. [Google Scholar] [CrossRef]
- Shi, J.-H.; Pan, D.-Q.; Jiang, M.; Liu, T.-T.; Wang, Q. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods. J. Biomol. Struct. Dyn. 2017, 35, 2211–2223. [Google Scholar] [CrossRef]
- Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Bhat, M.A.; Asmari, M.M.; Wani, T.A. Evaluation of Biophysical Interaction between Newly Synthesized Pyrazoline Pyridazine Derivative and Bovine Serum Albumin by Spectroscopic and Molecular Docking Studies. J. Spectrosc. 2019, 2019, 3848670. [Google Scholar] [CrossRef]
- Sinha, B.K.; Mason, R.P. Biotransformation of hydrazine dervatives in the mechanism of toxicity. J. Drug Metab. Toxicol. 2014, 5, 168. [Google Scholar]
- Kabayashi, K.; Yoshimoto, K.; Hirauchi, K.; Uchida, K. Deglycation of glycated proteins with hydrazine analogues. Life Sci. 1993, 53, 291–295. [Google Scholar] [CrossRef]
- Benesch, J.; Hungerford, G.; Suhling, K.; Tregidgo, C.; Mano, J.F.; Reis, R.L. Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers. J. Colloid Interface Sci. 2007, 312, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeggoni, D.P.; Kuehne, C.; Rachamallu, A.; Subramanyam, R. Elucidating the binding interaction of andrographolide with the plasma proteins: Biophysical and computational approach. RSC Adv. 2017, 7, 5002–5012. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.; Wani, T.A.; Rizwan Ahamad, S. An Insight into Wheat Germ Oil Nutrition, Identification of Its Bioactive Constituents and Computer-Aided Multidimensional Data Analysis of Its Potential Anti-Inflammatory Effect via Molecular Connections. Life 2023, 13, 526. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Y.; Xie, M.-X.; Li, S.; Jiang, M.; Wang, Y.-D. Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2004, 1674, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Xie, M.-X.; Zheng, D.; Liu, Y.; Li, X.-Y.; Chen, X. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J. Mol. Struct. 2004, 692, 71–80. [Google Scholar]
- Goncharenko, N.; Dmytrenko, O.; Pavlenko, O.; Kulish, M.; Pundyk, I.; Lesyuk, A.; Busko, T.; Lopatynskyy, A.; Chegel, V.; Lytvyn, V. Complexation Peculiarities in “Doxorubicin–Bovine Serum Albumin–Gold Nanoparticles” Heterosystem. The Fluo-rescence Study. Ukr. J. Phys. 2020, 65, 468. [Google Scholar] [CrossRef]
- Al-Duais, M.A.; Mohammedsaleh, Z.M.; Al-Shehri, H.S.; Al-Awthan, Y.S.; Bani-Atta, S.A.; Keshk, A.A.; Mustafa, S.K.; Althaqafy, A.D.; Al-Tweher, J.N.; Al-Aoh, H.A. Bovine serum albumin functionalized blue emitting Ti3C2 MXene quantum dots as a sensitive fluorescence probe for Fe3+ ion detection and its toxicity analysis. Luminescence 2022, 37, 633–641. [Google Scholar] [CrossRef]
T(K) | R | Ksv ± SD × 105 (M−1) | Kq × 1013 (M−1S−1) |
---|---|---|---|
298 | 0.9942 | 1.275 ± 0.19 | 2.125 |
303 | 0.9820 | 1.259 ± 0.12 | 2.098 |
310 | 0.9876 | 1.143 ± 0.16 | 1.905 |
T(K) | Kb ± SD | n | ∆G° ± SD (kJ mol−1) | ∆H° ± SD (kJ mol−1) | ∆S° ± SD (J mol−1·K−1) |
---|---|---|---|---|---|
298 | (2.91 ± 0.27) × 105 | 1.0782 | −33.40 | −70.596 | −124.80 |
303 | (1.96 ± 0.20) × 105 | 1.0554 | −32.78 | ||
310 | (1.29 ± 0.19) × 105 | 1.0221 | −32.28 |
J (cm3 mol−1) | E | R0 (nm) | r (nm) | |
---|---|---|---|---|
BSA–2C system | 1.48 × 10−14 | 0.354 | 2.62 | 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, T.A.; Bakheit, A.H.; Zargar, S.; Altwaijry, N.; Bhat, M.A.; Alkahtani, H.M.; Al-Rasheed, L.S. Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin. Int. J. Mol. Sci. 2023, 24, 4942. https://doi.org/10.3390/ijms24054942
Wani TA, Bakheit AH, Zargar S, Altwaijry N, Bhat MA, Alkahtani HM, Al-Rasheed LS. Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin. International Journal of Molecular Sciences. 2023; 24(5):4942. https://doi.org/10.3390/ijms24054942
Chicago/Turabian StyleWani, Tanveer A., Ahmed H. Bakheit, Seema Zargar, Nojood Altwaijry, Mashooq Ahmad Bhat, Hamad M. Alkahtani, and Lamees S. Al-Rasheed. 2023. "Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin" International Journal of Molecular Sciences 24, no. 5: 4942. https://doi.org/10.3390/ijms24054942
APA StyleWani, T. A., Bakheit, A. H., Zargar, S., Altwaijry, N., Bhat, M. A., Alkahtani, H. M., & Al-Rasheed, L. S. (2023). Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin. International Journal of Molecular Sciences, 24(5), 4942. https://doi.org/10.3390/ijms24054942