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Abstract: Adipose tissue inflammation in obesity has a deleterious impact on organs such as the
liver, ultimately leading to their dysfunction. We have previously shown that activation of the
calcium-sensing receptor (CaSR) in pre-adipocytes induces TNF-α and IL-1β expression and secre-
tion; however, it is unknown whether these factors promote hepatocyte alterations, particularly
promoting cell senescence and/or mitochondrial dysfunction. We generated conditioned medium
(CM) from the pre-adipocyte cell line SW872 treated with either vehicle (CMveh) or the CaSR acti-
vator cinacalcet 2 µM (CMcin), in the absence or presence of the CaSR inhibitor calhex 231 10 µM
(CMcin+cal). HepG2 cells were cultured with these CM for 120 h and then assessed for cell senescence
and mitochondrial dysfunction. CMcin-treated cells showed increased SA-β-GAL staining, which was
absent in TNF-α- and IL-1β-depleted CM. Compared to CMveh, CMcin arrested cell cycle, increased
IL-1β and CCL2 mRNA, and induced p16 and p53 senescence markers, which was prevented by
CMcin+cal. Crucial proteins for mitochondrial function, PGC-1α and OPA1, were decreased with
CMcin treatment, concomitant with fragmentation of the mitochondrial network and decreased
mitochondrial transmembrane potential. We conclude that pro-inflammatory cytokines TNF-α and
IL-1β secreted by SW872 cells after CaSR activation promote cell senescence and mitochondrial dys-
function, which is mediated by mitochondrial fragmentation in HepG2 cells and whose effects were
reversed with Mdivi-1. This investigation provides new evidence about the deleterious CaSR-induced
communication between pre-adipocytes and liver cells, incorporating the mechanisms involved in
cellular senescence.

Keywords: calcium-sensing receptor; cell senescence; pre-adipocyte; hepatocyte

1. Introduction

Cell senescence is described as a mechanism whereby a dividing cell enters a stable cell
cycle arrest upon a stressing stimulus while remaining metabolically active. Senescent cells
show the senescence-associated secretory phenotype (SASP) which involves the production
of pro-inflammatory cytokines and other signaling factors and they become unresponsive
to mitogenic and apoptotic signals [1]. Depending on the context, cell senescence can result
in beneficial or detrimental effects to the organism. In young individuals or upon acute
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damage, senescence-related cell cycle arrest and SASP contribute to tumor suppression,
wound healing, and tissue homeostasis [2].

Obesity is described as a chronic low-grade inflammatory process, where hypertrophic
adipocytes accumulate in adipose tissue. This organ has an important endocrine role,
secreting pro- or anti-inflammatory factors such as tumor necrosis factor α (TNF-α) and
interleukin-1β (IL-1β) or interleukin-10 (IL-10) and adiponectin, respectively. The pro-
inflammatory cytokines are associated with dysfunctional adipose tissue, which alters local
and systemic metabolism, leading to obesity-related comorbidities [3,4]. Adipose tissue
dysfunction has also been related to age-related diseases [3].

Adipose progenitor cells or “pre-adipocytes” are a cell population within adipose
tissue with the ability to proliferate and differentiate into mature adipocytes, maintaining
homeostasis through tissue plasticity and expandability [5–7]. An inflammatory environ-
ment can alter the homeostasis of pre-adipocytes, reducing their differentiation capacity
and increasing their proliferation and pro-inflammatory cytokine expression [8,9]. Multiple
inflammatory pathways have been described in adipose tissue, including the activation of
the calcium-sensing receptor (CaSR), a G-protein coupled receptor that responds to several
ligands and signals through multiple pathways. Pre-adipocytes express CaSR, and its activ-
ity is involved in the release of pro-inflammatory cytokines TNF-α and IL-1β [10–12], which
may promote stress-mediated cellular senescence development in other tissues [13,14].

Aging and obesity modulate the cellular senescence program, leading to the accumu-
lation of senescent cells that promote tissue dysfunction, chronic inflammation, and fibrosis
in the liver [4,15]. Alterations in liver cell function are important because of its role in the
control of metabolism, biomolecule secretion, and energy homeostasis [16,17]. The liver
is rich in mitochondria and is responsible for 15% of the total body oxygen consumption.
Depending on the nutrient demand, the liver can oxidize various nutrients, such as carbo-
hydrates and lipids, which are metabolized in mitochondria. Indeed, the liver can provide
glucose to other tissues and, during fasting, its mitochondria can oxidize the fatty acids
released from adipose tissue, producing ketones and ATP. Therefore, mitochondria are
key players for hepatocyte energy homeostasis and their dysfunction is involved in the
development of metabolic diseases [18,19].

It has been suggested that cell senescence and mitochondrial dysfunction are key
hallmarks of aging [20]. During cell senescence, dysfunctional mitochondria accumulate
due to a reduction in mitophagy [21]. Moreover, the senescent phenotype in hepatocytes is
associated with decreased lipid oxidation, which favors hepatic inflammation and lipid
accumulation (steatosis) [22].

The inflammatory environment generated by cytokines such as IL-1β and TNF-α
alters the liver’s morphology and function, promotes fibrosis, mitochondrial dysfunction,
and increases the number of senescent cells [22–24]. However, it is unknown whether the
secretion products of pre-adipocytes after CaSR activation promote cell senescence and
mitochondrial dysfunction in hepatocytes. Our aim was to investigate if CaSR activation
induces pro-inflammatory secretion in the human pre-adipocyte cell line SW872, leading to
pro-inflammatory cytokine expression, cellular senescence, and mitochondrial dysfunction
in HepG2 cells.

2. Results
2.1. Pro-Inflammatory Secretion Factors from CaSR-Activated SW872 Pre-Adipocytes Induce Cell
Senescence in HepG2 Cells

To evaluate the pro-senescence effect of pre-adipocyte-secreted factors, we obtained
conditioned medium (CM) from SW872 cells treated with the CaSR activator cinacalcet 2 µM
for 16 h (CMcin). As the control, we used CM from SW782 cells treated with vehicle alone
(CMveh). The senescence-associated β-galactosidase (SA-β-GAL) assay (a marker of resid-
ual lysosomal activity associated with cell senescence) [13,25] showed that CMcin-treated
HepG2 cells displayed higher SA-β-GAL expression, as well as cytomegaly compared to
CMveh-treated cells (p < 0.05) (Figure 1a). We quantified SA-β-GAL expression both as
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the count of positive cells and colorimetry (Figure 1b,c). To test whether these changes
depended on CaSR activation, we obtained CM from SW872 cells treated with cinacalcet in
the presence of the CaSR inhibitor calhex 231 10 µM (CMcin+cal), which abolished the effect
of CMcin (Figure 1b,c).
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Figure 1. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that induce cell
senescence in HepG2 hepatocytes: (a) Representative images of SA-β-GAL staining of HepG2 cells
exposed to the CMveh, CMcin, and CMcin+cal (scale bar = 100 µm); (b) Quantification of SA-β-GAL
positive cells normalized by total cells in the field; and (c) SA-β-GAL absorbance recorded at 630 nm.
Each dot represents an individual experiment (n = 6). * p < 0.05 versus the control, # p < 0.05 versus
CMcin, Friedman’s test, and Dunn’s post-hoc test.

To further characterize the senescent phenotype in our model, we evaluated the
p53/p21/p16 signaling cascade. Cell cycle regulation by p53, p21, and p16 can be activated
by stress signals, such as DNA damage or mitochondrial dysfunction [26–28]. CMcin-treated
HepG2 cells showed increased protein levels of p16 and p21, but not p53, as assessed by
Western blot analysis (p < 0.05) (Figure 2a–d). Again, treatment with CMcin+cal failed to
induce any change, thereby supporting the role of CaSR activation in this process.

Cell cycle arrest is a hallmark of cell senescence, which we evaluated by the location of
the protein Ki67. This protein is diminished in the nucleus of senescent cells, and together
with other markers, allows us to assess cell senescence [29]. As expected, HepG2 cells
treated with CMcin showed a decreased Ki67 immunofluorescence signal compared with
the control condition (p < 0.05). This change did not take place in the CMcin+cal condition
(Figure 3a,b).
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Figure 2. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that activate the
p16/p21/p53 cascade in HepG2 cells: (a) immunodetection of p53, p21, and p16 protein levels in
HepG2 cells exposed to the CMveh, CMcin, and CMcin+cal; (b) quantification of p53 protein levels;
(c) quantification of p21 protein levels; (d) quantification of p16 protein levels. Each dot represents an
individual experiment (n = 5–6). * p < 0.05, versus the control, # p < 0.05 versus CMcin, Friedman’s
test, and Dunn’s post-hoc test.

Another key feature of senescent cells is the senescence-associated secretory phenotype
(SASP), which consists of the induction of pro-inflammatory cytokines and chemoattrac-
tants, such as IL-1β and CCL2, respectively [30,31]. Our results show that HepG2 cells
treated with CMcin increased the relative abundance of both IL-1β and CCL2 mRNA
compared to CMveh (p < 0.05), while CMcin+cal prevented these changes (Figure 4a–c).

To explore the mediators of this pro-senescence effect, we separately immunoprecip-
itated IL-6, IL-1β, or TNF-α from the SW872-derived CMcin, given the evidence of their
release by preadipocytes [10,11,32] in addition to their association with stress-associated
cell senescence [33–35]. Our approach specifically reduced the levels of each cytokine
from the CM (Figure 5a). We verified the effectiveness of the procedure by observing that
each cytokine was enriched in the pellet of their respective immune complex (Figure 5b).
Immunoprecipitation of either TNF-α (CMTNF-α[−]) or IL-1β (CMIL-1β[−]) prevented the
increase in SA-β-GAL in CMcin-treated HepG2 cells, while IL-6 immunoprecipitation
(CMIL-6[−]) did not evoke a significant effect (Figure 5c–e).
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Figure 3. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that induce
cell cycle arrest in HepG2 cells: (a) representative images of HepG2 cells exposed to the CMveh,
CMcin, and CMcin+cal. Hoechst (blue) was used to identify the nuclei and anti-Ki67 antibody (green)
to evaluate the nuclear localization of Ki67 (scale bar = 100 µm); (b) quantification of total Ki67
immunofluorescence. The inset shows CMcal immunofluorescence relative to the control. Each dot
represents an individual experiment (n = 5). * p < 0.05 versus the control, Friedman’s test, and Dunn’s
post-hoc test.
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Figure 4. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that induce
the secretion of pro-inflammatory cytokines in HepG2 cells: relative abundance of (a) IL-1β and
(b) CCL2 mRNA in HepG2 cells exposed to CMcin and CMcin+cal; expressed as fold from CMveh,
(represented by the dotted line). mRNA levels were normalized to GAPDH mRNA. The insets show
CMcal normalized mRNA levels relative to the control. Each dot represents an individual experiment
(n = 2–7). * p < 0.05 versus the control, # p < 0.05 versus CMcin, and the Wilcoxon signed rank test.
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2.2. Secretion Products from CaSR-Activated SW872 Pre-Adipocytes alter the Mitochondrial 
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cluding mitochondrial dysfunction [27,36], we evaluated key factors for mitochondrial 
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Figure 5. CaSR activation in SW872 pre-adipocytes elevates IL-1β and TNF-α secretion, which induce
cell senescence in HepG2 cells: (a) immunodetection of IL-6, IL-1β, and TNF-α protein levels in CMcin

after immunoprecipitation (n = 1); (b) immunodetection of IL-6, IL-1β, and TNF-α protein levels in
the CMcin pellet after immunoprecipitation (n = 1); (c) Representative images of SA-β-GAL staining
of HepG2 cells exposed to CMcin, CMIL-6 [−], CMIL-1β [−], and CMTNF-α [−] (scale bar = 100 µm);
(d) quantification of SA-β-GAL-positive cells normalized by total cells in the field; (e) SA-β-GAL
absorbance recorded at 630 nm. Each dot represents an individual experiment (n = 6). * p < 0.05, and
** p < 0.01, the versus control, Friedman’s test, and Dunn’s post-hoc test.

2.2. Secretion Products from CaSR-Activated SW872 Pre-Adipocytes Alter the Mitochondrial
Dynamics and Function of HepG2 Cells

Given that cell senescence is characterized by a general decrease in cell function
including mitochondrial dysfunction [27,36], we evaluated key factors for mitochondrial
dynamics. Our results show that the protein levels of OPA1, which maintains mitochondrial
cristae structure, and PGC-1α, which promotes mitochondrial biogenesis, significantly
decrease in HepG2 cells exposed to CMcin (p < 0.05) compared to CMveh. In the case of
MFN2 protein levels, which mediates mitochondrial fusion, there was a trend to decrease
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(p < 0.08). Conversely, the protein levels of DRP1, which participates in mitochondrial
fission, increased upon treatment with CMcin (Figure 6a–f). As with previous results, these
observations were reversed in the CMcin+cal condition.
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Figure 6. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that alter proteins
governing mitochondrial dynamics in HepG2 cells: (a) immunodetection of OPA1 and MFN2 protein
levels in HepG2 cells exposed to CMveh, CMcin, and CMcin+cal; (b) immunodetection of PGC-1α
and DRP1 protein levels in treated HepG2 cells; quantification of (c) OPA1; (d) MFN2; (e) PGC-1α;
and (f) DRP1 protein levels. Each dot represents an individual experiment (n = 4–5). * p < 0.05 and
** p < 0.01 versus the control, # p < 0.05 versus CMcin, Friedman’s test, and Dunn’s post-hoc test.

Next, we analyzed the mitochondrial transmembrane potential (∆ψ) through im-
munofluorescence using the ∆ψ-sensitive probe MitoTracker Orange (MTO) normalized
by mtHsp70 as a marker of mitochondrial mass. We observed that HepG2 cells exposed
to CMcin had a decreased MTO/mtHsp70 fluorescence ratio (p < 0.05), indicative of de-
creased ∆ψ (Figure 7a,b). In addition, CMcin-treated cells presented a higher number of
mitochondria per cell compared to the CMveh condition and a trend towards reduced
average mitochondrial area (p < 0.08) (Figure 7c,d). Altogether, these results indicate that
CMcin treatment in pre-adipocytes induces the secretion of factors that promote mitochon-
drial fragmentation and the decrease of bioenergetics in HepG2 cells, thus suggesting
mitochondrial dysfunction.
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Figure 7. CaSR activation in SW872 pre-adipocytes induces the secretion of factors that induce mito-
chondrial alterations in HepG2 cells: (a) representative immunofluorescence images obtained through
confocal microscopy of HepG2 cells treated with CMveh, CMcin, or CMcin+cal stained with MitoTracker
Orange (MTO, red) and an anti-mtHsp70 antibody (green); the ratio of MTO/mtHSP70 fluorescence
is shown in pseudo colors (right column of images); (b) quantification of the overall fluorescence
ratios between MTO mtHsp70; (c) quantification of the mean mitochondrial area; (d) quantification
of the average number of mitochondria per cell. The insets show CMcal levels relative to the control.
Each dot represents an individual experiment (n = 4). * p < 0.05 and ** p < 0.01 versus the control,
Friedman’s test, and Dunn’s post-hoc test.

2.3. Inhibition of Mitochondrial Fission in HepG2 Cells Prevents Cell Senescence Induced by
Cinacalcet-Treated SW872 Pre-Adipocyte Secretion Factors

We addressed whether the observed mitochondrial fragmentation contributes to the
development of MCcin-induced cell senescence in HepG2 cells by inhibiting mitochondrial
network fragmentation using the DRP1 inhibitor Mdivi-1 during the last 24 h of the
treatment with SW872 CM. As expected, Mdivi-1 treatment prevented CMcin-induced
mitochondrial fragmentation, maintaining the mitochondrial number similar to CMveh-
treated cells (Figure 8a,c,d). Similarly, Mdivi-1 treatment prevented the decrease in ∆ψ
observed upon CMcin treatment (Figure 8b).
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Figure 8. Mdivi1 prevents mitochondrial alterations induced by CMcin on HepG2 cells: (a) represen-
tative immunofluorescence images obtained through confocal microscopy of HepG2 cells treated
with CMveh and CMcin and subsequently treated or not with Mdivi-1, stained with MitoTracker
Orange (MTO, red) and an anti-mtHsp70 antibody (green); the ratio of MTO/mtHSP70 fluorescence
is shown in pseudo colors (right column of images); (b) quantification of the overall fluorescence
ratios between MTO mtHsp70; (c) quantification of the mean mitochondrial area; (d) quantification
of the average number of mitochondria per cell. Each dot represents an individual experiment (n = 4).
* p < 0.05 and ** p < 0.01 versus the control, # p < 0.05 versus CMcin, Friedman’s test, and Dunn’s
post-hoc test.
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We next investigated how Mdivi1 affects the mitochondrial bioenergetics of HepG2
treated with CMcin. We observed that while CMcin did not significantly alter baseline
respiration compared to CMveh, it decreased both non-ATP associated and maximal capacity
respiration rates, confirming mitochondrial dysfunction. In both cases, treatment with
Mdivi-1 reverted said changes (Figure 9a–c).
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Figure 9. Mdivi1 inhibits the mitochondrial bioenergetics alterations induced by CMcin on HepG2
cells: (a) quantification of baseline oxygen consumption rates of HepG2 cells treated with CMveh

or CMcin and subsequently treated or not with Mdivi-1; (b) quantification of non-ATP-associated
oxygen consumption rates of treated HepG2 cells; (c) quantification of maximal capacity oxygen
consumption rates of treated HepG2 cells. Each dot represents an individual experiment (n = 4).
* p < 0.05 versus the control, Friedman’s test, and Dunn’s post-hoc test.

Finally, we assessed whether mitochondrial fragmentation inhibition counteracts
CMcin-induced cell senescence, evaluated as cell cycle arrest and SASP in HepG2 cells. In-
deed, Mdivi-1 treatment prevented the decrease in Ki67 nuclear fluorescence (Figure 10a,b)
induced by CMcin, as well as the increase in IL-1β and CCL2 mRNA levels (Figure 11a,b).
Altogether, these results highlight the importance of mitochondrial fragmentation for the
progression of cell senescence induced by CaSR-activated pre-adipocytes.
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Figure 10. Inhibition of mitochondrial fission prevents the cell cycle arrest induced by CMcin in
HepG2 cells: (a) representative images of HepG2 cells exposed to the CMveh, CMcin, CMveh + Mdivi1,
and CMcin + Mdivi1. Hoechst (blue) was used to identify the nuclei and anti-Ki67 antibody (green)
to evaluate the nuclear localization of Ki67 (scale bar = 100 µm); (b) quantification of total Ki67
immunofluorescence. Each dot represents an individual experiment (n = 5). ** p < 0.01 versus the
control, Friedman’s test, and Dunn’s post-hoc test.
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Figure 11. Inhibition of mitochondrial fission prevents the increase in pro-inflammatory cytokines
induced by CMcin in HepG2 cells: relative abundance of (a) IL-1β and (b) CCL2 mRNA in HepG2 cells
exposed to CMcin, CMveh + Mdivi1, and CMcin + Mdivi1, expressed as fold from CMveh, represented
by the dotted line. mRNA levels were normalized to GAPDH mRNA. Each dot represents an
individual experiment (n = 5). * p < 0.01 versus the control, # p < 0.05 versus CMcin, and the Wilcoxon
signed rank test.
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3. Discussion

The present work evaluated whether CaSR activation in SW872 pre-adipocytes pro-
motes pro-inflammatory signaling that induces senescence and mitochondrial dysfunc-
tion in HepG2 cells. Our observations indicate that CaSR activation in the SW872 cell
line stimulated the production of factors that increased senescence, the production of
pro-inflammatory cytokines, cell cycle arrest, and mitochondrial dysfunction markers in
HepG2 cells.

In pre-adipocytes, CaSR activation has been shown to promote the secretion of the pro-
inflammatory cytokines TNF-α and IL-1β [10,11]. Elevated circulating TNF-α is associated
with an increase in cellular senescence markers, such as SA-β-GAL, p21, and p53 in the
liver and kidneys [37]. Our observations are consistent with other investigations where
TNF-α was able to increase SA-β-GAL [37]. Moreover, we also observed that removing
IL-1β prevented an increase in SA-β-GAL. Thus, our results highlight that both IL-1β
and TNF-α in the conditioned medium from CaSR-activated pre-adipocytes contribute to
cellular senescence development in the HepG2 cell line.

Studies in macrophages have shown that exposure to conditioned medium from senes-
cent pre-adipocytes increase p16 and p21 expression, which was attributed to the secretory
products that make up the SASP, such as TNF-α and CCL2 [38,39]. Other reports on human
vascular smooth muscle cell cultures have shown that IL-1β exposure increases p16 and p21
expression through a mechanism involving SIRT1 deregulation [40]. Decreased activation
of the SIRT1 metabolic pathway has been observed in models of aging and inflammation. In
rats, SIRT1 activation promoted mitochondrial biogenesis and the endogenous antioxidant
system through PGC1a and NRF2 activity on neuronal tissue [41]. A study in cells from the
nucleus pulposus showed that TNF-α promoted the cellular senescence markers SA-β-GAL
and p21, a change that was related to greater activity of NF-κB [42]. Unlike p16 and p21, in
our experiments we did not observe significant changes on p53, a protein that modulates
p21 expression. In relation to this, it has been described that p21 can be regulated in a
p53-independent manner through ERK1/2 and p38 MAPK [43].

It is well-accepted that the inflammatory activity of TNF-α and IL-1β initiates stress-
driven cellular senescence. The process begins with an increase in cellular senescence
markers such as SA-β-GAL and greater expression of pro-inflammatory cytokines and
chemoattractants such as IL-1β and CCL2 [44]. In this context, the increased expression of
IL-1β and CCL2 triggers the spread of inflammation and the attraction of immune cells,
which eliminate senescent cells [14,44,45].

Studies in animal models have shown that the low expression of OPA1 is related to
the increase in the pro-inflammatory cytokines TNF-α and IL-1β in the circulation [46].
In the liver of OPA1-deficient mice, the markers for cellular senescence, SA-β-GAL and
p21, were increased [46]. We observed low expression of PGC-1α in CMcin-treated HepG2
cells, which is consistent with results in mouse liver tissue showing that stimuli such as a
high-fat diet decreases PGC-1α expression and increases cellular senescence markers, such
as SASP [47]. Moreover, the low expression of PGC-1α is related to reduced protection
against oxidative stress and cellular senescence [48]. In the CMcin+cal treatment, MFN2
recovered its expression and DRP1 decreased compared to CMcin. Low expression of
MFN2 has been associated with increased fragmentation of the mitochondrial network and
lower membrane potential [49,50]. It has been reported that pro-inflammatory stimuli such
as TNF-α increase mitochondrial dysfunction markers such as the fragmentation of the
mitochondrial network [51].

In senescent cells, mitochondrial alterations such as fragmentation in the mitochondrial
network or loss in the ∆ψ are common features [52,53]. Our results coincide with those
reported in colon and melanocyte cell lines exposed to overexpression of TNF-α, which
decreased the ∆ψ and increased the fragmentation of the mitochondrial network. After
an early process of apoptosis, the remaining cells show mitochondrial dysfunction and
increased cytokine expression, which is associated with cellular senescence [53]. The
evidence on altered mitochondrial dynamics and cellular senescence is under discussion
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because the results may vary depending on the cell type under study [22,54]. Based on our
findings, we propose that the secretion products in CMcin affect mitochondrial morphology
through decreased expression of proteins that promote organelle biogenesis and fusion, as
well as increased fragmentation of the mitochondrial network. In addition, treated cells
presented an alteration in mitochondrial bioenergetics, showing a lower ∆ψ and lower
respiratory rate. These data suggest that CMcin damages the mitochondrial network, and
thus limits the biogenesis and bioenergetics of this organelle.

Losing mitochondrial network integrity favors the development of mitochondrial
dysfunction, and in our HepG2 cells treated with CMcin this indicator increased. In experi-
ments in HepG2 cells where Ki67 was pharmacologically reduced, Ki67 was recovered after
Mdivi-1 treatment [55]. Furthermore, in a rat model of ischemia, Mdivi-1 increased ∆ψ and
the authors attribute this behavior to the regulatory action of the reagent on mitophagy
mediated by PINK/Parking proteins [56]. It was also shown in LPS-exposed cardiomy-
ocytes that Mdivi-1 contributes to the recovery of ∆ψ [57]. The effects of Mdivi-1 on the
∆ψ regulation would be related to mitochondrial membrane integrity maintenance. Our
results show that Mdivi-1 inhibited the increase in IL-1β and CCL2 expression caused by
CMcin. Published studies in animal models exposed to amyloid β reveal that treatment
with Mdivi-1 protects hippocampal cells from increased expression of IL-1β, which changes
in mitochondrial dynamics, decreasing the MFN2 and OPA1 proteins [58]. In a cell model,
it has been observed that treatment with Mdivi-1 before LPS exposure impaired the increase
in pro-inflammatory cytokines such as IL-1β and CCL2 [59].

The present work addresses a line of research that innovates on the relationship be-
tween CaSR activation in pre-adipocytes and the development of the senescent phenotype
and mitochondrial dysfunction in hepatic cells. It highlights and supports previous re-
search on the importance of pre-adipocytes as potential promoters of deleterious effects in
other cell types, further evidencing the participation of mitochondrial dysfunction as a reg-
ulator of the senescent phenotype. Future studies should also include a wider use of CaSR
inhibition strategies such as the CaSR-negative modulator calhex 231 and possibly others,
and furthermore with CaSR gene downregulation via siRNA, in order to better understand
the involvement of this receptor in the observed effects. Further characterization of the
senescent phenotype would have been desirable, such as cell cycle analysis through flow
cytometry or chromatin remodeling or DNA damage via fluorescence microscopy. In addi-
tion, we did not explore other functional outcomes in senescent HepG2 cells, such as lipid
uptake or insulin signaling. Finally, this model of cellular communication can be used with
other cell types. Thus, the effects of conditioned media from CaSR-activated pre-adipocytes
can be assessed in smooth muscle or endothelial cells as a future research direction.

Our results indicate that inhibiting mitochondrial network fragmentation protects
HepG2 cells from changes related to CMcin exposure, seen in the recovery of ∆ψ and
the decreased expression of pro-inflammatory cytokines. In summary, the conditioned
medium from pre-adipocytes after CaSR activation promotes senescence and mitochondrial
dysfunction in hepatocytes. Our investigation provides evidence about the communication
between pre-adipocytes and liver cells mediated by CaSR activation, raising new questions
such as further pre-adipocyte conditioned medium characterization or the consequences of
CaSR activation at the organismal level on liver senescence phenotype and disease.

4. Materials and Methods
4.1. Cell Culture

A human liposarcoma-derived SW872 pre-adipose cell line (HTB-92, ATCC, Manassas,
VA, USA) was grown in DMEM/F12 medium. A human hepatocellular carcinoma-derived
HepG2 cell line (HB-8065, ATCC, Manassas, VA, USA) was cultured in MEM medium.
All media were supplemented with 10% fetal bovine serum and antibiotics (penicillin–
streptomycin) and the cells were maintained in a 37 ◦C 5% CO2 atmosphere. The medium
was changed for a fresh medium twice per week.
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4.2. SW872 Cells’ Conditioned Media Collection

SW872 cells were cultured at a 10,000 cells/cm2 density in 100 mm plastic culture
dishes. To obtain conditioned media, the cells were treated with either vehicle (DMSO) or
2 µM cinacalcet with or without 30 min of pre-incubation with the negative allosteric CaSR
modulator calhex-231 (10 µM). After 16 h, the media were replaced with fresh DMEM/F12
and conditioned for 24 h. The conditioned media were centrifuged at 800× g for 10 min at
4 ◦C and stored at −80 ◦C until use.

4.3. HepG2 Cells’ Exposure to Conditioned Media and Mdivi1

HepG2 cells were cultured at 9000 cells/cm2 density in culture dishes, according to
each experimental protocol. The cells were washed twice with PBS and the media were
replaced with fresh MEM media containing 50% of the conditioned media from SW872
cells. The HepG2 cells were then grown for 5 days under standard culture conditions,
replacing the media for fresh conditioned media after 3 days.

For treatment with Mdivi1, the cells were conditioned as described above, and during
the last 24 h of exposure they were treated with vehicle (DMSO) of 50 µM of Mdivi1.

4.4. Immunoprecipitation

IL-6, IL-1β, or TNF-α were immunoprecipitated from the CMcin. For that, 10 µg of
IL-6, IL-1β, or TNF-α antibodies (Table 1) were incubated with 200 µL of hydrated Protein
A-Sepharose CL-4B (17-0963-03, Sigma, St. Louis, MO, USA) for 16 h to obtain a solution
with the immobilized antibody. Then, the immobilized antibody solution was mixed with
1 mL of CMcin 12 h at 4 ◦C in a rotary mixer. The sample was then centrifuged at 3000× g
for 5 min at 4 ◦C. Supernatants were used to treat HepG2 cells and evaluate SA-β-GAL. To
analyze cytokine protein levels in the immunoprecipitate, the pellets were resuspended in
30 µL of Laemmli loading buffer and evaluated through Western blot analysis.

Table 1. Primary antibodies for Western blot analysis.

Antibody Code Manufacturer

Cell cycle markers

p16 ab108349 Abcam (Cambridge, UK)
p21 ab109520 Abcam (Cambridge, UK)

p53 #48818 Cell Signaling Technology
(Danvers, MA, USA)

Pro-inflammatory cytokines

TNF-α sc-1350 Santa Cruz Biotechnology (Dallas, TX, USA)
IL-1β sc-7884 Santa Cruz Biotechnology (Dallas, TX, USA)
IL-6 sc-283443 Santa Cruz Biotechnology (Dallas, TX, USA)

Mitochondrial dynamics

PGC-1α NBP1-04676 Novus Biologicals
(Centennial, CO, USA)

MNF2 #9482 Cell Signaling Technology
(Danvers, MA, USA)

DRP1 sc-271583 Santa Cruz Biotechnology (Dallas, TX, USA)
OPA1 ab157457 Abcam (Cambridge, UK)

Housekeeping

β-actin sc-47778 Santa Cruz Biotechnology (Dallas, TX, USA)

4.5. HepG2 SA-β-GAL Activity

The cells were cultured in 96-well plates and observed under an inverted phase con-
trast microscope before and after treatment for 5 days. Images were recorded with a Motic
AE2000 camera and Motic Images Plus 2.0 ML software (Motic, Vancouver, BC, Canada).
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The cultures were treated with the senescence-associated β-galactosidase staining kit (Cell
Signaling Technology, Danvers, MA, USA) following the manufacturer’s instructions. After
incubating overnight at 37 ◦C, the cells were examined by microscopy and the respec-
tive blue staining in positive cells was recorded. Next, the number of positive cells was
normalized by the total number of cells in the photograph to obtain an indicator of the
percentage of senescent cells in each experiment. Then, X-gal blue products were dissolved
with DMSO and the absorbance was measured at 630 mn [60].

4.6. RNA Isolation, Reverse Transcription, and mRNA Expression by RT-PCR

The cells were cultured in 6-well plates and after experimentation, Trizol (Invitrogen,
Life Technologies, Carlsbad, CA, USA) was used to lyse the HepG2 cells and isolate total
RNA following the manufacturer’s instructions. RNA was reverse-transcribed into com-
plementary DNA (cDNA) using a high-capacity cDNA reverse transcription kit (Applied
Biosystems, Foster City, CA, USA). The cDNA levels were analyzed with a step-one real-
time PCR system using the SYBR FAST qPCR kit (Applied Biosystems, Foster City, CA, USA)
and specific primers for: il-1β (forward: 5′ GGACAAGCTGAGGAAGATGC 3′; reverse: 5′

TCGTTATCCCATGTGTCGAA 3′, NM_000576), ccl2 (forward: 5′ TGTCCCAAAGAAGCT-
GTGATCT 3′; Reverse: 5′ GGAATCCTGAACCCACTTCTG 3′; NM_002982), and gapdh
(forward: 5′ GAAGGTGAAGGTCGGAGTCAAC 3′; reverse: 5′ CAGAGTTAAAAGCAGC-
CCTGGT 3′; NM_020). Thermal cycling consisted of an initial pre-incubation cycle of 20 s
at 95 ◦C, followed by 40 cycles of 30 s at 95 ◦C. The results were normalized for the gapdh
gene and relative mRNA levels were calculated using the Pfaffl method [61].

4.7. Protein Levels by Western Blot Analysis

The cells were cultured in 6-well plates and after experimentation, they were washed
three times with cold PBS and lysed with NP40 buffer (Invitrogen™, Carlsbad, CA, USA),
complete protease inhibitor (#11697498001, Sigma-Aldrich, St. Louis, MO, USA), and
PhosSTOP phosphatase inhibitor (#4906845001, Sigma-Aldrich, St. Louis, MO, USA). The
lysed cells were centrifuged at 12,000× g for 15 min and the supernatant was stored at
−80 ◦C until use. At concentrations of 1 µg/µL, the proteins were subjected to electrophore-
sis in SDS-polyacrylamide gels under denaturing conditions and were electrotransferred
to a 0.2 µm pore PVDF membrane. The membranes were then blocked with TBS 5% skim
milk 0.05% Tween 20 (#7949, Sigma, St. Louis, MO, USA).

The following proteins were detected after 16 h of incubation with the primary anti-
bodies: p16, p21, p53, PGC1α, MFN2, DRP1, OPA1, and β-actin (Table 1). The detection of
immune complexes was performed with the incubation of anti-rabbit IgG, anti-mouse IgG,
or anti-goat IgG peroxidase-conjugated secondary antibodies, depending on the origin of
each primary antibody (Table 2). The membranes were incubated for 1 min with chemi-
luminescence reagents (#20-500-500A and 20-500-500B, Biological Industries, Cromwell,
CT, USA), the digitized luminescent signal was detected in a LI-COR C-Digit scanner
3600 (LI-COR Biosciences, Lincoln, NE, USA), and the intensity of the bands was quantified
with the ImageJ program (National Institutes of Health, USA). The expression of each
protein was normalized by β-actin and expressed as arbitrary units.

Table 2. Secondary antibodies for Western blot analysis.

Antibody Code Manufacturer

Mouse IgG sc-516102 Santa Cruz (Dallas, TX, USA)
Rabbit IgG sc-2357 Santa Cruz (Dallas, TX, USA)
Goat IgG sc-2028 Santa Cruz (Dallas, TX, USA)

4.8. Immunofluorescence

The HepG2 cells were seeded in 12-well plates with 0.17 mm and treated as indicated.
For analysis of mitochondrial membrane potential, the cells were loaded with MitoTracker
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Orange 400 nM (M7510, Invitrogen™, Carlsbad, CA, USA) for 25 min at 37 ◦C. Then, the
culture medium was removed and the cells were washed twice with PBS. The cells were
fixed with 4% paraformaldehyde at 4 ◦C for 15 min. The fixation medium was removed
and washed twice with cold PBS. To permeabilize the cells, they were incubated with PBS
0.1% Triton X-100 for 10 min. After permeabilization, the cells were washed twice with cold
PBS and blocked with PBS 3% BSA for 1 h at room temperature. The samples were treated
with primary antibodies in PBS 3% BSA overnight at 4 ◦C in a humid chamber protected
from light.

The primary antibodies and their dilutions were: anti-Ki-67 (#9449, Cell Signaling,
proliferation marker) 1:400 or anti-mtHsp70 (MA3-028, Thermo Fisher Scientific, mito-
chondrial marker) 1:500, according to the assay. The next day, the coverslips were washed
twice with cold PBS to remove excess primary antibodies, and the samples were incubated
for 1 h with an Alexa Fluor 488 secondary antibody (A32723, Thermo Fisher Scientific,
Waltham, MA, USA) 1:600 in a chamber protected from light at room temperature. After
washing with PBS, the samples were incubated with the fluorescent probe Hoechst (B2261,
Merck (Rahway, NJ, USA), nucleus marker) 1:1000 diluted in PBS BSA 3% for 15 min at
room temperature in a chamber protected from light. The coverslips were then washed
twice with cold PBS to remove excess probes and mounted on a clean slide with Dako
fluorescence mounting medium (S3023, Dako-Agilent, Santa Clara, CA, USA). The samples
were stored at 4 ◦C protected from light until analysis.

4.9. Image Capture and Processing

Images were taken with a Zeiss LSM-5, Pascal 5 Axiovert 200 confocal microscope,
with a Plan-Apochromat 40×/1.5 Oil DIC objective, using 365 (for Hoechst), 488 (for Alexa
Fluor 488), and 555 nm (for MitoTracker Orange) excitation lasers. For each independent
experiment, it averaged the signal from 5 to 15 cells. The analysis was performed on 1 focal
plane corresponding to the equator of the cells. The pixel size was 68 nm, following the
Nyquist sampling criterion. The images thus obtained were deconvolved, the background
noise was subtracted, a median filter was applied, and fluorescence intensity was quantified
using the ImageJ software.

4.10. Oxygraphy

HepG2 cells were seeded in 60 mm dishes. After the 5 days of treatment, the cells
were trypsinized and resuspended in a Clark electrode chamber (Strathkelvin Instruments,
North Lanarkshire, Scotland) to quantify the oxygen consumption of living cells. Basal
respiration was measured for 5 min at 25 ◦C, then 10 µg/mL of oligomycin was added to
assess non-ATP-associated respiration for 5 min, followed by 200 nM CCCP to quantify
maximal respiration capacity for another 5 min. Then, the cells were recovered to quantify
total proteins using a BCA kit to normalize oxygen consumption rates.

4.11. Statistical Analysis

Data are shown as the mean ± the standard error of the mean (SEM). Differences
between conditions were evaluated with the non-parametric Friedman test and multiple
comparisons were made with the Dunn’s test. The Wilcoxon signed rank test was used
to detect differences in the results obtained through real-time PCR. A p value less than
0.05 was considered as a significant change, while p values less than 0.1 were considered
a trend.
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