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Abstract: Climate change is leading to combined drought and high temperature stress in many
areas, drastically reducing crop production, especially for high-water-consuming crops such as maize.
This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus
(Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement
and physiology in maize plants in order to cope with combined drought and high temperature
stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B.
megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought
and high temperature stress (D + T). We measured plant physiological responses, root hydraulic
parameters, aquaporin gene expression and protein abundances and sap hormonal content. The
results showed that dual AM + Bm inoculation was more effective against combined D + T stress than
single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II,
stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained
higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3,
ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates
the usefulness of combining beneficial soil microorganisms to improve crop productivity under the
current climate-change scenario.

Keywords: aquaporin; arbuscular mycorrhiza; combined drought and heat stress; maize; PGPR; root
hydraulic conductivity

1. Introduction

The global world population is predicted to rise to between 9.7 billion and 10 billion
by 2050 [1]. Considering that the rising human population is occurring under a climate-
change scenario, it is thus highly important to increase crop tolerance to the new adverse
environmental conditions in order to secure food production [1,2]. Indeed, both global
warming and reduced rainfall cause a negative impact on plant growth, development and
productivity [3]. In Mediterranean regions, drought usually occurs concomitantly with high
temperatures. Indeed, high temperature has been proposed as one of the main environmen-
tal factors that hinders plant growth, produces yield reduction, causes decreases in fertile
lands and prevents optimal water use [4,5]. The stress produced by high temperatures
damages plant metabolism and development and is becoming highly relevant, producing
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the loss of cultivable areas on Earth, with important social and economic effects [6,7]. In ad-
dition, the concurrence of drought with high temperature is more deleterious than drought
alone and may lead to greater agricultural damage [8].

In this context, an important aspect that must be considered is that the plant response to
a combined drought and heat stress is complicated by its prioritization for the more serious
stress for the plant. For instance, stomata are closed prematurely by plants under drought
conditions in order to prevent water loss, while, under heat stress, plants increase stomatal
conductance to cool down the temperature of leaves by means of transpiration [8–10]. Thus,
drought and heat stress have an adverse impact on plants, and their combined effect is
higher than when taken individually [4]. Hence, understanding the mechanisms allowing
higher crop productivity under combined water and heat stressed conditions is of main
interest in order to guarantee food production in coming years [2,11].

To increase crop tolerance to adverse growing conditions, the use of natural resources is
an outstanding approach in the context of the modern sustainable agriculture. This includes
the use of beneficial soil microorganisms known to improve both plant development
and productivity under limiting environmental conditions. Among these beneficial soil
microorganisms, we would like to highlight the so-called arbuscular mycorrhizal fungi.
These soil fungi establish a mutualistic symbiosis with the roots of most terrestrial plants,
and this is called arbuscular mycorrhiza (AM). The AM symbiosis stimulates the plant
physiology through a series of changes at the morphological and molecular plant levels.
As a consequence, the host plant increases its ability to maintain vigor and survive under
adverse conditions, being a successful example of a sustainable agricultural approach [3].
Other microorganisms that help plants to tolerate abiotic stresses are the so-called plant-
growth-promoting rhizobacteria (PGPR). These bacteria may live in the rhizoplane or inside
roots and have several mechanisms to promote plant growth and increase their tolerance to
abiotic stresses, such as the reduction of ethylene levels; nutrient solubilization; production
of some hormones, degradative enzymes and siderophores; or nitrogen fixation, among
others [8,12]. In this context, the combined use of AM fungi and PGPRs depicts a highly
sustainable strategy to enhance plant tolerance to adverse environmental conditions, such
as heat stress and water limitation [13,14].

In most cases studied, the association between an AM fungi and a plant makes the host
plant more tolerant to water limitation [15], and this has been attributed to an improvement
of soil water-retention properties and soil structure, the uptake of water through the
fungal hyphae and transfer to the host plant, protection against the oxidative damage
generated by drought, a better osmotic adjustment in AM plants, the enhancement of
plant gas exchange and water-use efficiency and a more efficient uptake of nutrients, as
reviewed by [3,14,16,17]. In addition, the establishment of the AM symbiosis produces
morphological changes in the roots of the host plant, involving cellular membranes and
altering membrane-associated proteins such as aquaporins. These proteins are small
channels located at different cell membranes that allow the passive crossing of small
neutral molecules and water. Aquaporins constitute a large family in vascular plants
subdivided in the following subfamilies: PIPs (plasma membrane intrinsic proteins), TIPs
(tonoplast intrinsic proteins), NIPs (nodulin 26-like intrinsic proteins) and SIPs (small basic
intrinsic proteins) [18,19]. Some plants also contain the uncharacterized XIPs (X intrinsic
proteins) [20]. Aquaporins constitute the main pathway for water passage through cell
membranes [19,21] and allow a rapid regulation of membrane water permeability. This
influences root hydraulic conductivity and the whole-plant water balance during episodes
of water deficit [22,23]. Moreover, the high interest of aquaporins for plant physiology
comes from the fact that, besides water, certain aquaporins allow the membrane movement
of other small molecules with physiological importance, such as urea, ammonia, H2O2,
CO2, metalloids, oxygen or some ions [21,24,25]. Moreover, it has been emphasized that, in
positive plant–microbe interactions involving rhizobia, AM fungi and PGPR, aquaporins
play important roles in nitrogen fixation, nutrient transport, improving water status and
increasing abiotic stress tolerance [26].
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The results from previous studies have shown that the AM symbiosis has the ca-
pacity of altering root hydraulic conductivity (Lpr), enhancing it mostly under stress
conditions [27–35], with involvement of plant aquaporins in these processes [14]. Recently,
it has been shown that the presence of the AM fungus in the root increases the water
permeability of root cells, related to the induction of some aquaporin genes and increase
of the phosphorylation status of PIP2s, which implies a higher activity of their water
channels [34]. Moreover, the presence of a mycorrhizal fungus significantly modified the
radial transport of water within the root system [33]. Regarding the improvement of root
hydraulic properties by PGPR under osmotic stress conditions, our research group found a
Bacillus megaterium strain that was able to improve Lpr under salinity stress in maize plants
by also increasing the amount of PIP proteins in the roots [36]. Other studies have shown
that the effects of the AM symbiosis on root Lpr are altered by co-inoculation with a PGPR,
enhancing or decreasing it depending on the genetic characteristics of the tomato line [37].
However, very few studies have investigated the possible involvement of aquaporins
on the PGPR enhance osmotic stress tolerance in plants [26]. In addition, we found that
the positive effect of a B. megaterium strain on tomato-plant growth was dependent on
the plant ABA content and ethylene sensitivity. In fact, this particular strain was unable
to promote plant growth in ABA-deficient tomato plants [38] or in ethylene-insensitive
tomato plants [39]. Moreover, as the plant responses to stress are regulated by a hormonal
crosstalk [40,41], some of the effects of AM fungi and PGPR on plant performance under
drought stress (including root hydraulic properties) have been related to changes in the
plant hormonal content [30,42–44]. It is known that abscisic acid (ABA) alters transpira-
tion and root hydraulic conductance [45]. Jasmonates are involved in plant development
and also have a role against biotic and abiotic stresses [30,46]. Auxins are implicated in
the process of AM fungal colonization [43,47] and development of arbuscules [48], as
well as in plant responses to drought [35,49]. Salicylic acid (SA) is involved in nitrogen
metabolism, regulation of photosynthesis, antioxidant defense system and plant–water
relations [32,50,51].

Regarding the effects of high temperature on root water transport, little information is
available. However, it seems that there is a beneficial short-term effect due to an enhanced
apoplastic mass flow and a negative long-term effect as a result of deterioration of root
physiological functions [52]. No information about the role of AM fungi and/or PGPR on
that was found.

Therefore, the global objective of this study was to determine how the co-inoculation
of an AM fungus and a PGPR alters the radial water movement and physiology in the host
plant in order to cope with combined drought and high temperature stress, as well as the
role of plant aquaporins and phytohormones in these processes. Our starting hypothesis
was that the co-inoculation of AM fungi and PGPR can act on the host plant in a concerted
manner to alter the plant water relations and its physiology in order to cope better with the
combined stressful conditions.

2. Results
2.1. Plant Growth and AM Root Colonization

Plants from both AM treatments (inoculated only with the AM fungus or in combina-
tion with B. megaterium) grew more than control uninoculated plants (Figure 1A). This was
significant both under unstressed conditions (10% of increase) and also under combined
drought + temperature (D + T) stress (19% of increase). Under both conditions, the highest
shoot dry weight was achieved in plants dually inoculated with the AM fungus plus B.
megaterium (AM + Bm), although no significant differences from plants singly inoculated
with the AM fungus were observed. The single inoculation with B. megaterium did not
improve plant growth as compared to uninoculated controls both under unstressed and
combined D + T stress.
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Figure 1. (A) Shoot dry weight and (B) root dry weight in maize plants inoculated or not (control)
with a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal fungus Rhizophagus
irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated under standard
ambient temperature and well-watering conditions (well-watered) or subjected to a combined drought
and high temperature stress (drought + T) for 15 days before harvest. Data represent the means
(n = 15) ± S.E. Different letters indicate significant differences between treatments (p < 0.05) based on
Duncan’s test.

The combined D + T stress significantly decreased the shoot dry weight in all treat-
ments, but the decrease was lower in AM treatment (9.5%) or in AM + Bm treatment (7.7%)
than in uninoculated control plants (16.0%) or in plants inoculated only with Bm (16.6%).

Root dry weight was significantly reduced by the combined D + T stress in non-AM
treatments (especially in uninoculated controls), while the decrease was not significant
in both AM treatments (Figure 1B). Thus, the shoot-to-root ratio was maximum in plants
dually inoculated with AM + Bm subjected to combined D + T stress and was enhanced
significantly by the stresses applied only in uninoculated control plants.

The AM root colonization level was statistically similar in all the inoculated treatments,
ranging from 70% of mycorrhizal root length in unstressed plants dually inoculated with
AM + Bm to 76% of mycorrhizal root length in unstressed plants singly inoculated with
the AM fungus. The combined D + T stress did not affect this parameter. No AM root
colonization was observed in the uninoculated control plants or in those singly inoculated
with Bm.

2.2. Shoot Water Content

Under optimal conditions, the highest shoot water content (86.5%) was found in AM
plants, followed by plants dually inoculated (AM + Bm) or plants singly inoculated with Bm
(Figure 2A). The lowest value (84.0%) was found in uninoculated control plants. Drought
stress significantly decreased this parameter in all treatments, and, again, the lowest value
(82%) was found in uninoculated control plants.
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Figure 2. (A) Shoot water content and (B) relative electrolyte leakage in maize plants inoculated
or not (control) with a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal
fungus Rhizophagus irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated
under standard ambient temperature and well-watering conditions (well-watered) or subjected to
a combined drought and high temperature stress (drought + T) for 15 days before harvest. Data
represent the means (n = 15) (shoot water content) or (n = 6) (relative electrolyte leakage) ± S.E.
Different letters indicate significant differences between treatments (p < 0.05) based on Duncan’s test.

2.3. Membrane Electrolyte Leakage

Under optimal growth conditions, the membrane electrolyte leakage was similar in
all treatments (Figure 2B). When plants were subjected to combined D + T stress, this
parameter was highly enhanced in uninoculated plants (by 113%) and in those inoculated
only with Bm (by 102%). The increase was lower in plants singly inoculated with the AM
fungus (by 76%) and even lower in those dually inoculated with AM + Bm (by 42%). Thus,
under combined D + T stress, uninoculated control plants exhibited 67% more membrane
electrolyte leakage than those dually inoculated with AM + Bm. It is noteworthy that dual
inoculation with AM + Bm reduced the membrane electrolyte leakage more than single
inoculation with Bm or single inoculation with the AM fungus, showing a cooperative
effect of both microorganisms on this parameter.

2.4. Stomatal Conductance and Efficiency of Photosystem II

Stomatal conductance (gs) was affected significantly by the combined D + T stress, the
microbial inoculation and their interactions (Figure 3A). Thus, the combined D + T stress
significantly reduced this parameter in all treatments, but the reduction was low in both
AM treatments (AM alone or AM + Bm), which decreased gs by 40% as compared to the
corresponding plants cultivated under optimal conditions. In contrast, in uninoculated
controls or plants singly inoculated with Bm, the reduction of gs values due to the stress
applied was by 89% and 74%, respectively.
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Figure 3. (A) Stomatal conductance (gs) and (B) photosystem II efficiency in the light-adapted state
(∆Fv/Fm′) in maize plants inoculated or not (control) with a PGPR strain of Bacillus megaterium (Bm),
with the arbuscular mycorrhizal fungus Rhizophagus irregularis (AM) or with both microorganisms
(AM + Bm). Plants were cultivated under standard ambient temperature and well-watering conditions
(well-watered) or subjected to a combined drought and high temperature stress (drought + T) for
15 days before harvest. Data represent the means (n = 8) (gs) or (n = 10) (∆Fv/Fm’) ± S.E. Different
letters indicate significant differences between treatments (p < 0.05) based on Tukey–Kramer test.

To quantify efficiency of photosystem II, we measured the light-adapted maximum
quantum yield of PSII primary photochemistry (Fv′/Fm′). Under optimal conditions, few
differences among treatments were observed for this parameter, although plants dually
inoculated with AM + Bm exhibited a slightly higher value than uninoculated control plants
(Figure 3B). However, when plants were subjected to combined D + T stress, this value
showed important differences between both AM treatments and both non-AM treatments.
Thus, the lowest value was found in uninoculated control plants (which decreased this
parameter by 62% as compared to unstressed conditions). In contrast, both AM treatments
maintained high values for this parameter and only decreased it by around 15%. Plants
singly inoculated with Bm also had an important decrease in this parameter (by 56%) due
to the combined D + T stress.

2.5. Photosynthetic Activity and Water Use Efficiency

The net photosynthesis (An) was significantly affected by the combined D + T stress,
the microbial inoculation and their interactions (Figure 4A). Thus, combined D + T stress
significantly reduced the An in all treatments, except in plants dually inoculated with
AM + Bm, as these maintained An levels similar to unstressed plants. Plants singly inoc-
ulated with the AM fungus decreased this parameter by 30% as compared to the same
plants cultivated under optimal conditions. In contrast, the reduction due to combined
D + T stress was considerably higher in uninoculated controls (by 84%) and in plants singly
inoculated with Bm (by 67%).
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Figure 4. (A) Net photosynthetic activity (An) and (B) instantaneous water-use efficiency (WUEi)
in maize plants inoculated or not (control) with a PGPR strain of Bacillus megaterium (Bm), with the
arbuscular mycorrhizal fungus Rhizophagus irregularis (AM) or with both microorganisms (AM + Bm).
Plants were cultivated under standard ambient temperature and well-watering conditions (well-
watered) or subjected to a combined drought and high temperature stress (drought + T) for 15 days
before harvest. Data represent the means (n = 8)± S.E. Different letters indicate significant differences
between treatments (p < 0.05) based on the Tukey–Kramer test.

Regarding instantaneous water-use efficiency (iWUE), only the combined D + T
treatment affected this parameter, increasing it in all microbial treatments as compared to
plants cultivated under optimal conditions (Figure 4B).

2.6. Osmotic Root Hydraulic Conductivity (Lo)

The values of osmotic root hydraulic conductivity (Lo) showed important differences
among treatments (Figure 5A). Thus, under optimal conditions, both AM treatments (fun-
gus alone or in combination with Bm) showed higher values (by 56 and 33%, respectively)
than plants singly inoculated with Bm and considerably higher (by 335 and 272%, respec-
tively) than uninoculated control plants.

When plants were subjected to combined D + T stress the differences were even higher.
Thus, AM + Bm plants enhanced Lo by 38% over single AM plants, by 227% over single Bm
plants and by 1490% over uninoculated control plants. Single AM inoculation and single
Bm inoculation also enhanced Lo over uninoculated control plants by 1053% and by 386%,
respectively. It is noteworthy that plants dually inoculated with AM + Bm had significantly
higher Lo values under combined D + T stress than under optimal conditions, emphasizing
the important synergistic effect of both microorganisms on this parameter under stressful
conditions.
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Figure 5. (A) Osmotic root hydraulic conductivity (Lo) and (B) hydrostatic root hydraulic conductiv-
ity (Lpr) in maize plants inoculated or not (control) with a PGPR strain of Bacillus megaterium (Bm),
with the arbuscular mycorrhizal fungus Rhizophagus irregularis (AM) or with both microorganisms
(AM + Bm). Plants were cultivated under standard ambient temperature and well-watering condi-
tions (well-watered) or subjected to a combined drought and high temperature stress (drought + T)
for 15 days before harvest. Data represent the means (n = 8) (Lo) or (n = 7) (Lpr) ± S.E. Different
letters indicate significant differences between treatments (p < 0.05) based on Duncan’s test.

2.7. Hydrostatic Root Hydraulic Conductivity (Lpr)

The effects of the imposed stresses or microbial inoculants on Lpr were less important
than on Lo. In any case, under optimal conditions, both AM treatments (fungus alone
or in combination with Bm) showed higher values (by 19 and 34%, respectively) than
uninoculated control plants (Figure 5B). Single inoculation with B. megaterium did not
significantly affect this parameter as compared to uninoculated control plants or to AM
plants. When plants were subjected to combined D + T stress, again, the highest Lpr
value was achieved in plants dually inoculated with AM + Bm. Single AM inoculation
also improved this parameter (by 18%) over uninoculated control plants, while single Bm
inoculation did not significantly affect this parameter as compared to uninoculated control
plants or to AM plants.

It is noteworthy that plants dually inoculated with AM + Bm again exhibited similar
high Lpr values under combined D + T stress than under optimal conditions.

2.8. Expression of Plant and Fungal Aquaporins

Some of the analyzed aquaporins (ZmPIP1;1, ZmPIP2;4, ZmTIP2;3, ZmTIP4;1 and
ZmNIP2;1) did not show significant alteration in gene expression due to the treatments
applied in this study (inoculation with AM and/or Bm and application or not of a combined
drought and high temperature stress). Thus, these data are not shown.

Among the other aquaporins analyzed, the most significant results were found for
ZmPIP1;3 and ZmPIP2;2 (Figure 6A,B). Thus, under optimal conditions, the expression of
ZmPIP1:3 was higher in AM plants (inoculated only with the AM fungus or in combination
with Bm). When plants were subjected to combined D + T stress, the expression of this
gene increased significantly in plants singly inoculated with Bm and also in those dually
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inoculated with AM + Bm. This increase was significant as compared to the uninoculated
control plants and also as compared to the same treatment under optimal conditions. Plants
singly inoculated with the AM fungus enhanced the expression of this gene due to the
stress only as compared to uninoculated control plants but not with the same treatment
under optimal conditions. Under optimal conditions, the increase in the expression of this
gene in AM plants was also significant as compared to uninoculated controls (Figure 6A).
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Figure 6. Expression of ZmPIP1;3 (A) and ZmPIP2;2 (B) in roots of maize plants inoculated or not
(control) with a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal fungus
Rhizophagus irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated
under standard ambient temperature and well-watering conditions (well-watered) or subjected to
a combined drought and high temperature stress (drought + T) for 15 days before harvest. Data
represent the means (n = 3) ± S.E. Different letters indicate significant differences between treatments
(p < 0.05) based on Duncan’s test.

The expression of ZmPIP2;2 was inhibited under optimal conditions by the inoculation
with Bm and even more in plants dually inoculated with AM + Bm (Figure 6B). In contrast,
the inoculation of the AM fungus alone did not alter the expression of this gene under
optimal conditions. When the plants were subjected to combined D + T stress, all the
treatments had similar levels of gene expression. However, the combined D + T stress
applied significantly inhibited the expression of this gene in all treatments except in plants
dually inoculated with AM + Bm, which already had the lowest expression levels.

Regarding the expression of ZmTIP1;1, the most remarkable results was that plants
singly inoculated with the AM fungus reached the highest expression level under optimal
conditions (Figure 7A). The application of the combined D + T stress significantly inhibited
the expression of this gene in AM plants, while, on the contrary, the stress upregulated the
expression of this gene in plants dually inoculated with AM + Bm.
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Figure 7. Expression of ZmTIP1;1 (A) and GintAQPF1 (B) in roots of maize plants inoculated or not
(control) with a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal fungus
Rhizophagus irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated
under standard ambient temperature and well-watering conditions (well-watered) or subjected to
a combined drought and high temperature stress (drought + T) for 15 days before harvest. Data
represent the means (n = 3) ± S.E. Different letters indicate significant differences between treatments
(p < 0.05) based on Duncan’s test.

The expression of the fungal aquaporin genes GintAQP1 and GintAQPF2 did not
show significant differences among treatments. The expression of GintAQPF1 was upregu-
lated significantly (by 376%) in single AM plants upon exposure to the combined D + T
stress, while, in plants dually inoculated with AM + Bm, the changes were not statistically
significant (Figure 7B).

2.9. Accumulation of Aquaporins and Phosphorylation Status

The abundance of the PIP2 aquaporins analyzed (ZmPIP2;1/2;2, ZmPIP2;4 and ZmPIP2;5)
and the PIP2 phosphorylation status at Ser-280 (PIP2A), Ser-283 (PIP2B) and Ser-280 + Ser-
283 (PIP2C), followed a similar trend in all the treatments. Only the inoculation with B.
megaterium had a significant effect on these proteins, increasing their accumulation under
optimal conditions and, in some cases, also when subjected to combined D + T stress, as
compared to the rest of treatments (see Supplementary Figures S1 and S2).

2.10. Hormone Accumulation in Sap

The sap ABA content increased significantly as a consequence of the combined D + T
stress in uninoculated control plants and in plants dually inoculated with AM + Bm
(Figure 8A). In plants singly inoculated with Bm or with the AM fungus, the increase due
to the combined D + T stress was not significant. In the case of JA, its sap content was
increased by the combined D + T stress only in uninoculated control plants, while, in plants
singly inoculated with Bm, it decreased (Figure 8B). In the same way, the sap JA-Ile content
was considerably reduced by the combined D + T stress in plants singly inoculated by Bm
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and also in uninoculated control plants (Figure 8C). The sap SA content was not affected by
the microbial treatment when plants were cultivated under optimal conditions and only
decreased significantly due to the combined D + T treatment in plants inoculated with Bm
and in plants dually inoculated with AM + Bm (Figure 9A). Finally, the sap IAA content
was only affected by the combined D + T stress treatment in uninoculated control plants
that considerably enhanced its content (Figure 9B).
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Figure 8. (A) ABA, (B) JA and (C) JA-Ile contents in sap of maize plants inoculated or not (control)
with a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal fungus Rhizophagus
irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated under standard
ambient temperature and well-watering conditions (well-watered) or subjected to a combined drought
and high temperature stress (drought + T) for 15 days before harvest. Data represent the means
(n = 8) ± S.E. Different letters indicate significant differences between treatments (p < 0.05) based on
Duncan’s test or Tukey–Kramer test in the case of JA-Ile.
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Figure 9. (A) SA and (B) IAA contents in sap of maize plants inoculated or not (control) with
a PGPR strain of Bacillus megaterium (Bm), with the arbuscular mycorrhizal fungus Rhizophagus
irregularis (AM) or with both microorganisms (AM + Bm). Plants were cultivated under standard
ambient temperature and well-watering conditions (well-watered) or subjected to a combined drought
and high temperature stress (drought + T) for 15 days before harvest. Data represent the means
(n = 8) ± S.E. Different letters indicate significant differences between treatments (p < 0.05) based on
Duncan’s test.

3. Discussion

In the last years, climate change has increased temperatures and altered precipitation
regimes, which has led to a combined drought and high temperature stress in many areas
and therefore a serious decline in crop production, especially for high-water-requiring
crops such as maize [53].

Several studies have demonstrated that AM fungi alleviate stresses with an osmotic
component such as drought, salinity or extreme temperatures by means of a combination
of physical, physiological, nutritional and molecular effects [3,16,17,54]. Besides AM fungi,
PGPR can also play important roles in host-plant health and alleviation of abiotic stresses.
PGPRs help to mitigate stress effects at the whole-plant level [8]. They employ antioxidant
mechanisms, improve root and shoot morphology, produce biofilms to improve water
availability for the plant, increase water sustainability and produce secondary metabolites
to benefit plant fitness [8,12,55,56].

Given the increased severity of climate change in recent years and the positive effects
of AM fungi and PGPR on alleviation of abiotic stress in several plant species [44], this
study aimed to examine the effects of the dual inoculation with the AM fungus R. irregularis
and the PGPR B. megaterium on the tolerance of maize plants to combined drought and high
temperature stress. The results from the present study show that dual inoculation with
AM + Bm is more effective against the combined D + T stress than the single inoculation of
these microorganisms. Thus, the highest shoot dry weight was achieved in AM + Bm plants,
while the single Bm inoculation did not improve plant growth as compared to uninoculated
controls plants. Moreover, the decrease in shoot dry weight due to combined D + T stress
was lower in AM + Bm treatment (7.7%) than in single AM treatment (9.5%), uninoculated
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control plants or in single Bm-inoculated plants (decrease by 16.0% in both cases). This
result was parallel to the result on relative electrolyte leakage, which was enhanced by the
stress much less in dually inoculated AM + Bm plants than in uninoculated controls or in
plants singly inoculated with each microorganism. The efficiency of phytosystem II and
the photosynthetic activity also followed a similar trend and were less negatively affected
by the combined D + T stress in dually inoculated AM + Bm plants than in the rest of
treatments. It is noteworthy that the high photosynthetic activity, efficiency of photosystem
II and stomatal conductance of these plants were positively correlated with the high levels
of Ja-Ile in sap of this treatment (see Supplementary Table S1).

Drought and heat stress are simultaneously prevalent in semi-arid areas. Their com-
bined effects on plant physiology are still little known, but it is thought that are more
adverse for plants than each stress separately [4,57]. For instance, when tobacco plants
were subjected to drought and heat stress, they exhibited a higher leaf temperature as
compared to plants subjected only to heat stress, due to the precedence and prevalence
of stomatal closure to reduce water loss over the need to cool the leaves by keeping them
open [58]. In the same way, accumulation of proline is one of the major osmoprotectants
in plants subjected to drought stress, whereas under combined stress conditions, proline
accumulation is negative for the plant and sucrose is the main osmoprotectant that accu-
mulates [59]. It is also known that the concurrence of both stresses can lead to increased
leaf temperature, decreased stomatal conductance, diminished concentrations of photo-
synthetic pigments, impairment of photosystem II and reduced RuBisCO activity and net
photosynthesis [8]. All of these processes will negatively affect plant productivity and
are responsible for the reduced plant growth. In this study, the dual inoculation with
AM + Bm improved most of these parameters, which are surely involved in the better
performance and growth parameters of these dually inoculated plants under the combined
D + T stress. For instance, the higher efficiency of photosystem II in dually inoculated
plants indicates that the photochemical apparatus of these plants did not lose functionality
in light conversion [60,61]. The dual AM + Bm inoculation also significantly reduced the
membrane electrolyte leakage, which also contributed to the better performance of these
plants. Indeed, the membrane electrolyte leakage is an estimation of cell membrane stability
and is an index of the tolerance to the stress imposed [31,62] since a higher membrane
stability often correlates with a lower lipid peroxidation [63].

Regarding root hydraulic properties, both Lo and Lpr reached the maximum values in
dually inoculated AM + Bm plants, both under well-watered and under combined D + T
stress, and the stress applied did not negatively affect Lo in AM + Bm plants, while it
decreased Lo in the rest of treatments, reaching its lowest value in uninoculated control
plants subjected to D + T stress. Lo measures water flow through the cell-to-cell pathway
in which aquaporins are involved. The maintenance of Lo in dually inoculated AM + Bm
plants could be related to an increased expression of plant or fungal aquaporins [30,34].
Indeed, plant exposure to both drought and high temperatures triggers physiological
and molecular changes that affect the aquaporin expression patterns and root hydraulics,
which is directly related to aquaporins [14,64,65]. In the case of drought stress, both the
down- and upregulation of aquaporins have been described [14]. In the case of heat stress,
generally the long-term stress response is a decrease in aquaporins expression. However,
different plants can respond differently to different intensities and times of stress exposure.
For instance, in soybeans, several PIPs and TIPs were upregulated in roots and leaves
during the first six hours after heat treatment. In contrast, after 12 h of heat stress, all
were downregulated in leaves [66]. Some plants, such as Rhazya stricta L., have shown an
adaptation to the hottest daylight hours based on increased PIP aquaporins expression in
leaves [67], similar to the strawberry (Fragraria vesca L.), which increases PIP expression
after one-hour of heat stress [68]. On the contrary, in tobacco plants, there is a decrease in
the PIP2s levels in roots after 50 ◦C treatment [69]. Moreover, the pattern of aquaporin gene
expression can be different in response to heat stress among cultivars of the same plant
species, as described in Setaria italic L. [65].



Int. J. Mol. Sci. 2023, 24, 5193 14 of 22

Curiously, in this study, some of the aquaporins analyzed (ZmPIP1;3, ZmTIP1.1 and
GintAQPF1) exhibited a higher gene expression in dually inoculated AM + Bm plants than
in the other treatments when subjected to combined D + T stress, while ZmPIP2;2 was
downregulated in this treatment. The aquaporin ZmPIP1;3, like other PIP1s, can interact
with PIP2s in order to regulate their water transport capacity [70]. ZmTIP1;1 is the most
expressed TIP in maize [18] and can transport water and other compounds, such as, urea,
ammonia, boron or H2O2 [29,31]. The fungal aquaporin GintAQPF1 was shown to be
able to transport water and to be expressed both in extraradical mycelium and in maize
cortical cells containing arbuscules. Its expression was upregulated by drought stress [71],
as in our study. Finally, ZmPIP2;2 has a high capacity for water transport in Xenopus laevis
oocytes [29]. Thus, such tight regulation of aquaporin expression makes sense in the context
of a fine control of water balance in maize roots dually inoculated with AM + Bm.

On the other hand, aquaporin abundance in root cortex cells may alter Lo, especially
during water shortage, where aquaporins are thought to be regulated for the maintenance
of the adequate water balance [19] Thus, the maintenance of Lo in dually inoculated
AM + Bm plants may be due to additional mechanisms, such as increased abundance
and/or activity of the aquaporins due to post-translational modifications [34,72]. PIPs were
proved to contribute to the adaptation of plants to drought episodes, also contributing to
rehydration of the whole plant after water shortage [73] and, in this study, we examined
the abundance of several PIPs and the phosphorylation status of PIP2s. However, their
abundances and phosphorylation status were only significantly affected by inoculation
with Bm, but not in the dual inoculation, and it is likely that his is not the reason for
the maintenance of Lo in dually inoculated AM + Bm plants. Alternatively, it may be
also due to changes in the plant hormonal content [74]. Indeed, plant hormones such as
ABA; JA and its derivative, JA-Ile; SA; or IAA may well be involved in the regulation
of the own plant–microbe interaction [43,48], in the activity of the plant aquaporins or
in posttranscriptional changes in these aquaporins, and, in turn, this alters their water
channel activity [30,45,75,76]. In this study, the plants dually inoculated with AM + Bm
and subjected to combined D + T stress also contained the highest ABA and JA-Ile contents
in sap, while hormones such as SA and IAA were low in comparison to uninoculated
control plants.

Experimental evidence suggests that, in AM plants, the modulation of ABA, auxins
and/or SA levels may contribute to switching between apoplastic and cell-to-cell water
pathways [30,32,77]. Indeed, ABA has been identified as a possible aquaporin regula-
tor [75,78] and increases Lo in maize, lettuce or wheat plants [79–81]. MeJA was also
shown to increase Lo in tomato, bean or Arabidopsis in a calcium- and ABA-dependent
way [30]. IAA inhibited the expression of most PIPs in Arabidopsis [82], and, in maize,
IAA reduced Lo in an aquaporin-mediated mode [35]. In a similar way, SA downregulates
PIP aquaporins and root hydraulic conductivity by an ROS-mediated mechanism which
provoked membrane internalization of PIP [78], and this was also found in maize [32].
Thus, enhanced ABA and JA-Ile contents in AM + Bm plants and reduced SA and IAA
contents may have contributed to maintain high levels of Lo in these plants. Indeed, ABA
and JA-Ile contents had a positive correlation with Lo and Lpr in this study, while SA and
IAA contents had a negative correlation with Lo and Lpr (see Supplementary Table S1).
Moreover, ABA had a positive correlation with the expression of ZmPIP1;3 aquaporin.

In conclusion, the data obtained in this study show that that the single inoculation with
the AM fungus R. irregularis was more effective than the single inoculation with the PGPR B.
megaterium in promoting maize growth and performance both under optimal conditions and
when subjected to combined D + T stress. However, the dual inoculation with AM + Bm
was more effective against a combined D + T stress than the single inoculation of these
microorganisms. The positive effect of the dual inoculation was related to a synergistic
enhancement of the efficiency of phytosystem II, stomatal conductance and photosynthetic
activity, as well as a reduction of membrane electrolyte leakage. At the same time, the dual
inoculation of AM + Bm allowed plants to maintain higher values of Lo and Lpr under stress
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conditions, and this was related to the upregulation of the aquaporins ZmPIP1;3, ZmTIP1.1
and GintAQPF1 and downregulation of ZmPIP2;2, as well as to enhanced sap ABA and
JA-Ile contents and reduced sap SA and IAA contents. The present results demonstrate
that, at least under controlled conditions, combining beneficial soil microorganisms such as
the AM fungus R. irregularis and the PGPR B. megaterium is a useful and sustainable tool to
improve plant productivity under combined drought and high temperature stress. Future
studies are needed to check this conclusion under field conditions and to validate the use
of these microorganisms to improve crop productivity under the current climate-change
scenario that causes the combination of drought and enhanced temperatures.

4. Materials and Methods
4.1. Design of the Experiment and Statistical Analysis

The experiment consisted of a factorial design with two factors: (1) Microbial in-
oculation treatment, with non-inoculated control plants (C), plants inoculated with the
AM fungus Rhizophagus irregularis, strain EEZ 58 (AM); plants inoculated with the plant
growth promoting rhizobacteria Bacillus megaterium (Bm); and plants dually inoculated
with R. irregularis and B. megaterium (AM + B). (2) Stress treatment, so that one half of the
plants were cultivated under well-watered (WW) conditions and standard temperature
throughout the entire experiment (these are considered optimal conditions in this study)
and the other half of the plants were subjected to combined drought and high temperature
(5 ◦C above standard temperature) stresses (D + T) for 15 days before harvest. The different
combinations of these factors gave a total of 8 treatments. Fifteen replicates were used for
each treatment, giving a total of 120 plants.

The data were tested for a normal distribution and variance homogeneity (p < 0.05),
and, when needed, variables were log transformed before further analyses. The data were
subjected to a two-way analysis of variance (two-way ANOVA), with inoculation treatment,
water regime and inoculation-treatment–water-regime interaction as sources of variation.
Post hoc comparisons with the Duncan’s test were used to find out differences between
groups. The SPSS Statistics (Version 27, IBM Analytics, Armonk, NY, USA) was used to
perform parametric data analysis. When the data did not fit the normality distribution,
Kruskal–Wallis as a non-parametric test of variance was applied. In these variables, Tukey–
Kramer was used as a post hoc test. Correlations between the different parameters were
performed by calculating the Pearson correlation coefficients (Supplementary Table S2).
The analyses of non-parametric variables and Pearson correlation were performed using
the JMP®, Version 10 (SAS Institute Inc., Cary, NC, USA, 1989–2007).

4.2. Soil and Biological Materials

The soil used was a loam and was collected on 1 September 2021 at the grounds of
IFAPA (Granada, Spain), sieved (2 mm), diluted with quartz sand (<1 mm) (1:1, soil:sand,
v/v) and sterilized by steaming (100 ◦C for 1 h on 3 consecutive days). The soil pH was
8.1 (water) and contained 0.85% organic matter with the following nutrient concentrations
(mg kg−1): N, 1; P, 10 (NaHCO3-extractable P); and K, 110. The soil texture was made of
38.3% sand, 47.1% silt and 14.6% clay.

Seeds of maize (Zea mays L.), cultivar PR34B39, were provided by Pioneer Hi-Bred,
Spain (DuPont Pioneer Corporation, Johnston, IA, USA). Seeds were pre-germinated on
moist sand for 5 days (from 7 to 12 September 2021) and then transferred to pots of 1.5 L
capacity containing 1250 g of the soil/sand mixture described above on 12 September 2021.
A total of 120 pots were prepared, each one containing one maize seedling.

Mycorrhizal inoculum was bulked in an open-pot culture of Z. mays L. and consisted
of soil, spores, mycelia and infected root fragments. The AM fungus was Rhizophagus
irregularis (Schenck and Smith), belonging to the Zaidin Experimental Station (EEZ) Collec-
tion, strain EEZ 58. Ten grams of inoculum with about 65 infective propagules per gram
(according to the most probable number test) was added to the appropriate pots at the
time of seedlings transplantation to pots (12 September 2021). Non-inoculated control
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plants received the same amount of autoclaved mycorrhizal inoculum together with a 3 mL
aliquot of a filtrate (<20 µm) of the AM inoculum in order to provide a general microbial
population free of AM propagules.

Appropriate pots were inoculated with a Bacillus megaterium strain isolated and tested
in previous studies [36,38,83,84]. For that, two days before starting this experiment, B. mega-
terium strain was grown in nutrient broth medium for 48 h at 28 ◦C and then centrifuged
at 4500× g for 5 min. The pellet was suspended in sterilized water. One milliliter of the
suspension containing 108 cfu mL–1 was added to each pot at the time of the seedlings’
transplantation to pots (12 September 2021) and repeated seven days later (19 Septem-
ber 2021).

4.3. Growth Conditions

The experiment was conducted in a greenhouse with the following conditions: 16/8 h
light/dark period, a relative humidity of 50–60% and standard temperatures of 19/24 ◦C
(night/day) or high temperatures of 24/29 ◦C (night/day) in the case of treatments sub-
jected to stress. The average photosynthetic photon flux density was 800 µmol m−2 s−1,
as measured with a light meter (LICOR, Lincoln, NE, USA, model LI-188B). Plants were
cultivated for a total of 8 weeks (from 12 September 2021 to 14 November 2021), and
4 weeks after sowing, all plants started receiving 10 mL per pot and per week of Hoagland
nutrient solution [85] containing only 25% of P in order to provide basic nutrients but
avoiding inhibition of AM symbiosis due to a high P application.

Soil moisture was controlled with a ML2 ThetaProbe (AT Delta-T Devices Ltd., Cam-
bridge, UK). Thus, during the first 6 weeks after sowing (from 12 September 2021 to
29 October 2021), water was daily supplied to maintain soil at 100% of field capacity in
all treatments. A previous experiment using a pressure plate apparatus showed that the
100% soil water-holding capacity corresponds to 22% volumetric soil moisture measured
with the ThetaProbe. Then half of the plants (unstressed plants) were maintained in the
same greenhouse under the abovementioned conditions during the entire experiment (from
12 September 2021 to 14 November 2021). These were considered optimal conditions in this
study. The other half of the plants (stressed plants) were moved to a parallel greenhouse,
where the temperature was set up 5 ◦C above standard (to reach 24/29 ◦C, night/day
temperatures). The plants subjected to high temperature were also allowed to dry until
the soil water content reached 60% of field capacity (one day needed). The 60% of soil
water-holding capacity corresponds to 7% volumetric soil moisture measured with the
ThetaProbe (also determined previously with a pressure plate apparatus). The soil water
content was measured daily with the ThetaProbe ML2 before rewatering (at the end of
the afternoon), reaching a minimum soil water content around 55% of field capacity in the
drought-stressed and high-temperature-stressed treatments. The amount of water lost was
daily replaced to each pot in order to keep the soil water content at the desired levels of
either 7% (stressed plants) or 22% (non-stressed plants) of volumetric soil moisture [86].
Plants were maintained under such conditions for 15 additional days before harvesting
(from 30 October to 14 November 2021).

4.4. Measurements
4.4.1. Biomass Production, Shoot Water Content and Symbiotic Development

At harvest (8 weeks after sowing), the shoot and root systems of fifteen replicates per
treatment were separated and weighed to determine fresh weights (FWs). Subsequently,
the dry weight (DW) was also measured after drying in a forced hot-air oven at 70 ◦C for
2 days. The shoot water contents (WCs) were determined using the following equation:
WC (%) = [(FW − DW)/FW] × 100.

The percentage of mycorrhizal root colonization was estimated by visual observation
according to Phillips and Hayman [87], and the extent of mycorrhizal colonization was
quantified according to the gridline intersect method [88] in five replicates per treatment.
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4.4.2. Membrane Electrolyte Leakage

Six plants per treatment were used to determine leaf electrolyte leakage. Samples
were first washed with deionized water to remove surface-adhered electrolytes. Then the
samples were placed in closed vials containing 10 mL of deionized water and incubated at
25 ◦C on a rotary shaker (at 100 rpm) for 3 h. The electrical conductivity of the solution
(L0) was determined using a conductivity meter (Metler Toledo AG 8603, Greifensee,
Switzerland). After that, samples were placed at −80 ◦C for 2 h. Subsequently, tubes
were incubated again at room temperature under smoothly agitation for 3 h, and the final
electrical conductivity (Lf) was measured. The electrolyte leakage was quantified as follows:
[(L0 − Lwater)/(Lf − Lwater)] × 100, with Lwater being the conductivity of the deionized
water used to incubate the samples.

4.4.3. Efficiency of Photosystem II

The efficiency of photosystem II was measured with a FluorPen FP100 (Photon Systems
Instruments, Brno, Czech Republic), which allows a non-invasive assessment of plant
photosynthetic performance by measuring chlorophyll a fluorescence. FluorPen quantifies
the quantum yield of photosystem II as the ratio between the actual fluorescence yield in
the light-adapted state (FV′) and the maximum fluorescence yield in the light-adapted state
(FM′), according to Oxborough and Baker [89]. Measurements were taken in the second
youngest leaf of ten different plants of each treatment.

4.4.4. Gas Exchange Measurements

After 8 weeks of plant cultivation, the net photosynthesis (An), stomatal conductance
(gs), and instantaneous water-use efficiency (iWUE = An/gs) of fully expanded young
leaves in eight different plants per treatment were measured using a portable photosystem
system LI-6400 (LICOR Biosciences, Lincoln, NE, USA) two hours after sunrise. Measure-
ments were performed at an ambient CO2 concentration of 390 µmol m−2, temperature of
25/30 ◦C, 50 ± 5% relative humidity and a PPFD of 1000 µmol m−2s−1.

4.4.5. Osmotic Root Hydraulic Conductivity (Lo)

Before harvest, the osmotic root hydraulic conductivity (Lo) was measured on de-
tached roots exuding under atmospheric pressure for two hours [27]. Under these condi-
tions, water is only moving following an osmotic gradient. Therefore, the water would
be moving through the cell-to-cell path [90]. Eight plants per treatment were used for this
determination. Lo was calculated as Lo = Jv/∆Ψ, where Jv is the exuded sap flow rate, and
∆Ψ is the osmotic potential difference between the exuded sap and the nutrient solution
where the pots were immersed. These measurements were carried out 3 h after the onset of
light in eight different plants per treatment.

4.4.6. Hydrostatic Root Hydraulic Conductivity (Lpr)

Lpr was determined at noon in seven plants per treatment with a Scholander pressure
chamber, as described by Bárzana et al. [28]. A gradual increase of pressure (0.3, 0.4 and
0.5 MPa) was applied at 2-minute intervals to the detached roots. Sap was collected at
the three pressure points in seven different plants per treatment. Sap flow was plotted
against pressure, with the slope being the root hydraulic conductance (L) value. Lpr was
determined by dividing L by root dry weight (RDW) and expressed as mg H2O g RDW−1

MPa−1 h−1.

4.4.7. Quantitative Real-Time RT-PCR

Three biological replicates of maize roots were used to extract total RNA, as described
in Quiroga et al. [31]. First-strand cDNA was synthesized using 1 µg of purified RNA with
the Maxima H Minus first strand cDNA synthesis kit (Thermo Scientific™, Waltham, MA,
USA), following the manufacturers’ instructions.



Int. J. Mol. Sci. 2023, 24, 5193 18 of 22

The expression of eight previously selected maize aquaporins (ZmPIP1;1, ZmPIP1;3,
ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, ZmTIP2;3, ZmTIP4;1 and ZmNIP2;1) [31] was measured by
qRT-PCR using 1 µL of diluted cDNA (1:9) with PowerUpTM SYBRTM Green Master Mix
in a QuantStudioTM 3 system (Thermo Fisher Scientific, Waltham, MA, USA). The reaction
was repeated for 40 cycles, at an annealing temperature of 58 ◦C, for all primers. Four refer-
ence genes were measured in all the treatments for the normalization of gene-expression val-
ues. These genes were poliubiquitin (gi:248338), tubulin (gi:450292), GAPDH (gi:22237) and
elongation factor 1 (gi:2282583) [29]. Standardization was carried out based on the expres-
sion of the two best-performing reference genes under our specific conditions, which were
chosen by using the “NormFinder” algorithm [91] (https://moma.dk/normfinder-software
(accessed on 2 February 2023)). Thus, expression levels were normalized according to Zm-
tubulin and ZmGAPDH genes. Fungal aquaporins (GintAQP1, GintAQPF1 and GintAQPF2)
were analyzed as previously described [71,92], using fungal elongation factor 1α (Accession
No. DQ282611) as reference gene for standardization. The relative abundance of transcripts
was calculated using the 2−∆∆ct method [93]. The threshold cycle (Ct) of each biological
sample was determined in duplicate. Negative controls without cDNA were used in all
PCR reactions.

4.4.8. Aquaporins Abundance and PIP2s Phosphorylation Status

Sub-cellular fractionation was performed according to Hachez et al. [94], with slight
modifications. Pieces of intact roots were grinded with 6 mL of a protein extraction buffer
containing 250 mM Sorbitol, 50 mM Tris-HCl (pH 8), 2 mM EDTA and protease inhibitors.
All steps were performed at 4 ◦C. The homogenate was centrifuged for 10 min at 770× g, and
the supernatant obtained was centrifuged 10 min at 10,000× g. The resulted supernatant
was finally centrifuged for 30 min at 100,000× g, and the final pellet (corresponding to
the microsomal fraction) was resuspended in 20 µL of suspension buffer (5 mM KH2PO4,
330 mM sucrose, 3 mM KCl, pH 7.8) and sonicated twice for 5 s. Total protein amounts
were quantified by Bradford analysis, and the abundance of specific proteins was measured
by ELISA. A 2 µg aliquot of microsomal fraction was incubated at 4 ◦C overnight in
carbonate/bicarbonate coating buffer at pH 9.6. The next day, proteins were cleaned by
3 × 10 min washes with Tween Tris-buffered saline solution (TTBS) and blocked with 1%
bovine serum albumin (BSA) on TTBS 1 h at room temperature. After three more washes
with TTBS, proteins were incubated with 100 µL of the primary antibody (1:1000 in TTBS
v/v) for 1 h at room temperature.

We used primary antibodies recognizing several PIPs’ aquaporins, namely ZmPIP2;1/2;2,
ZmPIP2;4 and ZmPIP2;5 [94], as well as three antibodies that recognize the phosphorylation
of PIP2 proteins in the C-terminal region: PIP2A (Ser-280), PIP2B (Ser-283) and PIP2C (Ser-
280/Ser-283) [77]. A goat anti-rabbit IgG coupled to horseradish peroxidase (Sigma-Aldrich
Co., St. Louis, MO, USA) was used as secondary antibody at 1:10,000.

4.4.9. Sap Hormonal Content

In sap, IAA, ABA, SA, JA and JA-Ile were analyzed according to Albacete et al. [95],
with some modifications. Briefly, xylem sap samples from eight different plants per treat-
ment were filtered through 13 mm diameter Millex filters with a 0.22 µm pore size nylon
membrane (Millipore, Bedford, MA, USA). Then, 10 µL of filtrated extract was injected
in a U-HPLC-MS system consisting of an Accela Series U-HPLC (ThermoFisher Scientific,
Waltham, MA, USA) coupled to an Exactive mass spectrometer (ThermoFisher Scientific),
using a heated electrospray ionization (HESI) interface. Mass spectra were obtained using
Xcalibur software version 2.2 (ThermoFisher Scientific). For quantification of the plant
hormones, calibration curves were constructed for each analyzed component (1, 10, 50 and
100 µg L−1).

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ijms24065193/s1.
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