Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy
Abstract
:1. Introduction
2. Generation of a Global Molecular Network for Epilepsy
3. Discussion of Identified Pathways
3.1. Mitochondrial and Metabolic Genes
3.2. The mTOR Signaling Pathway
3.3. Transcription Factors and Chromatin Remodeling Genes
3.4. Cytoskeleton and Cell Division
3.5. Some Other Potential Novel Epilepsy-Associated Genes
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Carpintero Abad, R.; Sanmarti Vilaplana, F.X.; Serratosa Fernandez, J.M. Genetic causes of epilepsy. Neurologist 2007, 13 (Suppl. 1), S47–S51. [Google Scholar] [CrossRef]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Moshe, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet 2015, 385, 884–898. [Google Scholar] [CrossRef]
- Myers, K.A.; Johnstone, D.L.; Dyment, D.A. Epilepsy genetics: Current knowledge, applications, and future directions. Clin. Genet. 2019, 95, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, Z.J.; Liu, L.; Xu, H.Q.; Shi, Y.W.; Yi, Y.H.; He, N.; Liao, W.P. Epilepsy-associated genes. Seizure 2017, 44, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, N.S.; Ko, A.; Kim, W.K.; Kim, S.H.; Kim, J.S.; Shim, K.W.; Aronica, E.; Mijnsbergen, C.; Spliet, W.G.M.; Koh, H.Y.; et al. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 2019, 138, 901–912. [Google Scholar] [CrossRef]
- Ribierre, T.; Deleuze, C.; Bacq, A.; Baldassari, S.; Marsan, E.; Chipaux, M.; Muraca, G.; Roussel, D.; Navarro, V.; Leguern, E.; et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J. Clin. Investig. 2018, 128, 2452–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrini, R.; Cavallin, M.; Pippucci, T.; Rosati, A.; Bisulli, F.; Dimartino, P.; Barba, C.; Garbelli, R.; Buccoliero, A.M.; Tassi, L.; et al. Is Focal Cortical Dysplasia/Epilepsy Caused by Somatic MTOR Mutations Always a Unilateral Disorder? Neurol. Genet. 2021, 7, e540. [Google Scholar] [CrossRef]
- Zhou, P.; He, N.; Zhang, J.W.; Lin, Z.J.; Wang, J.; Yan, L.M.; Meng, H.; Tang, B.; Li, B.M.; Liu, X.R.; et al. Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav. 2018, 17, e12456. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef] [Green Version]
- Baldassari, S.; Licchetta, L.; Tinuper, P.; Bisulli, F.; Pippucci, T. GATOR1 complex: The common genetic actor in focal epilepsies. J. Med. Genet. 2016, 53, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Neri, S.; Mastroianni, G.; Gardella, E.; Aguglia, U.; Rubboli, G. Epilepsy in neurodegenerative diseases. Epileptic Disord. 2022, 24, 249–273. [Google Scholar] [CrossRef]
- Thakor, B.; Jagtap, S.A.; Joshi, A. Juvenile Huntington’s disease masquerading as progressive myoclonus epilepsy. Epilepsy Behav. Rep. 2021, 16, 100470. [Google Scholar] [CrossRef]
- Bedner, P.; Steinhauser, C. Altered Kir and gap junction channels in temporal lobe epilepsy. Neurochem. Int. 2013, 63, 682–687. [Google Scholar] [CrossRef]
- Steinhauser, C.; Seifert, G.; Bedner, P. Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 2012, 60, 1192–1202. [Google Scholar] [CrossRef]
- Kim, Y.S.; Choi, J.; Yoon, B.E. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020, 9, 2176. [Google Scholar] [CrossRef] [PubMed]
- Szelenyi, Z. Neuroglia: Possible role in thermogenesis and body temperature control. Med. Hypotheses 1998, 50, 191–197. [Google Scholar] [CrossRef]
- Kang, H.C.; Lee, Y.M.; Kim, H.D. Mitochondrial disease and epilepsy. Brain Dev. 2013, 35, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 2012, 54, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Tang, P.; Sun, Z.; Zhang, R.; Zhu, D.; He, J.; Liao, J.; Wan, Q.; Shen, J. miR-210 in Exosomes Derived from Macrophages under High Glucose Promotes Mouse Diabetic Obesity Pathogenesis by Suppressing NDUFA4 Expression. J. Diabetes Res. 2020, 2020, 6894684. [Google Scholar] [CrossRef] [Green Version]
- Cukovic, D.; Bagla, S.; Ukasik, D.; Stemmer, P.M.; Jena, B.P.; Naik, A.R.; Sood, S.; Asano, E.; Luat, A.; Chugani, D.C.; et al. Exosomes in Epilepsy of Tuberous Sclerosis Complex: Carriers of Pro-Inflammatory MicroRNAs. Noncoding RNA 2021, 7, 40. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Ning, Y.; Zheng, H.; Zhan, Y.; Wang, H.; Yang, Y.; Luo, J.; Wen, Q.; Zang, H.; et al. Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell Death Dis. 2022, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh Valilou, S.; Karimzad Hagh, J.; Salimi Asl, M.; Abdi Rad, I.; Edizadeh, M.; Pooladi, A. A novel biallelic LMNB2 variant in a patient with progressive myoclonus epilepsy and ataxia: A case of laminopathy. Clin. Case Rep. 2021, 9, e04520. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.H.; Jiang, T.; Yin, H.; Song, H.; Zhang, Y.; Geng, H.; Shi, P.C.; Xu, Y.X.; Gao, H.; Liu, L.Y.; et al. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression. Cell Death Dis. 2021, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Hato, M.; Takegawa, Y.; Deguchi, K.; Ito, H.; Takahata, M.; Iwasaki, N.; Minami, A.; Nishimura, S. Detection of altered N-glycan profiles in whole serum from rheumatoid arthritis patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 853, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bermingham, M.L.; Colombo, M.; McGurnaghan, S.J.; Blackbourn, L.A.K.; Vuckovic, F.; Pucic Bakovic, M.; Trbojevic-Akmacic, I.; Lauc, G.; Agakov, F.; Agakova, A.S.; et al. N-Glycan Profile and Kidney Disease in Type 1 Diabetes. Diabetes Care 2018, 41, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodar, K.; Stadlmann, J.; Klaamas, K.; Sergeyev, B.; Kurtenkov, O. Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: Relation to tumor progression and survival. Glycoconj. J. 2012, 29, 57–66. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Qin, X.; Li, H.; Guo, Y.; Wang, Y.; Liu, H.; Wang, X.; Song, G.; Li, F.; et al. Change in IgG1 Fc N-linked glycosylation in human lung cancer: Age- and sex-related diagnostic potential. Electrophoresis 2013, 34, 2407–2416. [Google Scholar] [CrossRef]
- Patterson, M.C. Metabolic mimics: The disorders of N-linked glycosylation. Semin. Pediatr. Neurol. 2005, 12, 144–151. [Google Scholar] [CrossRef]
- Paketci, C.; Edem, P.; Hiz, S.; Sonmezler, E.; Soydemir, D.; Sarikaya Uzan, G.; Oktay, Y.; O’Heir, E.; Beltran, S.; Laurie, S.; et al. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev. 2020, 42, 539–545. [Google Scholar] [CrossRef]
- Fiumara, A.; Barone, R.; Del Campo, G.; Striano, P.; Jaeken, J. Electroclinical Features of Early-Onset Epileptic Encephalopathies in Congenital Disorders of Glycosylation (CDGs). JIMD Rep. 2016, 27, 93–99. [Google Scholar]
- Cotman, S.L.; Lefrancois, S. CLN3, at the crossroads of endocytic trafficking. Neurosci. Lett. 2021, 762, 136117. [Google Scholar] [CrossRef]
- Lebrun, A.H.; Moll-Khosrawi, P.; Pohl, S.; Makrypidi, G.; Storch, S.; Kilian, D.; Streichert, T.; Otto, B.; Mole, S.E.; Ullrich, K.; et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol. Med. 2011, 17, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Molinari, F.; Kaminska, A.; Fiermonte, G.; Boddaert, N.; Raas-Rothschild, A.; Plouin, P.; Palmieri, L.; Brunelle, F.; Palmieri, F.; Dulac, O.; et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin. Genet. 2009, 76, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Poduri, A.; Heinzen, E.L.; Chitsazzadeh, V.; Lasorsa, F.M.; Elhosary, P.C.; LaCoursiere, C.M.; Martin, E.; Yuskaitis, C.J.; Hill, R.S.; Atabay, K.D.; et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann. Neurol. 2013, 74, 873–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsan, E.; Baulac, S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol. Appl. Neurobiol. 2018, 44, 6–17. [Google Scholar] [CrossRef]
- Yin, Y.; Hua, H.; Li, M.; Liu, S.; Kong, Q.; Shao, T.; Wang, J.; Luo, Y.; Wang, Q.; Luo, T.; et al. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016, 26, 46–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipton, J.O.; Sahin, M. The neurology of mTOR. Neuron 2014, 84, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Gopalappa, R.; Kim, S.H.; Ramakrishna, S.; Lee, M.; Kim, W.I.; Kim, J.; Park, S.M.; Lee, J.; Oh, J.H.; et al. Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am. J. Hum. Genet. 2017, 100, 454–472. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, B.; Ekim, B.; Fingar, D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 2012, 441, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Baldassari, S.; Picard, F.; Verbeek, N.E.; van Kempen, M.; Brilstra, E.H.; Lesca, G.; Conti, V.; Guerrini, R.; Bisulli, F.; Licchetta, L.; et al. The landscape of epilepsy-related GATOR1 variants. Genet. Med. 2019, 21, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Ezeonwuka, C.D.; Rastegar, M. MeCP2-Related Diseases and Animal Models. Diseases 2014, 2, 45–70. [Google Scholar] [CrossRef] [Green Version]
- Lioy, D.T.; Wu, W.W.; Bissonnette, J.M. Autonomic dysfunction with mutations in the gene that encodes methyl-CpG-binding protein 2: Insights into Rett syndrome. Auton. Neurosci. 2011, 161, 55–62. [Google Scholar] [CrossRef]
- Olson, C.O.; Pejhan, S.; Kroft, D.; Sheikholeslami, K.; Fuss, D.; Buist, M.; Ali Sher, A.; Del Bigio, M.R.; Sztainberg, Y.; Siu, V.M.; et al. MECP2 Mutation Interrupts Nucleolin-mTOR-P70S6K Signaling in Rett Syndrome Patients. Front. Genet. 2018, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsujimura, K.; Irie, K.; Nakashima, H.; Egashira, Y.; Fukao, Y.; Fujiwara, M.; Itoh, M.; Uesaka, M.; Imamura, T.; Nakahata, Y.; et al. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Cell Rep. 2015, 12, 1887–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courcet, J.B.; Faivre, L.; Malzac, P.; Masurel-Paulet, A.; Lopez, E.; Callier, P.; Lambert, L.; Lemesle, M.; Thevenon, J.; Gigot, N.; et al. The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy. J. Med. Genet. 2012, 49, 731–736. [Google Scholar] [CrossRef]
- Larsen, L.J.; Moller, L.B. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020, 9, 2316. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Y.; Moreno, S.; Baudry, M.; Bi, X. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J. Neurosci. 2015, 35, 4706–4718. [Google Scholar] [CrossRef] [Green Version]
- Gant, J.C.; Blalock, E.M.; Chen, K.C.; Kadish, I.; Porter, N.M.; Norris, C.M.; Thibault, O.; Landfield, P.W. FK506-binding protein 1b/12.6: A key to aging-related hippocampal Ca2+ dysregulation? Eur. J. Pharmacol. 2014, 739, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danzer, S.C. Double agent mTOR. Epilepsy Curr. 2019, 19, 44–46. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Xu, W.; Piao, J.; Su, J.; Ge, T.; Cui, R.; Yang, W.; Li, B. Transcription factors are potential therapeutic targets in epilepsy. J. Cell. Mol. Med. 2022, 26, 4875–4885. [Google Scholar] [CrossRef]
- Sharma, N.; Jadhav, S.P.; Bapat, S.A. CREBBP re-arrangements affect protein function and lead to aberrant neuronal differentiation. Differentiation 2010, 79, 218–231. [Google Scholar] [CrossRef]
- Barker, G.R.; Wong, L.F.; Uney, J.B.; Warburton, E.C. CREB transcription in the medial prefrontal cortex regulates the formation of long-term associative recognition memory. Learn Mem. 2020, 27, 45–51. [Google Scholar] [CrossRef]
- Henshall, D.C.; Kobow, K. Epigenetics and Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022731. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhu, Z.; Xu, D.; Sun, L. Advances in Understanding CREB Signaling-Mediated Regulation of the Pathogenesis and Progression of Epilepsy. Clin. Neurol. Neurosurg. 2020, 196, 106018. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A.; Bingham, A.J.; Li, J.; Kumar, B.; Sukumar, P.; Munsch, C.; Buckley, N.J.; Neylon, C.B.; Porter, K.E.; Beech, D.J.; et al. Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol. Cell 2005, 20, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Paraso, M.; Arkell, R.; Brown, S. In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: Alanine tract expansion modulates DNA binding and transactivation. Hum. Mol. Genet. 2005, 14, 411–420. [Google Scholar] [CrossRef]
- Kinzler, K.W.; Ruppert, J.M.; Bigner, S.H.; Vogelstein, B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 1988, 332, 371–374. [Google Scholar] [CrossRef]
- Feng, S.; Ma, S.; Jia, C.; Su, Y.; Yang, S.; Zhou, K.; Liu, Y.; Cheng, J.; Lu, D.; Fan, L.; et al. Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy. EMBO Rep. 2016, 17, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Li, S.; Li, H.; Yang, C.; Lin, J. The role of Shh signalling pathway in central nervous system development and related diseases. Cell Biochem. Funct. 2021, 39, 180–189. [Google Scholar] [CrossRef]
- He, S.; Wu, Z.; Tian, Y.; Yu, Z.; Yu, J.; Wang, X.; Li, J.; Liu, B.; Xu, Y. Structure of nucleosome-bound human BAF complex. Science 2020, 367, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Rousseau, J.; Peng, H.; Aouabed, Z.; Priam, P.; Theroux, J.F.; Jefri, M.; Tanti, A.; Wu, H.; Kolobova, I.; et al. Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am. J. Hum. Genet. 2019, 104, 815–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovrecic, L.; Bertok, S.; Zerjav Tansek, M. A New Case of an Extremely Rare 3p21.31 Interstitial Deletion. Mol. Syndromol. 2016, 7, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders Blok, L.; Verseput, J.; Rots, D.; Venselaar, H.; Innes, A.M.; Stumpel, C.; Ounap, K.; Reinson, K.; Seaby, E.G.; McKee, S.; et al. A clustering of heterozygous missense variants in the crucial chromatin modifier WDR5 defines a new neurodevelopmental disorder. HGG Adv. 2023, 4, 100157. [Google Scholar] [CrossRef]
- Gavrilovici, C.; Jiang, Y.; Kiroski, I.; Teskey, G.C.; Rho, J.M.; Nguyen, M.D. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb. Cortex Commun. 2020, 1, tgaa024. [Google Scholar] [CrossRef] [PubMed]
- Dery, T.; Chatron, N.; Alqahtani, A.; Pugeat, M.; Till, M.; Edery, P.; Sanlaville, D.; Schluth-Bolard, C.; Nicolino, M.; Lesca, G.; et al. Follow-up of two adult brothers with homozygous CEP57 pathogenic variants expands the phenotype of Mosaic Variegated Aneuploidy Syndrome. Eur. J. Med. Genet. 2020, 63, 104044. [Google Scholar] [CrossRef]
- Kolbjer, S.; Martin, D.A.; Pettersson, M.; Dahlin, M.; Anderlid, B.M. Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Eur. J. Paediatr. Neurol. 2021, 30, 71–81. [Google Scholar] [CrossRef]
- Xu, X.; Shangguan, Y.; Lu, S.; Wang, W.; Du, C.; Xiao, F.; Hu, Y.; Luo, J.; Wang, L.; He, C.; et al. Tubulin beta-III modulates seizure activity in epilepsy. J. Pathol. 2017, 242, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, R.; Zucca, C.; Arrigoni, F.; Bonanni, P.; Panzeri, E.; Bassi, M.T.; Borgatti, R. Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells 2019, 8, 669. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Suzuki, Y.; Kumazaki, K.; Tanabe, Y.; Akaboshi, S.; Miura, K.; Shimozawa, N.; Kondo, N.; Nishiguchi, T.; Terada, K.; et al. Epilepsy in peroxisomal diseases. Epilepsia 1997, 38, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Rapp, S.; Saffrich, R.; Anton, M.; Jakle, U.; Ansorge, W.; Gorgas, K.; Just, W.W. Microtubule-based peroxisome movement. J. Cell Sci. 1996, 109 Pt 4, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.W.; Lau, C.H.; Williams, J.C.; Chan, Y.W.; Wong, L.J. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur. J. Pediatr. 1997, 156, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Thajeb, P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab. Brain Dis. 2007, 22, 105–109. [Google Scholar] [CrossRef] [PubMed]
Source | Network Statistics | Values |
---|---|---|
STRING | Number of nodes | 623 |
(Including single nodes) | Number of edges | 560 |
Network Analyzer | Average node degree | 1.8 |
(Not including single nodes) | Avg. local clustering coefficient | 0.382 |
Expected number of edges | 176 | |
PPI enrichment p-value | <1 × 10−16 | |
Number of nodes | 329 | |
Number of edges | 560 | |
Avg. number of neighbors | 3.404 | |
Network diameter | 6 | |
Network radius | 1 | |
Characteristic path lengths | 1.936 | |
Clustering coefficient | 0.158 | |
Network density | 0.005 |
№ | Genes | Details |
---|---|---|
1 | MTOR | Serine/threonine-protein kinase mTOR |
2 | PEX14 | Peroxisomal membrane protein PEX14 |
3 | NDUFS2 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 |
4 | SDHA | |
5 | TUBB | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial |
6 | DLD | Tubulin beta chain |
7 | DNM1 | Dihydrolipoyl dehydrogenase, mitochondrial |
8 | GRIN1 | Dynamin-1 |
9 | HSD17B12 | Glutamate receptor ionotropic, NMDA 1 |
10 | TUBA1A | Very-long-chain 3-oxoacyl-CoA reductase |
11 | CENPJ | Tubulin alpha-1A chain |
12 | DYNC1H1 | Centromere protein J |
13 | UBE3A | Cytoplasmic dynein 1 heavy chain 1 |
14 | ETFA | Ubiquitin-protein ligase E3A |
15 | TSC2 | Electron transfer flavoprotein subunit alpha, mitochondrial |
16 | CREBBP | CREB-binding protein |
17 | CLN3 | CLN3 lysosomal/endosomal transmembrane protein |
18 | TUBB3 | Tubulin beta-3 chain |
19 | AFG3L2 | AFG3-like protein 2 |
20 | ATP5A1 | ATP synthase complex subunit B1, mitochondrial |
21 | DYRK1A | Dual specificity tyrosine-phosphorylation-regulated kinase 1A |
22 | HERC2 | E3 ubiquitin-protein ligase HERC2 |
23 | NDUFS1 | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial |
24 | SYNGAP1 | Ras/Rap GTPase-activating protein SynGAP |
25 | TUBB2B | Tubulin beta-2B chain |
Molecular Function/Cluster | Genes |
---|---|
Mitochondrial genes | GCDH, COQ4, COQ9, COQ6, PQBP1, ATP5A1, NDUFA6, NDUFA2, NDUFB6, SURF1, NDUFV1, NDUFA5, NDUFS5, COX10, ADCK3, NDUFAF5, NDUFB8, PDSS1, AFG3L2, SDHAF1, BCKDHB, COX6B1, NDUFS2, NDUFB9, NDUFA11, NDUFB10, DBT, NDUFB1, NDUFAF1, NDUFAF3, CPS1, NDUFB4, NDUFA13, SUCLG1, NDUFS1, NDUFA9, DLD, NDUFS7, COX15, NDUFS6, PDSS2, PDHB, DGUOK, NDUFAB1, HSPD1, MT-CO2, NDUFA12, NDUFB3, PPM1K, NDUFS3, PDHA1, NDUFB5, SDHB, HADH, CPT1A, NDUFV3, SUCLA2, NDUFAF4, NDUFA7, MT-ND6, MT-ND5, MT-ND4, UQCRFS1, PDP1, NDUFB7, COX20, ETHE1, IVD, BCKDHA, NDUFA10, PDHX, FOXRED1, NDUFA8, MT-ND1, ATP6V0A1, AΤΡ6AΡ2, AΤΡ1A2, ATP6V1D, ATP6V1A |
Exosomal genes | EXOSC6, EXOSC4, DIS3L, EXOSC2, DIS3, EXOSC1, EXOSC10, EXOSC5, EXOSC9, EXOSC8, EXOSC3, EXOSC7, SKIV2L2 |
N-oligosaccharyl transferase-related genes | DDOST, STT3A, ALG12, RPN2, PC, ALG9, STT3B, SSR4, DAD1, TUSC3, ALG6, RPN1, ALG3 |
The mTOR signaling pathway | MAP2K1, RRAGC, LAMTOR5, MAP2K2, MECP2, NPRL2, DEPDC5, TSC1, RHEB, LAMTOR1, MTOR, SZT2, PAK3, BRAF, MAPKAP1, RICTOR, MLST8, PTEN, RPTOR, PIK3CA, TSC2, KPTN, LAMTOR2, RRAGA, LAMTOR4, NPRL3, AKT3 |
Transcription process | CDK19, TCF4, TAF13, CREBBP, MED12, ARS, TAF10, POLR3B, TBP, TAF7, ATN1, REST, TAF1, TAF2, TAF3, TAF4, TAF4B, TAF5, TAF6, TAF9B, TAF11, TAF12, TAF8, MED17, POLR3A, GTF2A1, GTF2A2, AK6 |
Chromatin remodeling | SMARCC1,SMARCC2, SMARCC2, SMARCB1, SMARCA4, ACTL6B, WDR5, KDM6A, KMT2D, ATRX |
Translation process | EIF2B1, EIF2B5, EIF2B4, EIF2B2, EIF2B3, EIF2S1, AIMP1, DARS, EPRS, RARS2, AARS, EEF1A2 |
Glutamate neurotransmission | GRIN1, GRIN2A, SYNGAP1, DLG3, GRIN2B, KCNJ10, GNAO1, GRIA3, ADAM22, DLG4, LGI1, GABBR2 |
Cytoskeleton and cell cycle | TUBA1A, RNASEH2B, STILL, ACTB, SMC1A, RNASEH2A, TUBB2B, KIF7, RNASEH2C, ATR, NIPBL, TRACK1, TUBB2A, FGF13, CEP135, CEP152, BUB1B, PAFAH1B1, SASS6, DNA2, CSPP1, CASC5, SMC3, TUBA8, ASPM, CEP290, EZH2, CEP63, TUBB, KIF2A, ACTG1, TUBG1, DCX, CENPE, MCPH1, OFD1, TUBB3, CDK5RAP2, ANAPC7, HDAC8, PCNT, CENPJ, MAD2L1, KIF5C, NDE1, RAD21, CDC20, TBCE, RRM2B, DYNC1H1, STAG1, STAG2, CDC27, CDC16 |
Peroxisomal complex | PEX5, PEX2, PEX7, PEX6, PEX3, PEX12, ABCD1, PEY, PEX16, PEX14, PEX26, PEX19, PEX11B, PEX13, PEX1 |
Gamma aminobutyric acid (GABA) neurotransmission | GABRA1, GABRA2, GABRG2, GABRA5, GABRB3, GABRA5, GABRB2, GABRD |
Vesicular transport | STXBP1, STX1B, CPLX1, SNAP29, GOSR2, DNAJC5, SYP, NAPB |
Potassium voltage-gated channel genes | KCNA2, KCNA1, CNTNAP2, CNTN2, KCNQ2, KCNB1, KCNQ3 |
Voltage-sensitive Ca++ channel function | CACNA1A, CACNA1H, CACNA1E, CACNB4, RYR3 |
Golgi complex | COG6, COG7, COG1, COG5, COG8, COG4 |
Genes not included in specific molecular clusters | SLC25A22, LMNB2, DOCK7 DOCK8, NSUN, PAFAH1B1, DYRK1A, UBE3A, HERC2, DNM1, RPS6KA3, RAB3GAP1, RAB3GAP2, CASK, CASR, INS, PPP3CA, ATP6, IL1RAPL1, HSD17B12, CLN3, ALG3L2, GLI2, GLI3, PTCH1, ZIC2, SHH, CDON, FKBP1A, IRS1, RPS6KA3, RPS6KB1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevlyakov, A.D.; Kolesnikova, T.O.; de Abreu, M.S.; Petersen, E.V.; Yenkoyan, K.B.; Demin, K.A.; Kalueff, A.V. Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. Int. J. Mol. Sci. 2023, 24, 5280. https://doi.org/10.3390/ijms24065280
Shevlyakov AD, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Demin KA, Kalueff AV. Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. International Journal of Molecular Sciences. 2023; 24(6):5280. https://doi.org/10.3390/ijms24065280
Chicago/Turabian StyleShevlyakov, Anton D., Tatiana O. Kolesnikova, Murilo S. de Abreu, Elena V. Petersen, Konstantin B. Yenkoyan, Konstantin A. Demin, and Allan V. Kalueff. 2023. "Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy" International Journal of Molecular Sciences 24, no. 6: 5280. https://doi.org/10.3390/ijms24065280
APA StyleShevlyakov, A. D., Kolesnikova, T. O., de Abreu, M. S., Petersen, E. V., Yenkoyan, K. B., Demin, K. A., & Kalueff, A. V. (2023). Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. International Journal of Molecular Sciences, 24(6), 5280. https://doi.org/10.3390/ijms24065280