Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method
Abstract
:1. Introduction
2. Mechanism of Epidermal Barrier Recovery
3. The Biosynthesis of ω-OH-Cer in Epidermal Barrier
3.1. The Synthesis of Long-Chain FA (LCFA) for ω-Hydroxylation
3.2. The Synthesis of ω-OH-Cer in the Epidermal Barrier
4. ω-OH-Cer Functions as Molecular Rivet in CLE Development
5. Current Identification Studies of ω-OH-Cer and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | α-hydroxy fatty acid | LCB | long-chain base |
B | β-hydroxy fatty acid | LCFA | long-chain fatty acid |
CE | cornified envelope | LC-MS | liquid chromatography-mass spectrometry |
Cer | ceramide | MS | mass spectrometry |
CerS | ceramide synthase | N | nonhydroxy fatty acid |
CLE | corneocyte lipid envelope | NADH | nicotinamide adenine dinucleotide |
CoA | coenzyme A | NP | normal-phase |
DES | dihydro-CER D4-desaturase | O | ω-hydroxy fatty acid |
DHA | docosahexaenoic acid | PS | phytosphingosine |
DS | dihydrosphingosine | RP | reverse-phase |
ELOVL | elongase of very long chain fatty acid | SC | stratum corneum |
EOH | esterified ω-hydroxy 6-hydroxy sphingosine | SCD | stearoyl-CoA desaturases |
EOP | esterified ω-hydroxy phytosphingosine | SD | 4,14-sphingadiene |
EOS | esterified ω-hydroxy sphingosine | Sph | sphingosine |
ESI | electrospray ionization | SPTLC | serine palmitoyltransferase |
FA | fatty acid | TER | 2,3-trans-enoyl-CoA reductase |
FAD | fatty acid desaturase | TGM | transglutaminase |
FAS | fatty acid synthase | TLC | thin layer chromatography |
GC-MS | gas chromatography-mass spectrometry | ULC | ultra-long-chain |
H | 6-hydroxy sphingosine | UV | ultraviolet spectroscopy |
HACD | 3-hydroxyacyl-CoA dehydratase | ω-OH-Cer | omega-hydroxy ceramides |
KDSR | 3-ketodihydro-Sph reductase |
References
- Feingold, K.R.; Elias, P.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta 2014, 1841, 280–294. [Google Scholar] [CrossRef]
- Wu, Y.; Wangari-Olivero, J.; Zhen, Y. ARTICLE: Compromised Skin Barrier and Sensitive Skin in Diverse Populations. J. Drugs Dermatol. 2021, 20, s17–s22. [Google Scholar] [CrossRef]
- Segre, J.A. Epidermal barrier formation and recovery in skin disorders. J. Clin. Investig. 2006, 116, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, S.; Ichioka, S.; Sekiya, N.; Tajima, S.; Iwasaki, T.; Numata, S. The Effect of a Hydrocolloid Dressing Containing Ceramide-2 on Split-Thickness Wounds in a Laser-Induced Erosion Model. Adv. Ski. Wound Care 2013, 26, 224–229. [Google Scholar] [CrossRef]
- Feingold, K.R. Thematic review series: Skin Lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid Res. 2007, 48, 2531–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawana, M.; Miyamoto, M.; Ohno, Y.; Kihara, A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS[S]. J. Lipid Res. 2020, 61, 884–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wertz, P. Biochemistry of Human Stratum Corneum Lipids; CRC Press: Boca Raton, FL, USA, 2005; pp. 33–42. [Google Scholar]
- Jia, Y.; Gan, Y.; He, C.; Chen, Z.; Zhou, C. The mechanism of skin lipids influencing skin status. J. Dermatol. Sci. 2018, 89, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Vovesná, A.; Zhigunov, A.; Balouch, M.; Zbytovská, J. Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int. J. Pharm. 2021, 596, 120264. [Google Scholar] [CrossRef]
- Knox, S.; O’Boyle, N.M. Skin lipids in health and disease: A review. Chem. Phys. Lipids 2021, 236, 105055. [Google Scholar] [CrossRef]
- Nomoto, K.; Itaya, Y.; Watanabe, K.; Yamashita, T.; Okazaki, T.; Tokudome, Y. Epidermal permeability barrier function and sphingolipid content in the skin of sphingomyelin synthase 2 deficient mice. Exp. Derm. 2018, 27, 827–832. [Google Scholar] [CrossRef]
- Uchida, Y. Ceramide signaling in mammalian epidermis. Biochim. Biophys. Acta 2014, 1841, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Roekevisch, E.; Leeflang, M.M.G.; Schram, M.E.; Campbell, L.E.; Irwin McLean, W.H.; Kezic, S.; Bos, J.D.; Spuls, P.I.; Middelkamp-Hup, M.A. Patients with atopic dermatitis with filaggrin loss-of-function mutations show good but lower responses to immunosuppressive treatment. Br. J. Dermatol. 2017, 177, 1745–1746. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Miyachi, Y.; Kawashima, M. Clinical significance of the water retention and barrier function-improving capabilities of ceramide-containing formulations: A qualitative review. J. Dermatol. 2021, 48, 1807–1816. [Google Scholar] [CrossRef]
- Kihara, A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 2016, 63, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, P.; Biernacki, M.; Wronski, A.; Luczaj, W.; Waeg, G.; Zarkovic, N.; Skrzydlewska, E. Altered Lipid Metabolism in Blood Mononuclear Cells of Psoriatic Patients Indicates Differential Changes in Psoriasis Vulgaris and Psoriatic Arthritis. Int. J. Mol. Sci. 2019, 20, 4249. [Google Scholar] [CrossRef] [Green Version]
- Robson, K.J.; Stewart, M.E.; Michelsen, S.; Lazo, N.D.; Downing, D.T. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. 1994, 35, 2060–2068. [Google Scholar] [CrossRef]
- Zöller, I.; Meixner, M.; Hartmann, D.; Büssow, H.; Meyer, R.; Gieselmann, V.; Eckhardt, M. Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 9741–9754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, K.A.; Kern, M.J.; Fullbright, G.; Bielawski, J.; Scherer, S.S.; Yum, S.W.; Li, J.J.; Cheng, H.; Han, X.; Venkata, J.K.; et al. Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia 2011, 59, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.M.; Bennett, M.J. 3-Hydroxy-Fatty Acid Analysis by Gas Chromatography-Mass Spectrometry. In Clinical Applications of Mass Spectrometry: Methods and Protocols; Garg, U., Hammett-Stabler, C.A., Eds.; Humana Press: Totowa, NJ, USA, 2010; pp. 229–243. [Google Scholar]
- Shin, J.H.; Shon, J.C.; Lee, K.; Kim, S.; Park, C.S.; Choi, E.H.; Lee, C.H.; Lee, H.S.; Liu, K.H. A lipidomic platform establishment for structural identification of skin ceramides with non-hydroxyacyl chains. Anal. Bioanal. Chem. 2014, 406, 1917–1932. [Google Scholar] [CrossRef]
- Oh, M.J.; Nam, J.J.; Lee, E.O.; Kim, J.W.; Park, C.S. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions. Arch. Dermatol. Res. 2016, 308, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Wertz, P.W. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Ski. Pharmacol. Physiol. 2021, 34, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Wertz, P.W. Naturally occurring ω-Hydroxyacids. Int. J. Cosmet Sci. 2018, 40, 31–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetzloff, S.U.; Bizzozero, O.A. Proteolipid protein from the peripheral nervous system also contains covalently bound fatty acids. BioChem. Biophys. Res. Commun. 1993, 193, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Radner, F.P.W.; Fischer, J. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2014, 1841, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.; Jarrett, P.; Broadbent, E. The Effects of Relaxation Before or After Skin Damage on Skin Barrier Recovery: A Preliminary Study. Psychosom. Med. 2015, 77, 844–852. [Google Scholar] [CrossRef]
- Fuchs, E.; Raghavan, S. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 2002, 3, 199–209. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, Z.; Song, Y.; Zhang, Y.; Du, J.; Su, Y.; Ma, X. Hair follicle bulge-derived stem cells promote tissue regeneration during skin expansion. Biomed. Pharm. 2020, 132, 110805. [Google Scholar] [CrossRef]
- Farwanah, H.; Pierstorff, B.; Schmelzer, C.E.H.; Raith, K.; Neubert, R.H.H.; Kolter, T.; Sandhoff, K. Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. J. Chromatogr. B 2007, 852, 562–570. [Google Scholar] [CrossRef]
- van Dongen, J.A.; Harmsen, M.C.; van der Lei, B.; Stevens, H.P. Augmentation of Dermal Wound Healing by Adipose Tissue-Derived Stromal Cells (ASC). Bioengineering 2018, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Gaur, M.; Dobke, M.; Lunyak, V.V. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int. J. Mol. Sci. 2017, 18, 208. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.M.; Glatz, M.; Proksch, E. Optimal Support of Wound Healing: New Insights. Dermatology 2020, 236, 593–600. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Berman, B.; Maderal, A.; Raphael, B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Derm. Surg. 2017, 43 (Suppl. S1), S3–S18. [Google Scholar] [CrossRef]
- Chang, S.E.; Kim, K.J.; Ro, K.H.; Lim, Y.J.; Choi, J.H.; Moon, K.C.; Sung, K.J. Sphingosine may have cytotoxic effects via apoptosis on the growth of keloid fibroblasts. J. Derm. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Tominaga, M.; Takamori, K. Peripheral itch sensitization in atopic dermatitis. Allergol. Int. 2022, 71, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Fölster-Holst, R.; Torrelo, A.; Das, K.; Murrell, D.F.; Patil, A.; Rahmat Pour Rokni, G.; Grabbe, S.; Staubach, P.; Sohn, A.; Goldust, M. Biological medication in atopic dermatitis. Expert. Opin. Biol. 2022, 22, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Kwatra, S.G.; Misery, L.; Clibborn, C.; Steinhoff, M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin. Transl. Immunol. 2022, 11, e1390. [Google Scholar] [CrossRef]
- Singh, S.; Behl, T.; Sharma, N.; Zahoor, I.; Chigurupati, S.; Yadav, S.; Rachamalla, M.; Sehgal, A.; Naved, T.; Pritima; et al. Targeting therapeutic approaches and highlighting the potential role of nanotechnology in atopic dermatitis. Environ. Sci. Pollut. Res. Int. 2022, 29, 32605–32630. [Google Scholar] [CrossRef]
- Berthaud, F.; Boncheva, M. Correlation between the properties of the lipid matrix and the degrees of integrity and cohesion in healthy human Stratum corneum. Exp. Dermatol. 2011, 20, 255–262. [Google Scholar] [CrossRef]
- Imokawa, G. Cutting Edge of the Pathogenesis of Atopic Dermatitis: Sphingomyelin Deacylase, the Enzyme Involved in Its Ceramide Deficiency, Plays a Pivotal Role. Int. J. Mol. Sci. 2021, 22, 1613. [Google Scholar] [CrossRef]
- Łuczaj, W.; Wroński, A.; Domingues, P.; Domingues, M.R.; Skrzydlewska, E. Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules 2020, 25, 630. [Google Scholar] [CrossRef] [Green Version]
- Ohta, K.; Hiraki, S.; Miyanabe, M.; Ueki, T.; Manabe, Y.; Sugawara, T. Dietary Ceramide Prepared from Soy Sauce Lees Improves Skin Barrier Function in Hairless Mice. J. Oleo Sci. 2021, 70, 1325–1334. [Google Scholar] [CrossRef]
- Shin, K.O.; Kim, S.; Park, B.D.; Uchida, Y.; Park, K. N-Palmitoyl Serinol Stimulates Ceramide Production through a CB1-Dependent Mechanism in In Vitro Model of Skin Inflammation. Int. J. Mol. Sci. 2021, 22, 8302. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, T.; Akiyama, M. Inherited ichthyosis: Non-syndromic forms. J. Dermatol. 2016, 43, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Behne, M.; Uchida, Y.; Seki, T.; de Montellano, P.O.; Elias, P.M.; Holleran, W.M. Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J. Investig. Derm. 2000, 114, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Uchida, Y.; Holleran, W.M. Omega-O-acylceramide, a lipid essential for mammalian survival. J. Derm. Sci 2008, 51, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, P.; Malla, S.; Nadarajan, S.P.; Lee, P.G.; Jung, E.; Park, H.H.; Kim, B.G.; Yun, H. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid. Res. 2006, 45, 237–249. [Google Scholar] [CrossRef]
- Kemp, S.; Valianpour, F.; Denis, S.; Ofman, R.; Sanders, R.J.; Mooyer, P.; Barth, P.G.; Wanders, R.J. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol. Genet. Metab. 2005, 84, 144–151. [Google Scholar] [CrossRef]
- Paton, C.M.; Ntambi, J.M. Biochemical and physiological function of stearoyl-CoA desaturase. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E28–E37. [Google Scholar] [CrossRef] [Green Version]
- Soulard, P.; McLaughlin, M.; Stevens, J.; Connolly, B.; Coli, R.; Wang, L.; Moore, J.; Kuo, M.S.; LaMarr, W.A.; Ozbal, C.C.; et al. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry. Anal. Chim. Acta 2008, 627, 105–111. [Google Scholar] [CrossRef]
- Yeboah, G.K.; Lobanova, E.S.; Brush, R.S.; Agbaga, M.P. Very long chain fatty acid-containing lipids: A decade of novel insights from the study of ELOVL4. J. Lipid Res. 2021, 62, 100030. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 2014, 1841, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Edson, K.Z.; Rettie, A.E. CYP4 enzymes as potential drug targets: Focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr. Top. Med. Chem. 2013, 13, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.D.; Liu, J.Y. The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases. Front. Pharm. 2021, 12, 716801. [Google Scholar] [CrossRef]
- Lefèvre, C.; Bouadjar, B.; Ferrand, V.; Tadini, G.; Mégarbané, A.; Lathrop, M.; Prud’homme, J.F.; Fischer, J. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum. Mol. Genet. 2006, 15, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Nakamichi, S.; Ohkuni, A.; Kamiyama, N.; Naoe, A.; Tsujimura, H.; Yokose, U.; Sugiura, K.; Ishikawa, J.; Akiyama, M.; et al. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl. Acad. Sci. USA 2015, 112, 7707–7712. [Google Scholar] [CrossRef] [Green Version]
- Sayeb, M.; Riahi, Z.; Laroussi, N.; Bonnet, C.; Romdhane, L.; Mkaouar, R.; Zaouak, A.; Marrakchi, J.; Abdessalem, G.; Messaoud, O.; et al. A Tunisian family with a novel mutation in the gene CYP4F22 for lamellar ichthyosis and co-occurrence of hearing loss in a child due to mutation in the SLC26A4 gene. Int. J. Dermatol. 2019, 58, 1439–1443. [Google Scholar] [CrossRef]
- Mizutani, Y.; Mitsutake, S.; Tsuji, K.; Kihara, A.; Igarashi, Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 2009, 91, 784–790. [Google Scholar] [CrossRef]
- Venkataraman, K.; Riebeling, C.; Bodennec, J.; Riezman, H.; Allegood, J.C.; Sullards, M.C.; Merrill, A.H.; Futerman, A.H. Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), RegulatesN-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells. J. Biol. Chem. 2002, 277, 35642–35649. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, Y.; Kihara, A.; Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. BioChem. J. 2005, 390, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Guillas, I.; Jiang, J.C.; Vionnet, C.; Roubaty, C.; Uldry, D.; Chuard, R.; Wang, J.; Jazwinski, S.M.; Conzelmann, A. Human homologues of LAG1 reconstitute Acyl-CoA-dependent ceramide synthesis in yeast. J. Biol. Chem. 2003, 278, 37083–37091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, S.; Futerman, A.H. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J. Biol. Chem. 2005, 280, 33735–33738. [Google Scholar] [CrossRef] [Green Version]
- Jennemann, R.; Rabionet, M.; Gorgas, K.; Epstein, S.; Dalpke, A.; Rothermel, U.; Bayerle, A.; van der Hoeven, F.; Imgrund, S.; Kirsch, J.; et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 2012, 21, 586–608. [Google Scholar] [CrossRef] [Green Version]
- Grond, S.; Radner, F.P.W.; Eichmann, T.O.; Kolb, D.; Grabner, G.F.; Wolinski, H.; Gruber, R.; Hofer, P.; Heier, C.; Schauer, S.; et al. Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation. J. Investig. Dermatol. 2017, 137, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grond, S.; Eichmann, T.O.; Dubrac, S.; Kolb, D.; Schmuth, M.; Fischer, J.; Crumrine, D.; Elias, P.M.; Haemmerle, G.; Zechner, R.; et al. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides. J. Investig. Dermatol. 2017, 137, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirabayashi, T.; Anjo, T.; Kaneko, A.; Senoo, Y.; Shibata, A.; Takama, H.; Yokoyama, K.; Nishito, Y.; Ono, T.; Taya, C.; et al. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 2017, 8, 14609. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, T. SDR9C7 plays an essential role in skin barrier function by dehydrogenating acylceramide for covalent attachment to proteins. J. Dermatol. Sci. 2020, 98, 82–87. [Google Scholar] [CrossRef]
- Takeichi, T.; Hirabayashi, T.; Miyasaka, Y.; Kawamoto, A.; Okuno, Y.; Taguchi, S.; Tanahashi, K.; Murase, C.; Takama, H.; Tanaka, K.; et al. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. J. Clin. Investig. 2020, 130, 890–903. [Google Scholar] [CrossRef]
- Youssefian, L.; Niaziorimi, F.; Saeidian, A.H.; South, A.P.; Khosravi-Bachehmir, F.; Khodavaisy, S.; Vahidnezhad, H.; Uitto, J. Knockdown of SDR9C7 Impairs Epidermal Barrier Function. J. Investig. Derm. 2021, 141, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M.; Gruber, R.; Crumrine, D.; Menon, G.; Williams, M.L.; Wakefield, J.S.; Holleran, W.M.; Uchida, Y. Formation and functions of the corneocyte lipid envelope (CLE). Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2014, 1841, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, A.; Morifuji, M.; Kitade, M.; Kawahata, K.; Fukasawa, T.; Yamaji, T.; Itoh, H.; Kawashima, M. Age-related and seasonal changes in covalently bound ceramide content in forearm stratum corneum of Japanese subjects: Determination of molecular species of ceramides. Arch. Derm. Res. 2018, 310, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Jamin, E.L.; Jacques, C.; Jourdes, L.; Tabet, J.C.; Borotra, N.; Bessou-Touya, S.; Debrauwer, L.; Duplan, H. Identification of lipids of the stratum corneum by high performance thin layer chromatography and mass spectrometry. Eur. J. Mass Spectrom. 2019, 25, 278–290. [Google Scholar] [CrossRef]
- Haraguchi, H.; Yamada, K.; Miyashita, R.; Aida, K.; Ohnishi, M.; Gilbert, A.; Yoshida, N. Determination of carbon isotopic measurement conditions for ceramide in skin using gas chromatography-combustion-isotope ratio mass spectrometry. J. Oleo Sci. 2014, 63, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Vouros, P. Mass Spectrometric Fragmentation of Trimethylsilyl and Related Alkylsilyl Derivatives. Mass Spectrom. Rev. 2020, 39, 105–211. [Google Scholar] [CrossRef] [PubMed]
- t’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012, 84, 403–411. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, C.; Chen, J.; Jiang, X.; Jin, Y.; Shen, R.; Zhu, M.; Wu, C. Recent Progress on Mass Spectrum Based Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Traditional Chinese Medicine. Curr. Drug Metab. 2022, 23, 99–112. [Google Scholar] [CrossRef]
- Jia, W.; Di, C.; Zhang, R.; Shi, L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res. Int. 2022, 157, 111206. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jeon, S.; Han, S.; Liu, K.H.; Cho, Y.; Kim, K.P. Positive Correlation of Triacylglycerols with Increased Chain Length and Unsaturation with ω-O-Acylceramide and Ceramide-NP as Well as Acidic pH in the Skin Surface of Healthy Korean Adults. Metabolites 2022, 13, 31. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Ifa, D.R.; Wu, C.; Cooks, R.G. Three-dimensional vizualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew. Chem. Int. Ed. Engl. 2010, 49, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Jarrold, M.F. Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology. Chem. Rev. 2022, 122, 7415–7441. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Ikeda, K.; Tanaka, W.; Senoo, Y.; Arita, M.; Arita, M. Comprehensive identification of sphingolipid species by in silico retention time and tandem mass spectral library. J. Cheminform. 2017, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, F.; Sun, K.; Hu, Z.; Dong, X. Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int. J. Mol. Sci. 2023, 24, 5035. https://doi.org/10.3390/ijms24055035
Ge F, Sun K, Hu Z, Dong X. Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. International Journal of Molecular Sciences. 2023; 24(5):5035. https://doi.org/10.3390/ijms24055035
Chicago/Turabian StyleGe, Fei, Keyan Sun, Zhenlin Hu, and Xin Dong. 2023. "Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method" International Journal of Molecular Sciences 24, no. 5: 5035. https://doi.org/10.3390/ijms24055035
APA StyleGe, F., Sun, K., Hu, Z., & Dong, X. (2023). Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. International Journal of Molecular Sciences, 24(5), 5035. https://doi.org/10.3390/ijms24055035