Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond
Abstract
:1. Introduction
2. Classification and Clinical Symptoms of CMPA
3. Allergen Composition of Cow’s Milk
4. Effect of Technological Methods in Cow’s Milk Processing on Allergenicity
5. Pathophysiology of CMPA and the Background of Oral Tolerance Formation
5.1. IgE Mediated CMPA
5.2. Non-IgE Mediated CMPA
6. Diagnosis: Current Practice and Emerging Options
7. Treatment Options–Present and Future
Immunotherapy in CMPA Patients
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, C.M.; Jiang, J.; Gupta, R.S. Epidemiology and Burden of Food Allergy. Curr. Allergy Asthma. Rep. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Lendvai-Emmert, D.; Emmert, V.; Makai, A.; Fusz, K.; Prémusz, V.; Eklics, K.; Sarlós, P.; Tóth, P. Fecal calprotectin levels in pediatric cow’s milk protein allergy. Front. Pediatr. 2022, 10, 945212. [Google Scholar] [CrossRef] [PubMed]
- Polgár, M. Adverse Food Allergies [Adverz Táplálékreakciók.]; UCB Magyarország Kft: Budapest, Hungary, 1997. [Google Scholar]
- Giannetti, A.; Vespasiani, G.T.; Ricci, G.; Miniaci, A.; di Palmo, E. Cow’s Milk Protein Allergy as a Model of Food Allergies. Nutrients 2021, 13, 1525. [Google Scholar] [CrossRef]
- Savage, J.; Johns, C.B. Food allergy: Epidemiology and natural history. Immunol. Allergy Clin. N. Am. 2015, 35, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Labrosse, R.; Graham, F.; Caubet, J.C. Non-IgE-Mediated Gastrointestinal Food Allergies in Children: An Update. Nutrients 2020, 12, 2086. [Google Scholar] [CrossRef]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef] [Green Version]
- Tordesillas, L.; Berin, M.C.; Sampson, H.A. Immunology of Food Allergy. Immunity 2017, 47, 32–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, S.; Niggemann, B.; Arato, A.; Dias, J.; Heuschkel, R.; Husby, S.; Mearin, M.; Papadopoulou, A.; Ruemmele, F.; Staiano, A.; et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 221–229. [Google Scholar] [CrossRef]
- Arasi, S.; Cafarotti, A.; Fiocchi, A. Cow’s milk allergy. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 181–187. [Google Scholar] [CrossRef]
- Caubet, J.C.; Ford, L.; Sickles, L.; Järvinen, K.; Sicherer, S.; Sampson, H. Clinical features and resolution of food protein-induced enterocolitis syndrome: 10-year experience. J. Allergy Clin. Immunol. 2014, 134, 382–389. [Google Scholar] [CrossRef]
- Zhang, S.; Sicherer, S.; Berin, M. Pathophysiology of Non-IgE-Mediated Food Allergy. Immunotargets Ther. 2021, 10, 431–446. [Google Scholar] [CrossRef]
- Gonsalves, N. Eosinophilic Gastrointestinal Disorders. Clin. Rev. Allergy Immunol. 2019, 57, 272–285. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, E.; Salvatore, S.; Pozzi, E.; Mantegazza, C.; Sartorio, M.; Pensabene, L.; Baldassarre, M.; Agosti, M.; Vandenplas, Y. Cow’s Milk Allergy: Immunomodulation by Dietary Intervention. Nutrients 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Restani, P.; Ballabio, C.; Di Lorenzo, C.; Tripodi, S. Molecular aspects of milk allergens and their role in clinical events. Anal. Bioanal. Chem. 2009, 395, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Linhart, B.; Freidl, R.; Elisyutina, O.; Khaitov, M.; Karaulov, A. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow’s Milk Allergy. Nutrients 2019, 11, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniuchi, S.; Takahashi, M.; Soejima, K.; Hatano, Y. Immunotherapy for cow’s milk allergy. Hum. Vaccin. Immunother. 2017, 13, 2443–2451. [Google Scholar] [CrossRef] [Green Version]
- Nowak-Wegrzyn, A.; Bloom, K.; Sicherer, S.; Shreffler, W.; Noone, S.; Wanich, N. Tolerance to extensively heated milk in children with cow’s milk allergy. J. Allergy Clin. Immunol. 2008, 122, 342.e1–347.e2. [Google Scholar] [CrossRef]
- Shreffler, W.G.; Wanich, N.; Moloney, M.; Nowak-Wegrzyn, A. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 2009, 123, 43–52.e7. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, S.L.; De Angelis, E.; Barni, S.; Pilolli, R.; Mori, F.; Novembre, E. Modulation of Milk Allergenicity by Baking Milk in Foods: A Proteomic Investigation. Nutrients 2019, 11, 1536. [Google Scholar] [CrossRef] [Green Version]
- Tham, E.H.; Rajakulendran, M.; Van Bever, H. Epicutaneous sensitization to food allergens in atopic dermatitis: What do we know? Pediatr Allergy Immunol. 2020, 31, 7–18. [Google Scholar] [CrossRef]
- Brough, H.A.; Nadeau, K.; Sindher, S.; Alkotob, S.; Chan, S.; Bahnson, H.; Leung, D. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy 2020, 75, 2185–2205. [Google Scholar] [CrossRef]
- Hammerschmidt, S.I.; Friedrichsen, M.; Boelter, J.; Lyszkiewicz, M.; Kremmer, E.; Pabst, O. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J. Clin. Investig. 2011, 121, 3051–3061. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef]
- McDole, J.R.; Wheeler, L.; McDonald, K.; Wang, B.; Konjufca, V.; Knoop, K.; Newberry, R. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, Y.; Song, J.; Lee, J. Tissue-specific Role of CX(3)CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Vuillermin, P.; Goverse, G.; Vinuesa, C.; Mebius, R.; Macia, L. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep. 2016, 15, 2809–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barni, S.; Liccioli, G.; Sarti, L.; Giovannini, M.; Novembre, E. Immunoglobulin E (IgE)-Mediated Food Allergy in Children: Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. Medicina 2020, 56, 111. [Google Scholar] [CrossRef] [Green Version]
- Kraus, T.A.; Brimnes, J.; Muong, C.; Liu, J.; Moran, T.; Tappenden, K.; Boros, P. Induction of mucosal tolerance in Peyer’s patch-deficient, ligated small bowel loops. J. Clin. Investig. 2005, 115, 2234–2243. [Google Scholar] [CrossRef]
- Spahn, T.W.; Weiner, H.; Rennert, P.; Lügering, N.; Fontana, A.; Domschke, W. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer’s patches. Eur. J. Immunol. 2002, 32, 1109–1113. [Google Scholar] [CrossRef]
- Fujihashi, K.; Dohi, T.; Rennert, P.; Yamamoto, M.; Koga, T.; Kiyono, H. Peyer’s patches are required for oral tolerance to proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 3310–3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, B.; Joubert, G.; de Agüero, M.G.; Gouanvic, M.; Goubier, A. Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology 2009, 137, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Goubier, A.; Dubois, B.; Gheit, H.; Joubert, G.; Villard-Truc, F.; Asselin-Paturel, C.; Trinchieri, G. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 2008, 29, 464–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucida, D.; Kutchukhidze, N.; Erazo, A.; Russo, M.; de Lafaille, M.C. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Investig. 2005, 115, 1923–1933. [Google Scholar] [CrossRef] [Green Version]
- Palomares, O.; Rückert, B.; Jartti, T.; Kücüksezer, U.; Puhakka, T.; Gomez, E.; Fahrner, H.; Speiser, A.; Jung, A.; Kwok, W.; et al. Induction and maintenance of allergen-specific FOXP3+ Treg cells in human tonsils as potential first-line organs of oral tolerance. J. Allergy Clin. Immunol. 2012, 129, 510.e1–520.e9. [Google Scholar] [CrossRef]
- Wambre, E.; Bajzik, V.; DeLong, J.; O’Brien, K.; Nguyen, Q.; Speake, C.; Gersuk, V.; DeBerg, H.; Whalen, E.; Ni, C.; et al. A phenotypically and functionally distinct human T(H)2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 2017, 9, eaam9171. [Google Scholar] [CrossRef] [Green Version]
- Ruinemans-Koerts, J.; Schmidt-Hieltjes, Y.; Jansen, A.; Savelkoul, H.; van Setten, P. The Basophil Activation Test reduces the need for a food challenge test in children suspected of IgE-mediated cow’s milk allergy. Clin. Exp. Allergy 2019, 49, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.P.; Magnusson, J.; Ahlstedt, S.; Dahlman-Höglund, A.; Hanson, L.; Magnusson, O.; Bengtsson, U. Local allergic reaction in food-hypersensitive adults despite a lack of systemic food-specific IgE. J. Allergy Clin. Immunol. 2002, 109, 879–887. [Google Scholar] [CrossRef]
- Morita, H.; Nomura, I.; Orihara, K.; Yoshida, K.; Akasawa, A.; Tachimoto, H.; Ohtsuka, Y.; Namai, Y.; Futamura, M.; Shoda, T.; et al. Antigen-specific T-cell responses in patients with non-IgE-mediated gastrointestinal food allergy are predominantly skewed to T(H)2. J. Allergy Clin. Immunol. 2013, 131, 590.e1–592.e6. [Google Scholar] [CrossRef]
- Caubet, J.C.; Bencharitiwong, R.; Ross, A.; Sampson, H.; Berin, M. Humoral and cellular responses to casein in patients with food protein-induced enterocolitis to cow’s milk. J. Allergy Clin. Immunol. 2017, 139, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.T.; Kokkonen, J.; Karttunen, T.J. Duodenal cytotoxic lymphocytes in cow’s milk protein sensitive enteropathy and coeliac disease. Scand. J. Gastroenterol. 2005, 40, 1398–1406. [Google Scholar] [CrossRef]
- Leung, J.; Beukema, K.R.; Shen, A.H. Allergic mechanisms of Eosinophilic oesophagitis. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 709–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyonouchi, S.; Smith, C.; Saretta, F.; Abraham, V.; Ruymann, K.; Modayur-Chandramouleeswaran, P.; Wang, M.; Spergel, J. Invariant natural killer T cells in children with eosinophilic esophagitis. Clin. Exp. Allergy 2014, 44, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Murch, S. Allergy and intestinal dysmotility—Evidence of genuine causal linkage? Curr. Opin. Gastroenterol. 2006, 22, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Nakajima-Adachi, H.; Ebihara, A.; Kikuchi, A.; Ishida, T.; Sasaki, K.; Hirano, K.; Watanabe, H.; Asai, K.; Takahashi, Y.; Kanamori, Y.; et al. Food antigen causes TH2-dependent enteropathy followed by tissue repair in T-cell receptor transgenic mice. J. Allergy Clin. Immunol. 2006, 117, 1125–1132. [Google Scholar] [CrossRef]
- Schäppi, M.G.; Borrelli, O.; Knafelz, D.; Williams, S.; Smith, V.; Milla, P. Mast cell-nerve interactions in children with functional dyspepsia. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Boyce, J.A.; Assa, A.; Burks, A.; Jones, S.; Sampson, H.; Wood, R.; Plaut, M.; Cooper, S.; Fenton, M.; Arshad, S.; et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126 (Suppl. S6), S1–S58. [Google Scholar] [CrossRef] [PubMed]
- Tuano, K.S.; Davis, C.M. Utility of Component-Resolved Diagnostics in Food Allergy. Curr. Allergy Asthma. Rep. 2015, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Popielarz, M.; Krogulska, A. The importance of component-resolved diagnostics in IgE-mediated cow’s milk allergy. Allergol. Immunopathol. 2021, 49, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, S. Analysis of food allergen structures and development of foods for allergic patients. Biosci. Biotechnol. Biochem. 2008, 72, 649–659. [Google Scholar] [CrossRef]
- Visser, J.T.; Lammers, K.; Hoogendijk, A.; Boer, M.; Brugman, S.; Beijer-Liefers, S.; Zandvoort, A.; Harmsen, H.; Welling, G.; Stellaard, F.; et al. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 2010, 53, 2621–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiewiet, M.B.G.; Gros, M.; van Neerven, R.; de Vos, P. Immunomodulating properties of protein hydrolysates for application in cow’s milk allergy. Pediatr. Allergy Immunol. 2015, 26, 206–217. [Google Scholar] [CrossRef]
- Meulenbroek, L.A.; van Esch, B.; Hofman, G.; den Hartog Jager, C.; Nauta, A.; Willemsen, L.; Bruijnzeel-Koomen, C.; Garssen, J.; van Hoffen, E. Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy. Pediatr. Allergy Immunol. 2013, 24, 656–664. [Google Scholar] [CrossRef] [PubMed]
- van Esch, B.C.; Schouten, B.; de Kivit, S.; Hofman, G.; Knippels, L.; Willemsen, L. Oral tolerance induction by partially hydrolyzed whey protein in mice is associated with enhanced numbers of Foxp3+ regulatory T-cells in the mesenteric lymph nodes. Pediatr. Allergy Immunol. 2011, 22, 820–826. [Google Scholar] [CrossRef]
- Nurmatov, U.; Dhami, S.; Arasi, S.; Pajno, G.; Fernandez-Rivas, M.; Muraro, A.; Roberts, G.; Akdis, C.; Alvaro-Lozano, M.; Beyer, K.; et al. Allergen immunotherapy for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2017, 72, 1133–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gernez, Y.; Nowak-Węgrzyn, A. Immunotherapy for Food Allergy: Are We There Yet? J. Allergy Clin. Immunol. Pract. 2017, 5, 250–272. [Google Scholar] [CrossRef]
- Wood, R.A.; Kim, J.S.; Lindblad, R.; Nadeau, K.; Henning, A.K.; Dawson, P.; Plaut, M.; Sampson, H.A. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J. Allergy Clin. Immunol. 2016, 137, 1103–1110.e11. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, K.C.; Schneider, L.; Hoyte, L.; Borras, I. Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J. Allergy Clin. Immunol. 2011, 127, 1622–1624. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez-Sandín, M.D.; Escudero, C.; Morillo, R.C.; Lasa, E.; Marchán-Martín, E.; Sánchez-García, S.; Terrados, S.; Díaz, C.G.; Juste, S.; Martorell, A.; et al. Oral immunotherapy in severe cow’s milk allergic patients treated with omalizumab: Real life survey from a Spanish registry. Pediatr. Allergy Immunol. 2021, 32, 1287–1295. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Riera-Rubió, S.; Valdesoiro-Navarrete, L.; García-González, M.; Larramona-Carrera, H.; Cruz, O. Long-term outcome of omalizumab-assisted desensitisation to cow’s milk and eggs in patients refractory to conventional oral immunotherapy: Real-life study. Allergol. Immunopathol. 2022, 50, 1–7. [Google Scholar] [CrossRef]
- Takahashi, M.; Soejima, K.; Taniuchi, S.; Hatano, Y.; Yamanouchi, S.; Ishikawa, H.; Irahara, M.; Sasaki, Y.; Kido, H. Oral immunotherapy combined with omalizumab for high-risk cow’s milk allergy: A randomized controlled trial. Sci. Rep. 2017, 7, 17453. [Google Scholar] [CrossRef] [Green Version]
- Frischmeyer-Guerrerio, P.A.; Keet, C.; Guerrerio, A.; Chichester, K.; Bieneman, A.; Hamilton, R.; Wood, R. Modulation of dendritic cell innate and adaptive immune functions by oral and sublingual immunotherapy. Clin. Immunol. 2014, 155, 47–59. [Google Scholar] [CrossRef] [Green Version]
- de Boissieu, D.; Dupont, C. Sublingual immunotherapy for cow’s milk protein allergy: A preliminary report. Allergy 2006, 61, 1238–1239. [Google Scholar] [CrossRef]
- Keet, C.A.; Frischmeyer-Guerrerio, P.A.; Thyagarajan, A.; Schroeder, J.T.; Hamilton, R.G.; Boden, S.; Steele, P.; Driggers, S.; Burks, A.W.; Wood, R.A. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J. Allergy Clin. Immunol. 2012, 129, 448–455.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qamer, S.; Deshmukh, M.; Patole, S. Probiotics for cow’s milk protein allergy: A systematic review of randomized controlled trials. Eur. J. Pediatr. 2019, 178, 1139–1149. [Google Scholar] [CrossRef]
- Berni Canani, R.; Nocerino, R.; Terrin, G.; Coruzzo, A.; Cosenza, L.; Leone, L. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: A randomized trial. J. Allergy Clin. Immunol. 2012, 129, 580–582.e5. [Google Scholar] [CrossRef]
- Cukrowska, B.; Ceregra, A.; Maciorkowska, E.; Surowska, B.; Zegadło-Mylik, M.; Konopka, E.; Trojanowska, I.; Zakrzewska, M.; Bierła, J.; Zakrzewski, M.; et al. The Effectiveness of Probiotic Lactobacillus rhamnosus and Lactobacillus casei Strains in Children with Atopic Dermatitis and Cow’s Milk Protein Allergy: A Multicenter, Randomized, Double Blind, Placebo Controlled Study. Nutrients 2021, 13, 1169. [Google Scholar] [CrossRef] [PubMed]
- Paparo, L.; Nocerino, R.; Bruno, C.; Di Scala, C.; Cosenza, L.; Bedogni, G.; Di Costanzo, M.; Mennini, M.; D’Argenio, V.; Salvatore, F.; et al. Randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow’s milk allergy: The EPICMA study. Sci. Rep. 2019, 9, 2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IgE Mediated Allergy (Type I) | Non-IgE Mediated Allergy (types III, IV) | Mixed Allergy (IgE- and Non-IgE- Mediated) |
---|---|---|
Urticaria Angioedema Abdominal pain/cramping Diarrhea (watery, with or without mucus) Vomiting Flushing Fainting Rhinitis Asthma Dyspnea Arrhythmia Atopic dermatitis Itchy, burning sensation | Gastrointestinal bleeding Protein-losing enteropathy Malabsorption Pulmonary disease Vasculitis Purpura Diarrhea Vomiting Anorexia Failure to thrive/weight loss Iron deficiency anemia Contact dermatitis | Dysphagia Abdominal pain Vomiting Diarrhea Malabsorption Weight loss Dysphagia Chronic reflux esophagitis Early satiety Delayed gastric emptying Gastric bleeding Sleep disturbance Anorexia |
Name | Molecular Weight | Structural and Functional Traits | Allergen Features | |
---|---|---|---|---|
Whey proteins | Alpha-Lactalbumin (Bos d 4) | 14.19 kDa | High amino acid sequence similarity to human counterpart Ca2+ binding protein with four stabilizing disulfide bridges | Genuine, milk-specific IgE epitopes clustered at the N- and C-terminal ends of the protein |
Beta-Lactalbumin (Bos d 5) | 18.3 kDa | Lipocalin protein with two disulfide bridges (high stability to proteolytic cleavage) and one free cysteine | Linear IgE binding epitopes present in the amino acid sequence | |
Serum albumin (Bos d 6) | 67 kDa | High amino acid sequence similarity to human counterpart | Besides CMPA, it may play a role in beef allergy | |
Immunoglobulin (Bos d 7) | 160 kDa | 4 polypeptide chains linked through intra- and intermolecular disulfide bonds | Allergenic activity uncertain; recognized by IgE in 10–40% of CMPA patients | |
Lactoferrin (Bos d LF) | 76.14 kDa | Iron-binding glycoprotein (antimicrobial effect through chelating iron and reducing bacterial iron uptake) | Unknown clinical relevance, recognized by IgE in 5–66% of CMPA patients | |
Caseins | AlphaS1-casein (Bos d 12) Alpha S2-casein (Bos d 10) Beta-casein (Bos d 11) Kappa-casein (Bos d 12) | 22.89 kDa 24.35 kDa 23.58 kDa 18.97 kDa | Calcium-binding phosphoproteins Heat stable but highly susceptible to enzymatic degradation | Casein-specific IgE antibodies recognize linear epitopes |
Oral Immunotherapy (OIT) | Sublingual Immunotherapy (SLIT) | Epicutaneous Immunotherapy (EPIT) | |
---|---|---|---|
Route of exposure | Oral ingestion of allergen | Allergen placed under the tongue for 2 min | Patch with allergen placed on intact skin |
Adverse effects | Major side effects (e.g., anaphylaxis) plausible, minor side effects (e.g., gastrointestinal) common | Minor side effects (localized, oropharyngeal reactions) | Minor side effects (e.g., localized skin irritation) |
Efficacy | Higher desensitization rate | Moderate efficacy compared to OIT | Lack of data concerning CMPA, may be suitable for preparing high-risk patients for OIT |
Patient compliance | May be moderate due to major side effects | Higher compliance compared with OIT | Higher compliance compared with OIT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emmert, V.; Lendvai-Emmert, D.; Eklics, K.; Prémusz, V.; Tóth, G.P. Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond. Int. J. Mol. Sci. 2023, 24, 5025. https://doi.org/10.3390/ijms24055025
Emmert V, Lendvai-Emmert D, Eklics K, Prémusz V, Tóth GP. Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond. International Journal of Molecular Sciences. 2023; 24(5):5025. https://doi.org/10.3390/ijms24055025
Chicago/Turabian StyleEmmert, Vanessza, Dominika Lendvai-Emmert, Kata Eklics, Viktória Prémusz, and Gergely Péter Tóth. 2023. "Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond" International Journal of Molecular Sciences 24, no. 5: 5025. https://doi.org/10.3390/ijms24055025
APA StyleEmmert, V., Lendvai-Emmert, D., Eklics, K., Prémusz, V., & Tóth, G. P. (2023). Current Practice in Pediatric Cow’s Milk Protein Allergy–Immunological Features and Beyond. International Journal of Molecular Sciences, 24(5), 5025. https://doi.org/10.3390/ijms24055025