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* Correspondence: pawand@poczta.onet.pl

Abstract: Periodontal disease (PD) is a complex and infectious illness that begins with a disruption
of bacterial homeostasis. This disease induces a host inflammatory response, leading to damage
of the soft and connective tooth-supporting tissues. Moreover, in advanced cases, it can contribute
to tooth loss. The aetiological factors of PDs have been widely researched, but the pathogenesis
of PD has still not been totally clarified. There are a number of factors that have an effect on the
aetiology and pathogenesis of PD. It is purported that microbiological, genetic susceptibility and
lifestyle can determine the development and severity of the disease. The human body’s defence
response to the accumulation of plaque and its enzymes is known to be a major factor for PD. The
oral cavity is colonised by a characteristic and complex microbiota that grows as diverse biofilms
on all mucosal and dental surfaces. The aim of this review was to provide the latest updates in the
literature regarding still-existing problems with PD and to highlight the role of the oral microbiome
in periodontal health and disease. Better awareness and knowledge of the causes of dysbiosis,
environmental risk factors and periodontal therapy can reduce the growing worldwide prevalence of
PDs. The promotion of good oral hygiene, limiting smoking, alcohol consumption and exposure to
stress and comprehensive treatment to decrease the pathogenicity of oral biofilm can help reduce
PD as well as other diseases. Evidence linking disorders of the oral microbiome to various systemic
diseases has increased the understanding of the importance of the oral microbiome in regulating
many processes in the human body and, thus, its impact on the development of many diseases.
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1. Introduction

Periodontitis is one of the most common infectious diseases [1], which affects 10–50%
of the global population, depending on its severity [2]. Gingivitis is a mild and reversible
form of periodontal disease (PD), and if not treated properly, this can progress to periodon-
titis [3]. PD is a complex and infectious illness that begins with the disruption of bacterial
homeostasis. This disease induces a host inflammatory response, leading to damage to the
soft and connective tooth-supporting tissues [4–6]. Moreover, in advanced cases, it can
contribute to tooth loss [7]. The aetiological factors of PDs have been widely researched, but
the pathogenesis of PD has still not been totally clarified. There are a number of factors that
have an effect on the aetiology and pathogenesis of PD. It is purported that microbiological,
genetic susceptibility and lifestyle can determine the development and severity of the
disease [8,9]. The human body’s defence response to the accumulation of plaque and its
enzymes is known to be a major factor for PD [10]. Microbial plaque is a biofilm that
forms on the teeth and gingiva and is one of the crucial causes of PD [11]. There are other
individual risk factors contributing to PD such as obesity, poor oral hygiene, stress, a diet
low in vitamins C and D and tobacco use [6,10,12–14]. The interplay between cigarette
smoking and PD has been analysed in numerous studies, suggesting that smoking is a sig-
nificant environmental risk factor for PD. One component of cigarette smoke, nicotine, can
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be related to changing clinical aspects and development [6,13]. Additionally, many studies
noticed that PD has an impact on the progression of various systemic diseases such as osteo-
porosis, atherosclerosis, diabetes, cardiovascular diseases and ischemic cardiomyopathy, all
of which may aggravate the disease [15,16]. Moreover, other studies revealed the opposite
situation, showing that systemic disease can exacerbate PD. In addition, taking medica-
tions such as steroids, anti-epilepsy drugs and cancer therapy drugs can also increase PD.
Susceptibility to this disorder is connected to the triggering of host antibacterial defence
mechanisms [17]. Numerous studies have indicated the association between genetic factors
with PD. Cytokines and their genetic polymorphisms influence susceptibility to this disease
and its severity. Nevertheless, Nibali et al. presented interesting results of their work,
with the inheritance of periodontitis being assessed as OR 0.38 (95% CI, 0.34–0.43) in twin
studies and OR 0.15 (95% CI, 0.06–0.24) in other family research [18]. It was observed that
changes in the oral microbiome composition naturally increase with age [19], which may be
related to the greater susceptibility of the elderly to chronic periodontitis [20]. Periodontal
disorders intensify problems with chewing, the function of speech and aesthetics, which
definitely worsen the quality of life [19].

A new model of the pathogenesis of periodontal disorders assumes that the disease
involves a more diverse microflora associated with periodontitis than previously thought.
The disease is caused by the synergy of multiple microbes and dysbiosis, which disrupt
the ecologically balanced biofilm associated with periodontal homeostasis and are not
the result of individual pathogens [21]. Under healthy conditions, the oral microbiome
exhibits a well-balanced, dynamic ecosystem [22]. Dysbiosis of the oral microbiome means
an imbalance in relative abundance or an impact on microbial species, which contribute to
the disease development of susceptible patients [23].

2. Microbiome in the Oral Health

The term “microbiome” was created by Joshua Lederberg and refers to the community
of symbiotic, commensal and pathogenic microorganisms [24]. The composition and inter-
actions of any microbiome contribute to overall health, being a key factor in oral health [25].
The oral cavity is colonised by a characteristic and complex microbiota that grows as diverse
biofilms on all mucosal and dental surfaces [26]. There are more than 700 species of bacteria,
fungi, viruses, archaeobacteria and protozoa in the oral cavity [20]. Bacteria are the most
well-researched microorganisms in the oral cavity [27], but only 57% of bacterial species in
the oral cavity have been officially named [28]. In health, oral microflora mainly consists of
facultative anaerobic Gram-positive bacteria [29]. The oral fungal microbiome (mycobiome)
is a significant component of the oral microbiome. The Candida genus is present in about
25–75% of healthy individuals as a commensal organism [30]. Candida albicans is one of
the most crucial, prevalent fungal species. Under certain, favourable conditions, Candida
species, as opportunistic pathogens, can cause infections of the oral mucosa [31]. The
oral microbiota usually live in harmony with the host and provide important benefits that
contribute to overall health. The microorganisms in oral biofilms do not exist as single cells
but live in close proximity to one another [27]. The microbial interactions can be synergistic
or antagonistic [32,33]. Moreover, the oral environment has an impact on the composition
of the microbiome. If some changes in local conditions occur, they can influence interactions
between microorganisms in the mouth and increase the risk of PD. The composition of
the oral microbiome has been widely explored by using metagenomics and metatranscrip-
tomics [2]. Using these methods, Belstrøm et al. observed the transcriptional activity of
prevalent Streptococcus species under healthy conditions and periodontitis. The researchers
discovered that the transcriptional activity of Streptococcus species was higher in health and
reduced in PD [34]. Of particular note, Streptococcus species are Gram-positive, aerobic to
facultatively anaerobic bacteria that are part of the normal flora of the oral cavity. In health,
new species of Streptococcus dentisani and Streptococcus salivarius, which have potential
probiotic features, are associated with the treatment of miscellaneous oral diseases such as
periodontal disorders, among others [35–37].
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Recently, there has been growing interest in the use of probiotics to treat PDs. Probiotics
are defined as “living microorganisms that can have a beneficial effect on the host when taken
in sufficient doses” [38]. Their function is to regulate host immune function, restore balance
and maintain homeostasis in the mouth [3]. Good results of probiotics in improving oral
health have been noticed not only in periodontal disorders [39] but also in dental caries [40],
Candida infection [41] and halitosis [42]. The genus Lactobacillus is well known as a health-
promoting probiotic in periodontal therapy. Bifidobacterium, Streptococcus and Weissella are also
known probiotics, which play a positive role in oral care. Other species such as Bacillus subtilis
and Saccharomyces cerevisiae also have a good impact on the oral cavity [3]. In addition,
some strains of bacteria isolated from the oral cavity have been produced commercially as
probiotics, including Lactobacillus reuteri, Lactobacillus brevis and Streptococcus salivarius [25,43].
Kawai et al. [44] suggested that Limosilactobacillus (Lactobacillus) fermentum ALAL020 may be
a future probiotic candidate. This bacterium produces a cyclic dipeptide with antibacterial
activity against Porphyromonas gingivalis and Prevotella intermedia [44]. Currently, the beneficial
effects of synbiotics on health are of great interest to scientific research. Synbiotics are defined
as “a mixture comprising live microorganisms and substrate(s) selectively utilized by host
microorganisms that confers a health benefit on the host” [43]. It has been observed that
administering a synbiotic in combination with probiotics can help prevent and treat certain
metabolic disorders. However, there is little evidence for this [45]. Duraisamy et al. noticed
that synbiotics can diminish Streptococcus mutans levels in children’s saliva but are less effective
compared to probiotics [46].

3. Oral Microbiome in Periodontal Diseases

The triad of oral anaerobic bacteria, the so-called “red complex” (Porphyromonas gingivalis,
Treponema denticola and Tannerella forsythia), have historically been considered as the basic
infectious organisms associated with periodontitis [27]. However, this has been identified
in culture-based studies, and many of the wide variety of bacteria present in samples were
overlooked [47]. Nevertheless, only a few bacteria, namely P. gingivalis, Aggregatibacter actino-
mycetemcomitans, Tannerella forsythia, Prevotella intermedia and Fusobacterium nucleatum, were
confirmed to initiate and progress PDs [48]. In addition, Candida albicans is one of the most
crucial fungal residents of the oral microbiome. This commensal coloniser protects P. gingivalis
from being recognised by the host’s immune cells and can contribute to bacterial infections
of the gums [29]. Contemporary periodontology concentrates not only on the pathogenicity
of dental plaque but also on the interplay between oral microorganisms and the host [3].
Microflora perturbances then lead to gingivitis and, eventually, periodontitis. Factors such
as the availability of oxygen, nutrients and changes in pH may contribute to disorders in
homeostasis in the oral cavity as well as systemic diseases [47,49]. Modification in the oral
microbiome can lead to the expansion of microorganisms and provides excellent conditions for
the growth of opportunistic microbes [10]. In addition, perturbations in the periodontal micro-
biota are associated with an alteration from a symbiotic to dysbiotic microbial community. The
symbiotic structure includes facultative bacteria such as Actinomyces and Streptococcus, which
then shifts to mainly anaerobic types (such as the phyla Firmicutes, Proteobacteria, Spirochaetes,
Bacteroidetes and Synergistetes) [48]. The transition of microbial composition precedes the
clinical symptoms of PD [50]. It is widely known that factors such as residing microorganisms,
age, general health, lifestyle, and nutritional status have an impact on oral health [50].

In approximately 90% of cases of PD, halitosis (malodour) can be noticed in the
mouth [51]. Halitosis is mainly caused by P. gingivalis, T. denticola, Fusobacterium and
T. forsythia, the same species that have been associated with PD. The process of bacterial
degradation of sulphur-containing amino acids into volatile gases leads to oral malodour.
Halitosis is caused by the biodegradation of sulphur-containing amino acids and the
production of volatile sulphur compounds [52]. Moreover, poor oral hygiene, bacterial
coating of the tongue and periodontal disorders such as gingivitis, periodontitis and caries
can contribute to halitosis [53]. Malodour can also be affected by dietary habits, such
as smoking, alcohol consumption, obesity, diabetes, stress and advanced age [54–56]. In
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addition, risk factors such as age and tooth decay can also lead to malodour in children [57],
but it is difficult to distinguish between oral bacteria that cause odour in adolescents. Three
types of bacteria including Fusobacterium, Veillonella and Prevotella are dominant in children
with halitosis [56]. A noteworthy finding observed by Wu et al. is that the oral microbiome
was altered, and more abundant species were present among obese people suffering from
malodour compared to healthy persons [58]. Tobacco use has a similar effect and may also
alter the diversity of the oral microflora. Yitzhaki et al. observed the relationships between
patients wearing dentures and halitosis [59]. The researcher noticed higher bacterial
diversity in the oral microflora among patients with halitosis wearing dentures, observing
meaningful differences from the control group. There were bacterial taxa, including 117
species, 29 genera (mainly Leptotrichia, Megasphaera, Atopobium and others) and 9 phyla
(Fusobacteria, Firmicutes) detected [59]. An important research finding was that Candida
species accounted for the largest percentage of microbes among smokers with halitosis [56].
Zhang et al. suggested that halitosis can be detected long before clinical symptoms appear
as a result of changes in the microbiome of the tongue coating. Nevertheless, alterations in
the tongue coating microbiome can be used as biomarkers of an early stage of halitosis and
can help find better strategies for the diagnosis, prognosis and treatment [60]. Although
periodontitis is associated with a variety of microorganisms, Fusobacterium nucleatum is a
known, predominant periodontal pathogen that can influence other bacteria and form an
inflammatory microenvironment. In addition, F. nucleatum may modulate and enhance the
invasive potential of P. gingivalis [61]. Thus, it can promote and accelerate the development
of periodontitis. Moreover, Fusobacterium nucleatum can cause local halitosis and pulp
infections and may systemically promote the development or progression of oral cancer
and other extraoral diseases [62]. Kang et al. [63] explored and identified three types of
Weissella cibaria from human saliva, which produce hydrogen peroxides. These isolates
can inhibit volatile sulphur compounds formed by F. nucleatum. In addition, W. cibaria
can block the production of interleukin-6 and interleukin-8 by oral epithelial cells caused
by F. nucleatum. Suzuki et al. [64] showed that Lactobacillus saliva WB21 buccal tablets can
specifically reduce the amount of F. nucleatum in patients with halitosis. This means that
the use of W. cibaria and Lactobacillus saliva WB21 as probiotics can be a beneficial method
of combating bad breath and controlling PD [62,64].

Subgingival communities of microbes, including fungi, archaea and viruses, can lead
to periodontitis-related dysbiosis [8]. The microbial communities are responsible for the
pathological processes that have an impact on the periodontium. Although alterations in
the composition and function of subgingival bacteria have been extensively explored, how
the succession of microorganisms and the transformation of health into disease proceeds is
still not fully understood. Periodontal health is frequently defined as opposite to PD, in the
absence of any clinical symptoms of disorder [65]. The development of the oral microflora
is known to involve interactions between the host’s genetics and the host’s immune system,
and changes in the composition of the microbiome depend on exposure to environmental
factors [10].

During periodontal health, the health-associated species dominate the local micro-
biome. The development of gingivitis or PD is associated with increased biomass and the
appearance of pathogenic species. The further progression of the disease is characterized by
a shift in the microbiome balance into PD-associated pathogens. Alterations in composition
and species diversity may lead to the identification of potential biomarkers in the diagnosis
of PDs [55]. In addition, biomarkers in saliva may reflect various conditions in the oral
cavity connected with periodontitis. Saliva easily collects and can show the condition of
the entire mouth. For example, nitric oxide (NO) is known as a biological marker, which
is related to the aetiopathogenesis of oral diseases [66]. Reher et al. observed increased
levels of NO in patients with periodontal disorders in comparison to healthy people [67].
Furthermore, it was noticed that the level of NO was correlated with periodontitis severity.
The researcher also suggested that the levels of NO were linked with the deterioration
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of periodontal parameters such as probing depth and were the result of an inflammatory
response induced by bacteria.

4. Oral Microbiome in Systemic Diseases

Under different conditions, bacterial flora has the ability to change the balance between
health and sickness, both locally and systemically. Microorganisms present in the mouth
interact with themselves and with the host in illness and health [68]. The oral cavity is
the entry point and direct way to the lungs and the digestive system, so the microbiomes
of these structures are interconnected across the human body. That explains why the
oral microbiome is associated with many systemic diseases [47]. Homeostasis disorders
due to food habits and poor oral hygiene not only lead to oral diseases such as caries or
periodontal problems but also to other systemic diseases and cancers. The direct route
and good access of the oral microbiome to the respiratory system explain the link between
oral disorders and lung diseases, such as respiratory tract infection, bacterial pneumonia,
chronic obstructive pulmonary disease (COPD) and cystic fibrosis [69].

Previous studies have shown that disturbances in the oral microbiome can lead to
abnormalities in the airway microbiome, which can cause an abnormal local immune response
and chronic inflammation in the airways and the onset of chronic obstructive pulmonary
disease (COPD) [70]. The inflammatory process caused by bacterial infection leads to impaired
lung defence mechanisms, contributing to progressive lung damage and the loss of lung
function, which is characteristic of COPD [71]. In COPD, there is a higher incidence of
bacterial colonization by potential respiratory pathogens, such as Pseudomonas aeruginosa and
bacteria of the genus Actinomyces [72].

Pseudomonas aeruginosa is an important pathogen in cystic fibrosis patients. Whiley et al.
have found that in vitro Streptococcus species could modulate the production of virulence
factors (elastase and pyocyanin) by P. aeruginosa [73]. It has also been shown that the
pathogenicity of P. aeruginosa can be inhibited by S. oralis through the production of hydro-
gen peroxide (H2O2) [74].

Furthermore, Haran et al. presented intriguing findings that the dysbiosis of the
oral microbiome may affect the duration of COVID-19 symptoms [75]. Prevotella species
have been found in abundance in COVID-19 patients. Furthermore, these species are
considered to produce proteins that can contribute to SARS-CoV-2 infection and may
aggravate COVID-19 [76]. Veillonella strains are also capable of eliciting inflammatory
responses. This genus induces IL-6 (Interleukin-6) [77], whereas Prevotella species activate
TLR-2 and the expression of IL-23 and IL-1 [78].

Studies in recent years have shown that bacteria produce a number of compounds that
cause the development of systemic inflammatory responses that impair the blood–brain
barrier (BBB), exacerbating neuroinflammation and ultimately neurodegeneration [79–81].
The microbiota produces a number of neuromediators such as serotonin, kynurenine,
melatonin, GABA (gamma-aminobutyric acid), tryptophan, catecholamines, histamine
and acetylcholine [82,83]. Abnormalities in the serotonin and kynurenine pathway of
tryptophan metabolism have been detected in patients with neurodegenerative diseases
including Alzheimer’s disease (AD) [84]. Dysregulation of the kynurenine pathway of tryp-
tophan metabolism may be one of the main factors contributing to AD development [85,86].
Other metabolites produced by the microbiota that can affect brain function and blood–
brain barrier permeability are short-chain fatty acids (SCFAs): acetate, butyrate and propi-
onate [87,88]. SCFAs can affect transmission processes in the central nervous system and
thus regulate cognitive function. LPS and amyloids secreted by bacteria are involved in
the process of neurodegeneration [89,90]. Many bacterial species produce extracellular
amyloid fibres to form a biofilm [91]. Bacterial and brain amyloids are biologically similar
in structure, composition and physicochemical characteristics [90]. Previous studies have
shown that secretory products from the microbiome exert strong pro-inflammatory effects
by activating complement and other components of the immune response, leading to an
increased synthesis of pro-inflammatory cytokines and the development of neuroinflamma-



Int. J. Mol. Sci. 2023, 24, 5231 6 of 16

tion in the brain [92,93]. This intensifies amyloid aggregation and inflammatory responses.
Both bacterial amyloid proteins and LPS are potent activators of the chronic inflammation
in the cerebral rim observed in AD patients [94]. Dominy et al. [95] observed a correlation
between P. gingivalis and the progression of Alzheimer’s disease. The presence of this
bacterium was noticed in the brain of AD patients. During studies in mice, it was also
discovered that the infection of P. gingivalis led to brain colonisation and the growth of
components of amyloid plaques. Nevertheless, P. gingivalis produces neurotoxic gingi-
pain proteases, which inhibit tau function (a hallmark of AD). This means that gingipain
inhibitors could be used to treat neurodegeneration in AD. Furthermore, oral species of
the phylum Spirochaetes also form amyloid plaques and play a role in the progression of
dementia in AD. In addition, these organisms avoid host defence and create more atypical,
resistant forms and biofilms, which contribute to the maintenance of chronic infection and
higher resistance to treatment [96] (Figure 1, Tables 1 and 2).
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Table 1. The associations between oral bacteria and diseases.

General Diseases Bacteria References

Respiratory tract infection
Chronic obstructive pulmonary disease Cystic fibrosis

Porphyromonas gingivalis
Aggregatibacter actinomycetemcomitans

Fusobacterium nucleatum
Chlamydia pneumoniae

[69–73]

Alzheimer’s disease

Prevotella intermedia
Tannerella forsythia

Aggregatibacter actinomycetemcomitans
Porphyromonas gingivalis
Fusobacterium nucleatum

[79–93]

Cardiovascular diseases
(atherosclerosis/coronary diseases)

Porphyromonas gingivalis
Treponema denticola

Aggregatibacter actinomycetemcomitans
Prevotella intermedia
Tannerella forsythia

[97–106]

Diabetes and insulin resistance
Porphyromonas gingivalis

Aggregatibacter actinomycetemcomitans
Fusobacterium nucleatum

[107–110]

Rheumatoid arthritis Porphyromonas gingivalis
Aggregatibacter actinomycetemcomitans. [111–125]

Pancreatic cancer
Colorectal carcinoma

Neisseria elongata
Granulicatella adiacens

Porphyromonas gingivalis
Fusobacterium nucleatum

[126–130]

The potential impact of periodontal infection on cardiovascular diseases has been the
subject of much research [97,98]. Teles et al. undertook the challenge of explaining possible
associations with an increased risk of cardiovascular diseases and periodontal disorders.
However, this process is still poorly clarified [99]. Much is known about individual pathogens
connected with periodontitis, rather than the mechanisms describing the association between
PDs and cardiovascular disease. It has been shown that a number of compounds produced
by the microbiome can enhance the development of atherosclerotic lesions in the vessels.
Such compounds include trimethylamine (TMA), which is oxidized by monooxygenase to
TMAO (Trimethylamine N-oxide) [100]. TMAO enhances foam cell formation and increases
VCAM-1 (Vascular cell adhesion molecule-1) expression, which enhances monocyte adhesion
to the endothelium [101]. There is also the activation of the protein kinase C (PKC) and
nuclear factor-κB (NF-κB) pathway, which disrupts endothelial cell function and results in
the development of atherosclerotic lesions [102,103]. Proatherogenic effects are also exhibited
by SCFAs, which affect the processes of chemotaxis and phagocytosis, induce the formation
of reactive oxygen species and activate monocytes and macrophages [104,105]. Another
component that exacerbates atherogenesis may be LPS present on the cell membrane of
bacteria. LPS increases the expression of chemokines and adhesion molecules, enhances the
formation of foam cells and increases the adhesion of monocytes to endothelial cells [106]. In
addition, LPS can also bind to toll-like receptor 4 (TLR4) on the surface of immunocompetent
cells and induce the secretion of pro-inflammatory cytokines (TNF, IL-6) [105]. This leads to
the development of inflammation in the vessels and the formation of atherosclerotic plaque,
affecting its stability (Figure 2, Table 2).
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Table 2. The involvement of oral microbiome dysbiosis in the development of diseases.

General Diseases Mechanisms References

Atherosclerosis and coronary artery disease

LPS induces the expression of chemokines and cell adhesion molecules
Increased production of trimethylamine
Increased foam cell generation
Promoting monocyte adherence by up-regulating the level of vascular cell
adhesion molecule-1 (VCAM-1)
Activation of the protein kinase C (PKC) and nuclear factor-κB
(NF-κB) pathways
Damage to endothelial cells
Disturbances in mitochondrial repair and myocardial metabolism
Disturbances in bile acid circulation
Disturbances in cholesterol and lipid metabolism
Enhanced synthesis of pro-inflammatory cytokines
Inflammatory response in endothelium
Promotion of atherosclerotic plaque formation
Plaque instability

[97–106]

Alzheimer’s disease

Dysregulation of the synthesis of neuromediators: serotonin, kynurenine,
melatonin, GABA, catecholamines, histamine and acetylcholine
Dysregulation of kynurenine route in tryptophan pathway
Short-chain fatty acids (SCFAs), (acetate, butyrate and propionate) modulate
peripheral and central nervous system function
Increased permeability of intestinal barriers
Blood–brain barrier dysfunction
Increased penetration of products derived from microbial gut from the blood
into the brain
Gut–brain axis dysregulation
Increased synthesis of LPS and amyloids
Activation of complement, innate immunity, pro-inflammatory cytokines, the
receptor for advanced glycation end-products (RAGE) and TLRs.
Chronic neuroinflammation and neurodegeneration

[79–93]

Diabetes and insulin resistance

Short-chain fatty acids act on parasympathetic activity to increase food intake
Stimulation of TLR-4 by bacterial LPS induces inflammatory response
Disturbances in bile acid circulation
Disturbances in cholesterol and lipid metabolism
Enhanced synthesis of pro-inflammatory cytokines
Chronic systemic inflammation
Enhanced oxidative stress
Insulin resistance

[107–110]

Rheumatoid arthritis

Induction of anti-CCP antibodies
Hypercitrullination in neutrophils
Increased production of IL-17
Formation of Th17 cells

[111–125]

Colorectal carcinoma

Dysfunction in mucosal homeostasis
Dysfunction in the gut epithelial barrier
Increased intestinal permeability
Increased synthesis of pro-inflammatory cytokines
Increased cellular proliferation
Changes in β-catenin and Wnt signalling

[126–130]

In addition, the microbiome has been shown to affect lipid and carbohydrate metabolism.
It has been shown that SCFAs can modulate pancreatic β-cell function and insulin production,
contributing to the development of diabetes [106]. SCFAs stimulate parasympathetic nervous
system functions to increase food intake [107]. Products of the microbiome can also cause
disturbances in bile acid circulation [108]. Microbiome dysbiosis may also stimulate chronic
systemic inflammation and enhance oxidative stress, leading to insulin resistance and the
development of diabetes [109] (Figure 3, Table 2).

Xiao et al. presented the interplay between the oral microbiome, diabetes and PDs [110].
The researcher observed that the pro-inflammatory cytokine IL-17 is associated with periodon-
titis and that its inhibition has an impact on the pathogenicity of the diabetic microbiome.
Moreover, diabetes exacerbates periodontitis, while periodontitis causes a pathogenic alter-
ation in the microbiome. This biome change contributes to the susceptibility and severity of
PD. Treatment with anti-IL-17 antibodies may alleviate symptoms.
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Recent studies have shown that periodontal disease is correlated with an increased risk
of rheumatoid arthritis (RA) in humans and in mouse models of arthritis [111]. Rheumatoid
arthritis is a systemic inflammatory disease that leads to joint destruction. The pathogenesis
of this disease has been shown to be complex, with both genetic and environmental factors
involved in its development. One of the environmental factors involved in the development
of RA has been shown to be the microbiome [112]. Studies in recent years have shown
a higher incidence of RA in patients with periodontal disease [113,114]. In addition, it
has been shown that the severity of periodontal disease correlates with the activity of the
disease process in RA patients and that treating the symptoms of periodontal disease results
in the alleviation of RA symptoms [115,116]. These data suggest that bacteria associated
with the development of periodontal disease may be involved in the pathogenesis of RA.
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One of the main bacteria involved in the development of periodontal disease is
Porphyromonas gingivalis. It has been shown that this bacterium can induce the formation of
anti-CCP antibodies in RA patients [117–120]. In addition, Porphyromonas gingivalis can en-
hance the production of IL-17, a cytokine that plays an important role in the development of
inflammation in RA [121]. Porphyromonas gingivalis was also found to enhance the formation
of Th17 cells involved in the pathogenesis of RA [121]. Another bacterium that is thought
to be associated with the pathogenesis of RA is Aggregatibacter actinomycetemcomitans. This
bacterium has been shown to induce the formation of citrullinated autoantigens, which
play a key role in the development of RA [122,123]. Konig et al. showed that leukotoxin-
A produced by A. actinomycetemcomitans enhances hypercitrullination in neutrophils, an
important element in the development of a pathological immune response in RA [124].
In addition, antibodies to A. actinomycetemcomitans and leukotoxin-A have been found in
RA patients [125]. In conclusion, periodontal bacteria such as Porphyromonas gingivalis
and Aggregatibacter actinomycetemcomitans may be involved in the development of RA by
contributing to the production of autoantibodies and the process of autoimmunity. Fur-
ther research is needed on the involvement of the microbiome in the pathogenesis of RA
(Tables 1 and 2, Figure 4).
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The oral microbiome plays a significant role not only in maintaining oral health
but also in maintaining balance throughout the body. Many studies presented findings
showing that the dysbiosis of oral microbiota may also contribute to the development
of cancers [126,127]. Farrell et al. [128] noticed reduced levels of Neisseria elongata and
Streptococcus mitis in the salivary microbiome in patients with pancreatic cancer compared
to healthy individuals, while the levels of Granulicatella adiacens were significantly higher
in patients with pancreatic cancer. Previous studies have also shown that the dysbiosis
of the oral microbiome may be involved in the development of colorectal cancer. The
disturbances in the oral microbiome may cause dysfunction in the gut epithelial barrier,
increased intestinal permeability, increased synthesis of pro-inflammatory cytokines, in-
creased cellular proliferation, as well as changes in β-catenin and Wnt signalling, leading
to enhanced carcinogenesis [129,130] (Tables 1 and 2, Figure 5).
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5. Conclusions

Previous studies highlight the role of the oral microbiome in periodontal health and
disease. Greater awareness and knowledge of the causes of dysbiosis, environmental risk
factors and periodontal therapy can reduce the increasing prevalence of PD worldwide.
The promotion of proper oral hygiene, a reduction in smoking, alcohol consumption and
exposure to stress and comprehensive treatment to reduce the pathogenicity of the oral biofilm
can help reduce the incidence of PD. Recent research on the human microbiome has led to
increased interest in the oral microbiome and its impact on the normal course of oral processes
and the development of disease states, including many systemic diseases. Evidence linking
the relationship between disorders of the oral microbiome and various systemic diseases
has increased awareness of the importance of the oral microbiome in regulating numerous
processes in the human body and, thus, its impact on the development of many diseases.
Full knowledge of the role of the oral microbiome in health and the development of disease
processes can contribute to the prevention and treatment of diseases.
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