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Abstract: Deep brain stimulation (DBS)—through a surgically implanted electrode to the subthalamic
nucleus (STN)—has become a widely used therapeutic option for the treatment of Parkinson’s
disease and other neurological disorders. The standard conventional high-frequency stimulation (HF)
that is currently used has several drawbacks. To overcome the limitations of HF, researchers have
been developing closed-loop and demand-controlled, adaptive stimulation protocols wherein the
amount of current that is delivered is turned on and off in real-time in accordance with a biophysical
signal. Computational modeling of DBS in neural network models is an increasingly important
tool in the development of new protocols that aid researchers in animal and clinical studies. In
this computational study, we seek to implement a novel technique of DBS where we stimulate the
STN in an adaptive fashion using the interspike time of the neurons to control stimulation. Our
results show that our protocol eliminates bursts in the synchronized bursting neuronal activity of
the STN, which is hypothesized to cause the failure of thalamocortical neurons (TC) to respond
properly to excitatory cortical inputs. Further, we are able to significantly decrease the TC relay errors,
representing potential therapeutics for Parkinson’s disease.

Keywords: Parkinson’s disease; deep brain stimulation; adaptive stimulation; multi-site stimulation;
thalamocortical relay; basal ganglia model; local field potential

1. Introduction

Deep brain stimulation (DBS) is a therapeutic option for Parkinson’s disease (PD)
wherein a stimulating electrode is surgically implanted into the subthalamic nucleus (STN),
globus pallidus (GP), or thalamus (TC), depending on the more prominent symptoms. The
stimulating electrode sends electrical impulses to the targeted regions of the brain [1–3]. At
present, the most conventional DBS is done with open-loop methods involving constant
high-frequency stimulation (HF). On a neuronal level, the pathophysiology of PD is as-
sociated with changes such as increases in synchrony, firing rates, and bursting activity
in the basal ganglia [3–6]. DBS may achieve its therapeutic benefits when stimulation is
able to disrupt the pathological synchronized bursting in the basal ganglia [7–10]. While
this treatment has been effective, there are several drawbacks to HF DBS. In open-loop
methods, the stimulation parameters such as duration, amplitude, and frequency of the
pulse train are controlled by external forces that are not guided by the changes in the brain’s
electrical activity resulting from PD [11]. Conventional HF DBS, with high frequency
and nonadjustable parameters, may have adverse effects in the proximate region to the
stimulation site. Additionally, battery and device shelf-life concerns are present with higher
frequency and open-loop DBS [11,12].

A possible remedy is to develop a closed-loop, adaptive system that only adminis-
ters DBS as necessary. A closed-loop method is a system in which DBS is automatically
controlled in accordance with a recorded feedback signal from a targeted region. In this
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approach, stimulation is administered only when necessary and is, to an extent, dependent
on the measured neuronal activity [13]. Due to the desire for a closed-loop, adaptive
system, in vitro and in silico studies have been conducted. In 2013, Little et al. used
brain–computer interfaces to monitor the local field potential (LFP) of the STN and to
control the administration of DBS to patients with PD. Their results showed statistically
significant improvement in motor scores [14]. Later, de Castro et al. employed delayed
feedback control algorithms to disrupt unwanted pathological neuronal oscillations within
in vitro networks [15]. Current experimental studies aim to identify appropriate biological
feedback signals, such as neural oscillating or using the magnitude of the LFP [16–20].

Since other biological signals may be used to monitor and control the administration
of adaptive deep brain stimulation (aDBS), we turn to computational models to explore
potential avenues. Previous closed-loop computational modeling efforts at DBS have
focused on using the amplitude of LFP. In particular, Guo and Rubin studied a multi-site
delay feedback DBS in 2011 based on the LFP of the STN population [5,21–23]. Their multi-
site delayed feedback stimulation was found to be more beneficial compared to open-loop
HF. However, this method lacks an adaptive mechanism because the stimulation remains
on the entire time once it is turned on. The primary recent computational studies in aDBS
have focused on desynchronizing the STN neurons in parkinsonian networks [13,24–36].
Based on work conducted by Popovych and Tass in 2019, they concluded that using the LFP
as a signal to control aDBS can be more efficient in suppressing abnormal synchronization
than continuous stimulation [13]. Our work aims to look beyond the desynchronization of
PD networks using aDBS. Here, PD networks are computational models of neurons that
mimic neuronal patterns of PD in the basal ganglia.

We introduce two novel closed-loop aDBS techniques utilizing the interspike time of
model STN neurons to gauge PD neuronal activity and to determine when stimulation
is on and off. This will be applied to a small network of conductance-based STN, GP,
and TC neurons that, by design, generate parkinsonian activity patterns in the absence
of stimulation. While other authors have explored how adaptive stimulation techniques
desynchronize neuronal networks in studying PD, we find that our closed-loop aDBS is
able to both desynchronize and deburst parkinsonian networks. In our PD networks, we
incorporate TC neurons to evaluate the effectiveness of aDBS. Within the setup of our
PD networks, the TC fidelity is compromised, with many instances of the TC neurons
failing to respond in a one-to-one fashion to excitatory inputs [21,37]. We study how closed-
loop aDBS is able to improve TC relay fidelity when properly applied in PD networks.
This represents the first work in which the effectiveness of closed-loop aDBS is evaluated
based on TC relay fidelity. These results support the idea that adaptive stimulation of
STN utilizing an interspike time merits further consideration as a possible alternative to
standard forms of DBS for PD.

2. Results

We will be analyzing the proposed adaptive protocols under two different compu-
tational parkinsonian network configurations. The first configuration will consist of a
network receiving adaptive constant pulse DBS (acDBS) in which the STN neurons have a
four-spike burst with an initial TC error index (defined in Section 4.1.3) of 0.39 and 0.37 for
the first and second TC cells, respectively. The second network configuration will consist
of a network receiving adaptive local field potential DBS (aLFPDBS) in which the STN
neurons have a three-spike burst with an initial TC error index of 0.56 for both TC cells.
Throughout both computational studies, we will be applying stimulation in a time period
we call the treatment window, which will start at 2000 ms and last until 7000 ms. During
this time period, the stimulation will be turned on and off according to our adaptive proto-
cols. By using these two network configurations, we can determine how well the proposed
adaptive protocols would work in mild to moderate as well as advanced computational
parkinsonism. In evaluating the efficacy of acDBS and aLFPDBS, we will examine whether
each protocol is able to de-burst the network and under which settings we will see the
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largest improvement in the error index in the TC relay. Additionally, we will study how the
stimulation changes the total synaptic input of the internal segment of the globus pallidus
(GPi) to the TC cells. All model simulations were conducted using XPPAUT, and all model
simulation figures were made in MATLAB.

2.1. Adaptive Constant Pulse DBS

In Figure 1, we can see examples of the adaptive constant pulse stimulation profiles
when using a stimulation strength of a0 = −15 and an interspike time threshold parameter
intt = 200 ms.

Figure 1. acDBS delivered to STN Cells 1–4 during the time window of 2000 to 7000 ms. Note that
the top part of the curve represents the time when the stimulation is turned off, while the bottom part
of the curve is when the stimulation is turned on.

During the treatment window of 2000 to 7000 ms, the stimulation currents delivered to
neurons 1–4 are different. While not shown, it is the case that all 16 STN neurons will have
different times when the stimulation is turned on and off. As outlined in Section 4.2, we
use the interspike time—the time between successive STN firings—to determine when the
stimulation is turned on and off. This is determined by the threshold parameter intt. If the
interspike time is larger than the threshold parameter intt, then the stimulation is turned
off. Otherwise, the stimulation is turned on because we predict that a bursting dynamic
is occurring, which we wish to disrupt. Once the stimulation is turned on, the bursting
dynamic is broken, and the interspike interval becomes larger than the intt threshold and
will shut off again. This mechanism allows for neurons coming from the same synchronous
groups to receive an individual stimulation based on its own firing pattern. For instance,
neurons 1 and 2 belong to the STN11 subgroup, while neurons 3 and 4 STN12. However,
when studying the stimulation profiles shown in Figure 1, we can see that the times when
the stimulation is on and off vary by individual neuron.

When the acDBS protocol is applied to the STN neurons during the treatment window
of 2000 to 7000 ms, we observe that the stimulation is able to successfully break the
synchronized bursting dynamics observed in our computational parkinsonian state (shown
in figure in Section 4.1.3). We are only left with single spike activity at intermittent intervals.
An fexample of the membrane potential of STN1, with its corresponding stimulation profile,
is shown in Figure 2. In this instance, the adaptive protocol is working as intended.
Examining Figure 2, during the treatment window from 2000 to 7000 ms, bursting activity
is suppressed. Once the interspike time exceeds the threshold intt and stimulation is turned
off, it will remain off until we see the next STN spike and then the stimulation will turn
back on to disrupt any potential STN bursting. We apply this throughout the treatment
window until we shut the stimulation off at 7000 ms and we see the parkinsonian state of
the network resume.
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Figure 2. STN1 membrane potential (black) with corresponding adaptive stimulation received (red)
with parameters a0 = −16 and interspike time threshold parameter intt = 250 ms. Note that the top
part of the red curve represents the time when the stimulation is turned off, while the bottom part of
the curve is when the stimulation is turned on.

The overall impact of applying the acDBS throughout the entire 16 STN neurons,
along with the changes to the two TC neurons, is shown in Figure 3. Some intermittent
single-spike synchronization only occurs in a subgroup of STN neurons. Under the current
stimulation settings (a0 = −16, intt = 250 ms), the error index for each TC cell is 0.14 and
0.23 for cells 1 and 2, respectively. By changing the synchronized bursting pattern of the
STN neurons, we have substantially altered the total synaptic GPi (top traces in blue in
Figure 3) input to the TC cells. In Figure 3 (Panels B and C), examining the membrane
potentials of TC1 and TC2 (black traces) with the excitatory inputs (red traces), the number
of failures to respond in a one-to-one fashion in the parkinsonian state (see figure in
Section 4.1.3) is greatly improved in the treatment window.

Figure 3. Example of acDBS. (A) Spike times of 16 STN neurons. acDBS is on from 2000 to 7000 ms
with a0 = −16 and intt = 250 ms. Before stimulation, there are two synchronized clusters, as
shown in figure panel (a) in Section 4.1.3. During the stimulation period, the bursting dynamic is
largely eliminated, and the synchronized clusters no longer exist. Once stimulation is stopped, the
synchronized clusters reemerge. (B) Relay performance of TC1. (C) Relay performance of TC2. In
both (B,C), the top trace in blue is the total GPi synaptic input, the middle trace in red is the excitatory
signal, and the bottom trace in black is the TC voltage. TC relay performance noticeably improves
during the stimulation window.

The changes in STN firing behavior are further reflected in the histograms of sg1 and
sg2 corresponding to overall GPi synaptic input to the TC neurons (defined in Section 4.1.2).
The histograms in Figure 4 with the stimulation show that the distribution has more
elements in bin 1 and almost none in bins 5 and 6. Without stimulation, as shown in
figure in Section 4.1.2, the histograms have substantially more elements sorted into bins
5 and 6. In the parkinsonian configuration, the overall GPi synaptic input to the TC cell
is very phasic and bursty. This can be seen before the treatment window (1000–2000 ms)
and after the treatment window (7000–8000 ms) in Figure 4. During the stimulation period,
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the phasic and bursty firing pattern seen in the parkinsonian state is interrupted and
replaced with a more random pattern. This population-level phenomenon is the result
of downstream propagation of the debursted STN neurons. These results indicate that
we have significantly altered the firing of the GPi, replacing it with a more randomized
firing. The corresponding changes in total GPi synaptic input to the TC cells improve the
TC relay responses.

Figure 4. Total GPi synaptic inputs sg1 and sg2 (top traces) with corresponding histograms of sg1
(left) and sg2 (right) during the treatment window when acDBS was applied with a0 = −16 and
intt = 250.

Having successfully broken the network parkinsonian state, we next seek to determine
how robust this procedure is. Specifically, we seek to identify an effective range of values for
the parameters a0 and intt (the stimulation strength and the interspike time, respectively),
under which the network will respond to the stimulation and reduce the TC error index.
We are interested in finding a regime of optimal TC performance with relatively weak
stimulation amplitude.

As shown in Figure 5, we can see well-separated regions where the error-index is high
(0.5 and above), low (0.2 and below), and similar to the parkinsonian state (between 0.3
and 0.4). In contrast with previous work conducted by Guo and Rubin [21], there is a large
range of values of interspike threshold times and stimulation strengths that desynchronize
and deburst the STN neurons and therefore improve the TC performance. In general, the
favorable region of stimulation parameters can be observed in the lower right-hand corner
of Figure 5, with stimulation strengths ranging from −11 to −16 and interspike threshold
parameters of 250 to 400 ms. The (intt, a0) parameter pairs in this window behave similarly
to our results discussed above.
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Figure 5. (A) Error index values (color coded) for the first TC cell, TC1 over a range of interspike
threshold parameter values intt (75–400 ms, with increment 25 ms) and a0—stimulation strength
(−24 to −10, with increments of 1). (B) Error index values for the second TC cell, TC2 over a range
of values intt (75 to 400 ms, increment 25 ms) and a0 (−24 to −10, with increment 1). The favorable
region of (intt, a0) pairs is shown in the black box.

When studying Figure 5, we observe that pairing strong stimulation strength with
lower interspike interval parameters produces non-optimal results. In these instances, our
computational modeling shows that the stimulation to the neurons is occurring in a fashion
that induces a different STN bursting pattern, which results in poor TC performance. For
example, the (intt, a0) pair (75, −24) has an error index of 0.69 for TC1. In Figure 6, we
compare the firing of STN1 with its corresponding stimulation profile. Here we see that the
firing in the STN neuron now comes in regular succession. In fact, the new firing pattern is
directly induced from the stimulation provided to the STN cell, largely due to the strong
stimulation strength and the short interspike intervals.

Figure 6. STN1 membrane potential (black) with corresponding adaptive stimulation received (red)
with parameters a0 = −24 and interspike time threshold parameter intt = 75 ms. Note that the top
part of the red curve represents the time when the stimulation is turned off, while the bottom part of
the curve is when the stimulation is turned on.

To better understand the impact that the stimulation-induced firing has on TC perfor-
mance, we need to study how the induced firing impacts the total GPi synaptic input into
the TC neurons. Using the (intt, a0) pair (75, −24), we compute sg1 and sg2 and construct
the corresponding histograms. As seen in Figure 7, the total GPi synaptic input to TC1
and TC2 is indeed altered from the baseline parkinsonian network with no stimulation.
However, unlike the (intt, a0) pair (250, −16), during the treatment window, we observe
that the total synaptic GPi input is still clustered and synchronized. The histograms do not
have a pronounced shift in bin 6 to bin 1. While the distribution is shifted in comparison to
figure in Section 4.1.2, there are more entries in the middle bins 2–5.
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Figure 7. Total GPi synaptic inputs sg1 and sg2 (top traces) with corresponding histograms of sg1
(left) and sg2 (right) during the treatment window when acDBS was applied with a0 = −24 and
intt = 75.

This demonstrates that the TC performance is directly attributed to our choice of acDBS
parameters. Further, when studying Figure 5, it also suggests that there is a non-linear
relationship to how changes in the (intt, a0) space impact TC performance. In general, we
can conclude that there are many combinations of stimulation strengths and interspike
threshold parameters that are able to produce improved TC response in acDBS. We see that
when the interspike threshold parameter is larger, we can use lower stimulation strengths,
which is preferred. Conversely, pairing strong stimulation strengths with a short interspike
threshold parameter produces a new firing dynamic bad for TC performance. Thus, there
are numerous pairings of parameters, which may induce a theoretical therapeutic benefit.

2.2. Adaptive Multi-Site LFP Stimulation

Unlike the acDBS method discussed above, the adaptive LFP stimulation described
by Equation (19) represents a more sophisticated closed-loop DBS. While acDBS is able to
stimulate only when necessary, it is unable to adapt the stimulation strength to the amount
of abnormal neuronal synchronization. We overcome this limitation by incorporating the
recorded LFP signal of the STN neurons. Previous research has assessed the performance
of STN stimulation based on recorded LFP signals in terms of its desynchronizing effects
on model neurons [13,21,22,31]. This previous work shows that, while there is no clear
evidence on how the LFP is related to synaptic and ionic currents of a single neuron, such
stimulation is able to greatly reduce phase synchronization [13,22,30,31].

In Figure 8, we can see examples of the aLFPDBS profiles when using a stimulation
strength of a0 = 6 and an interspike time threshold parameter intt = 300 ms. As with the
acDBS results described previously, the stimulation current delivered to neurons 1, 4, 6,
and 11 is different during the treatment window of 2000 to 7000 ms. While not shown, it
is still the case that all 16 STN neurons will have different times when the stimulation is
turned on and off. These differences persist when the neurons are coming from the same
stimulation site (Neurons 1 and 6 of the STN11 block) or from a different stimulation site
but are part of the same synchronous group (Neuron 4 from the STN12 block and Neuron
11 from the STN21 block). In contrast with acDBS, the amount of current delivered during
the stimulation on period is now modulated by the filtered LFP on a delay as the signal is
shuffled through the four stimulation sites (see figure in Section 4.3 and Equation (19)).
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Figure 8. Adaptive local field potential stimulation delivered to STN Cells 1, 4, 6, and 11 arranged by
the synchronous group during the time window of 2000 to 7000 ms. Note that the top part of the
curve represents the time when the stimulation is turned off, while the bottom part of the curve is
when the stimulation is turned on.

When the aLFPDBS protocol is applied to the STN neurons during the treatment
window of 2000 to 7000 ms, we again observe that the stimulation is able to successfully
break the synchronized bursting dynamics described in Section 4.1.3, and we are left with
intermittent single spike activity. An example of the membrane potential of STN1 with its
corresponding stimulation profile (a0 = 10, intt = 325 ms) is shown in Figure 9. During the
treatment window, the amount of stimulation delivered is modulated by the stimulation
strength parameter a0 and by the value of the LFP shown in Figure 10. Throughout
the 2000–7000 ms period, the stimulation is turned off when the length between two
successive spikes is larger than the interspike time threshold parameter intt. This allows
for single spikes to occur before switching the stimulation on. When the length between
two successive spikes is less than the interspike time threshold intt, the stimulation is on to
prevent any potential bursting activity.

Figure 9. STN1 membrane potential (black) with corresponding stimulation received (red) with
parameters a0 = 10 and interspike time threshold parameter intt = 325 ms. Note that the top part of
the red curve represents the time when the stimulation is turned off, while the bottom part of the
curve is when the stimulation is turned on.

Figure 10. The total filtered local field potential of the 16 STN neurons from 1000 to 8000 ms with
aLFPDBS parameters a0 = 10 and intt = 325.

The overall impact of applying the aLFPDBS throughout the entire 16 STN neurons,
along with the changes to the two TC neurons, is shown in Figure 11. We are able to success-
fully deburst the network, and there is intermittent single-spike synchronization present in
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some subgroups of STN neurons. Under the stimulation settings a0 = 6, intt = 300 ms, the
error index for each TC cell is 0.13 and 0.2 for cells 1 and 2, respectively. This is a significant
reduction from the network parkinsonian state, which had an error index of 0.56 for both
model TC neurons.

Figure 11. Example of aLFPDBS. (A) Spike times of 16 STN neurons. acDBS is on from 2000 to
7000 ms with a0 = 6 and intt = 300 ms. Before stimulation, there are two synchronized clusters, as
shown in figure panel (a) in Section 4.1.3. During the stimulation period, the bursting dynamic is
largely eliminated, and the synchronized clusters no longer exist. Once stimulation is stopped, the
synchronized clusters reemerge. (B) Relay performance of TC1. (C) Relay performance of TC2. In
both (B,C), the top trace in blue is the total GPi synaptic input, the middle trace in red is the excitatory
signal, and the bottom trace in black is the TC voltage. TC relay performance noticeably improves
during the stimulation window.

The changes induced in the STN firing from the aLFPDBS are further reflected in the
histograms of sg1 and sg2 corresponding to the overall GPi input to the TC neurons. Before
the stimulation is turned on and the network is in the parkinsonian state, the GPi input
to the TC cells is phasic and bursty. When aLFPDBS is applied, this phasic and bursty
input is disrupted and replaced with a more random pattern consistent with what we
observed when applying acDBS. Comparing the histograms in Figure 12 and figure in
Section 4.1.2, we see that the distribution shifts from having more elements in bins 5
and 6 to more elements in bin 1, resulting in very few elements sorted into bins 5 and 6.
This is attributed to the aLFPDBS significantly altering the STN firing pattern producing
population-level neuronal changes. The debursting and desynchronization of the STN
neurons propagate through the STN-GPe loop to the GPi, which, in turn, feeds into the two
TC cells. By debursting and desynchronizing the STN neurons with aLFPDBS, we have
greatly improved TC relay during the treatment window.

Having successfully broken the parkinsonian bursting dynamic, we will proceed to
determine the robustness of aLFPDBS. We seek to identify an effective range of values for
the parameters a0 and intt under which the network will respond to the aLFPDBS and
reduce the TC error index. We are interested in finding a regime of optimal TC performance
with relatively weak stimulation amplitude.
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Figure 12. Total GPi synaptic inputs sg1 and sg2 (top traces) with corresponding histograms of sg1
(left) and sg2 (right) during the treatment window when aLFPDBS was applied with a0 = 6 and
intt = 300.

When studying Figure 13, we see well-separated regions where the error-index is high
(0.6 and above), low (0.2 and below), and similar to the network parkinsonian state (0.4
to 0.5). Consistent with our observations about acDBS, there is a large range of interspike
threshold times and stimulation strengths that desynchronize and deburst the STN neurons
and improves TC performance. The favorable region spans intt values from 250 to 400 ms
and stimulation strengths a0 ranging from 6 to 10. The (intt, a0) parameter pairs in this
window behave similarly to the example of aLFPDBS shown in Figures 8–12.

Figure 13. (A) Error index values (color coded) for the first TC cell, TC1 over a range of interspike
threshold parameter values intt (75 ms to 400 ms, with increment 25 ms) and a0—stimulation strength
(4 to 16, with increment 1). (B) Error index values for the second TC cell, TC2 over a range of values
intt (75 to 400 ms, increment 25 ms) and a0 (4 to 16, with increment 1). The favorable region of
(intt, a0) pairs is shown in the black box.

Under the aLFPDBS, pairing strong stimulation strengths with short interspike thresh-
old parameters produces a train of periodic STN spiking throughout the treatment window,
which results in pathological GPi outputs. For example, using the (intt, a0) pair of (100, 15)
results in an error index of 0.81 and 0.72 for TC1 and TC2, respectively. As shown in
Figures 14 and 15, using a strong stimulation strength largely alters the amplitude of the
LFP and disrupts the synchronized bursting of the STN neurons. However, the onset
of more frequent and regular spiking that the stimulation induces in the STN neurons
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results in phasic and bursty GPi inputs to the TC cells. This pattern of firing in the STN
and GPi corresponds to large error index values being observed. Another undesirable
scenario occurs when a0 is too small, for instance a0 ≤ 4. In this scenario, we observe
that aLFPDBS is not strong enough to break the bursting pattern. Furthermore, we lose
the adaptive nature of the stimulation because the stimulation is on for the entirety of the
treatment window.

Figure 14. STN1 membrane potential (black) with corresponding adaptive local field potential
stimulation received (red) with parameters a0 = 15 and intt = 100. Note that the top part of the red
curve represents the time when the stimulation is turned off, while the bottom part of the curve is
when the stimulation is turned on.

Figure 15. The total filtered local field potential of the 16 STN neurons from 1000 to 8000 ms with
aLFPDBS parameters a0 = 15 and intt = 100.

2.3. DBS for Heterogeneous TC Cells

To conclude our analysis of this computational study, we investigated the robustness
of the proposed adaptive protocols for restoring TC neuron relay responses. We aim to test
whether the adaptive stimulations produce the same restoration results with variations
of TC neurons. We completed this by generating 40 different model TC neurons with
heterogeneity in the parameters gL, gNa, and gT . Starting with the baseline values listed in
Appendix A, we independently selected new parameters from normal distributions with
standard deviations of 0.01, 0.05, and 0.08, as performed in [21,37]. All 40 different TC
neurons receive identical GPi inhibition from the upstream basal ganglia loop. For each
randomly generated set of parameters for TC neurons, we made a comparison between
the parkinsonian network without stimulation and with stimulation. Since we have two
parkinsonian networks under study, we paired the weaker parkinsonian configuration with
acDBS. The stronger parkinsonian configuration was then compared with the aLFPDBS. It
is critical to note that the parameter changes to the downstream TC neurons do not have
any impact on the network parkinsonian condition. Based on the network configuration
described in figure in Section 4.1, our model TC neurons do not connect back to the
upstream STN-GPe loop or the GPi. The TC neurons only receive input from model GPi
neurons. We would not expect underlying changes to our model TC neurons to impact the
synchronized bursting of the STN neurons.

The results of the heterogeneous TC cell studies are shown in Figure 16. The first
row displays the results of the acDBS study, while the second row displays the results
of the aLFPDBS study. As seen in Panels A and B, Panel A shows 40 trials for TC1 and
Panel B shows 40 trials for TC2. A majority of the trials for TC1 and TC2 show a moderate
reduction in the TC error index from the parkinsonian network without stimulation to the
network with acDBS. In Panels C (for TC1) and D (for TC2), the majority of the trials for the
aLFPDBS show a significant reduction in the TC error index. We observe that the TC error
index reduction in aLFPDBS is more significant than in acDBS. One possible explanation
for the differences in TC error reduction is due to the nature of the stimulation delivered to
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the STN neurons as defined in Equations (16) and (19). While both of these methods are
adaptive in that the stimulation is only turned on when necessary, the simplicity of acDBS
limits its effectiveness. Comparing Figures 3A and 11A, we observe that while acDBS is
able to deburst the STN, there is a degree of isolated single spike STN synchronization. In
comparison, when stimulating with aLFPDBS, the amount of isolated single-spike STN
synchronization is further reduced.

Figure 16. Error index values for 40 model TC neurons with heterogeneous TC parameter values. All
baseline values of the TC parameter are given in Appendix A. (A) TC1 heterogeneous error index
values without stimulation (red) and with acDBS, Equation (16) (blue). (B) TC2 heterogeneous error
index values without stimulation (red) and with acDBS (blue). (C) TC1 heterogeneous error index
values without stimulation (red) and with acLFPDBS, Equation (19) (blue). D TC2 heterogeneous
error index values without stimulation (red) and with aLFPDBS (blue).

3. Discussion

In this computational study, we investigated the effects of two different adaptive deep
brain stimulation techniques—adaptive constant stimulation (acDBS) and adaptive local
field potential stimulation (aLFPDBS)—and their effects on the thalamocortical relay. Here,
we consider a network of synaptically-connected, conductance-based model neurons from
the STN, GPe and GPi in the basal ganglia based on previous modeling work [21,37–39].
The model is parametrized to generate activity patterns featuring synchronized, rhythmic
bursts fired by clusters of STN neurons, with different clusters bursting in alternation, which
we take to represent a parkinsonian state. Outputs from the GPi are rhythmic (see figures in
Sections 4.1.2 and 4.1.3) and inhibit target model TC neurons that also receive excitatory
input trains. We observe that the TC neurons are unable to respond reliably to these inputs,
in agreement with earlier theory and simulations [21,37,39–49]. Using this framework, we
considered two parametrizations of the parkinsonian state. The first network configuration
consisted of a four-spike STN bursting pattern with a TC error index of 0.39 and 0.37 for
the first and second TC cells, respectively. This configuration, which represents a mild to
moderate state of computational parkinsonism, is used to investigate the acDBS mechanism.
The second network configuration consisted of a three-spike STN bursting pattern with
a TC error index of 0.56 for both model TC neurons. This configuration, representing
an advanced state of computational parkinsonism, is used to investigate the aLFPDBS
technique.

More recent computational studies on adaptive techniques have focused on stimu-
lation within the STN that desynchronizes the rhythmic bursting dynamics found in the
STN-GPe loop [13,24–29,31–36]. In this work, we demonstrate that the two proposed aDBS
mechanisms are able to deburst the parkinsonian state and improve the TC error index
while stimulation is applied. When these methods are properly tuned, the resulting model
STN neurons exhibit single spike firing during the stimulation window. It is apparent that
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desynchronization is important to developing effective closed-loop DBS mechanisms; how-
ever, our study suggests that desynchronization of the STN neurons alone is not enough to
improve thalamocortical relay in our PD networks. In our study, we found that debursting
was critical to improving TC relay. Because of the elimination of the bursting dynamic, the
combination of debursting and partial desynchronization of the single spikes of the STN
neurons is sufficient to restore the TC relay. For both methods under study, our simulations
demonstrate that the greatest improvements to the TC error index were achieved when we
debursted and desynchronized the STN neurons.

In the present study, all model STN neurons in our PD networks received the same
stimulation strength when testing both adaptive mechanisms. Further in silico studies
of interest would involve stimulating synchronized subgroups of the STN neurons while
leaving other parts of the network unstimulated. Similarly, conducting trials in which all
synchronized STN neurons receive different levels of stimulation strength would also be
of interest.

Another avenue of interest in aDBS methods is further investigating the detection
mechanism for controlling when the stimulation is on and off. Currently, we are deter-
mining when stimulation is turned on and off based on an interspike time method. When
the interspike time is above a preset threshold, the stimulation is turned off; otherwise,
the stimulation is on. This method is an initial investigation for predicting when the STN
neurons might exhibit a bursting dynamic we wish to interrupt. Finding novel ways to
detect parkinsonian firing is an open problem with many possible avenues of research.
Recently, work by Jung et al. in 2023 used whole-brain dynamic modeling and machine
learning for the classification of PD [50]. Their study uses a Jensen-Rit model type of
interacting excitatory and inhibitory neuronal populations. Their work demonstrates that
personalized whole-brain models can serve as an additional source of information relevant
to the diagnosis and possibly treatment of PD [50]. As aDBS becomes more widely utilized
in personalized medicine and targeted therapies, there will be an increased need to identify
beneficial biological feedback signals used in controlling the delivery of stimulation.

At the present moment, there is one commercially available brain stimulation system
that provides closed-loop DBS [11]. While research on aDBS is still in its early stages, the
preliminary findings suggest that aDBS is superior to the current standard open-loop HF
stimulation being used [51–53]. Meta-analysis of the existing studies has proven to be
challenging due to the heterogeneity of research methodologies and the small number of
studies that have been conducted [52]. The issues surrounding the amount and quality
of data available are not new and reflect a continuing challenge in studying STN DBS in
Parkinson’s disease [54]. While these challenges will persist, experimenters and clinicians
will increasingly need to rely on computational models to gain insights and correlations
between neuronal activity and physical symptoms.

4. Methods and Materials
4.1. The Network Model

To develop a biologically faithful PD network model, we will adopt the same Hodgkin–
Huxley model of basal ganglia thalamic network as in [21,37–39] with modifications to
incorporate a variety of adaptive stimulation protocols of the STN neurons. Neurons in the
basal ganglia and the thalamus communicate through various excitatory and inhibitory
synaptic connections and receive certain external inputs. The basal ganglia circuit consists
of GPe, GPi, STN neurons, and striatal input.

As depicted in Figure 17, both the GPi and GPe receive excitatory inputs from the
STN. The GPe and GPi are subject to an inhibitory striatal input. There is synaptic coupling
among inhibitory GPe neurons, and there is no coupling within the STN population and
the GPi population. The TC cell is a relay station whose role is to respond under the GPi
inhibition to incoming sensorimotor excitation via corticothalamic projections.
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Figure 17. Full network model, including the interconnections between the STN and GPe sub-
network neuronal populations. Each STN and GPe block represents 4 neurons, while the GPi 1 and
GPi 2 blocks represent 8 neurons that connect to a single TC cell. The solid lines represent strong
synaptic connections, while the dashed lines start from the STN block to the corresponding GPe
block, representing weak synaptic connections.

The network model consists of TC, STN, GPe, and GPi neurons. We will first describe
the equations of STN, GPe and GPi neurons in the model network [37–39]. We then
will present the TC neuron equations [37,39], which will be used to evaluate the DBS
effectiveness. All specifics of the functions and parameter values used for each type of
neuron in the model are given in Appendix A.

The STN voltage equation that we use takes the form

Cmv′Sn = −IL − INa − IK − IT − ICa − IAHP − IGPe→STN + Istim, (1)

and was introduced in [38]. All the currents and corresponding kinetics are the same except
that we make some parameter adjustments so that STN firing patterns are more similar to
those reported in vivo [55–57]. IGPe→STN is the inhibitory input current from GPe to STN.
Istim is the external stimulation applied to STN.

The voltage of each model GPe neuron obeys the equation

Cmv′Ge = −IL − INa − IK − IT − ICa − IAHP − IGPe→GPe − ISTN→GPe + Iapp(t), (2)

where IGPe→GPe is the inhibitory input from other GPe cells, ISTN→GPe is the excitatory input
from STN cells, and Iapp(t) is a time-dependent external current that represents hyperpo-
larizing striatal input to all GPe cells.

The voltage equation for each model GPi neuron is similar to that for the GPe
neurons, namely

Cmv′Gi = −IL − INa − IK − IT − ICa − IAHP − ISTN→GPi + IGPe→GPi + Iappi(t), (3)

where ISTN→GPi represents the excitatory input from STN to GPi, IGPe→GPi is the inhibitory
input from GPe to GPi, and Iappi(t) are time-dependent external inputs that represent
hyperpolarizing currents from the striatum to all GPi cells. The time-dependent external
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currents Iapp(t) and Iappi(t) are different from the constant inputs used in [21,37–39] and
will take the form of a square-wave pulse given by

Iappi(t) = q1H(sin(2π(t− to f f ,1)/tp,1)))(1− H(sin(2π(t− to f f ,1)/tp,1)), (4)

and
Iapp(t) = q2H(sin(2π(t− to f f ,2)/tp,2)))(1− H(sin(2π(t− to f f ,2)/tp,2)). (5)

Here, H is used to denote the Heaviside step function, such that H(x) = 0 if x < 0 and
H(x) = 1 if x > 0. The parameters q1 and q2 in Equations (4) and (5) represent the
amplitude of the square wave pulses and are consistent with the constant input values
used in [21,37]. The parameters to f f ,i and tp,i, i = 1, 2 are used to represent the period and
duration of the square-wave pulses and will take on the values to f f ,1 = 12 ms, tp,1 = 50 ms,
to f f ,2 = 6 ms, and tp,2 = 40 ms.

The model for each TC neuron takes the form

Cmv′ = −IL − INa − IK − IT − IGPi→TC + IE + c(t) (6)

h′ = (h∞(v)− h)/τh(v)

r′ = (r∞(v)− r)/τ(v)

In system (6), IL = gL(v − vL), INa = gNam3
∞(v)h(v − vNa), and IK = gK(0.75(1 −

h))4(v− vK) are leak, sodium, and potassium currents, respectively. We apply a standard
reduction in our expression for the potassium current to decrease the dimensionality of the
model by one variable [58]. The current IT = gT p2

∞(v)r(v− vT) is a low-threshold calcium
current, where r is the inactivation and p2

∞(v) is the activation. The membrane capacitance
Cm is normalized to 1 µF/cm2 in all the neural models included in the current work.

Additional terms in system (6) are inputs that the model TC neuron receives. One is
the inhibitory input current from the GPi, IGPi→TC, such that

IGPi→TC = gGPisGPi(v−VGPi), (7)

where gGPi is the constant maximum conductance and VGPi is the synaptic reversal potential.
sGPi satisfies the equation

s′GPi = αGPi(1− sGPi)S∞(v)− βGPisGPi, (8)

where S∞(x) = (1 + e−(x+57)/2)−1.
The other input to the model TC neuron, IE, represents simulated excitatory sensorimo-

tor signals to the TC neuron. We assume that these are sufficiently strong to induce a spike
in the absence of inhibition and therefore may represent synchronized inputs from multiple
presynaptic cells. We tune the parameters so that the TC cell yields spontaneous spikes at a
rate of roughly 12 Hz in the absence of both inhibitory GPi and excitatory synaptic inputs.
The parameter values chosen place the model TC neuron near the transition from silence to
spontaneous oscillations. In the model, IE = gEs(v− vE), where gE = 0.018 mS/cm2 , and s
satisfies equation

s′ = α(1− s)exc(t)− βs (9)

where α = 0.8 ms−1 and β = 0.25 ms−1. The function exc(t) controls the onset and offset
of the excitation: exc(t) = 1 during each excitatory input, whereas exc(t) = 0 between
excitatory inputs. The periodic exc(t) takes the following form:

exc(t) = H(sin(2πt/p))(1− H(sin(2π(t + d)/p))), (10)

where the period p = 50 ms and duration d = 5 ms, and H(x) is the Heaviside step
function, such that H(x) = 0 if x < 0 and H(x) = 1 if x > 0. Hence, exc(t) = 1 from
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time 0 up to time d, from time p up to time p + d, from time 2p up to time 2p + d, and
so on. A similar periodic function was used in previous work [37,39]. A baseline input
frequency of 20 Hz is consistent with the high–pass filtering of corticothalamic inputs
observed in vivo [59]; at this input rate, the model TC cells rarely fire spontaneous spikes
between inputs.

In the following subsections, we focus on three aspects of the PD network model: the
coupling structure in the STN–GPe loop, the averaged GPi synaptic input going into a TC
relay neuron, and the TC relay error index.

4.1.1. Architecture of Coupling between Individual Neurons

As shown previously in [38], the STN and GPe sub-network can generate both irregular
asynchronous and synchronous activity [38,60,61]. Our model builds off of [37], where each
STN, GPe, and GPi group includes 16 neurons. We incorporated two relay TC neurons into
the parkinsonian network to evaluate the performance of DBS [37,39]. The network model
mimics the pathological neuronal activity observed in the basal ganglia in parkinsonian
conditions, such as increased firing rate, bursting patterns, and synchronization in STN
and GPi neurons [40–49]. We consider this rhythmic clustered regime in STN and GPi as
the parkinsonian state and refer to the network in this state as the parkinsonian network.
In our simulation results that are presented throughout, we will discard the first 1000 ms to
ensure that the network is in the parkinsonian state.

We designed the structure of the STN-GPe loop in the model following the work
on clustered rhythms in [38] so that the STN cells will segregate into two rhythmically
bursting clusters, with synchronized activity within each cluster. The detailed structure of
connections between STN and GPe neurons, along with their connections to the remaining
GPi and TC cells, is depicted in Figure 17. In the STN and GPe sub-network, there are both
strong and weak synaptic connections built into the architecture of the network. This is
reflected in Figure 17 by duplicating the 16 STN and GPe neurons to show the symmetry
present in building the strong and weak connections necessary to create two synchronized
groups of neurons. We use Kij, where K=GPe or STN, i = 1, 2, and j = 1, 2, to denote sub-
population j within the i-th cluster of type K neurons. For example, the first sub-population
of STN cluster one, STN11, sends excitation to the first sub-population of GPe cluster two,
GPe21. The same sub-population of STN neurons are also weakly coupled with the other
half of the same GPe cluster, GPe22. Each sub-population of STN neurons is connected
with two GPe sub-populations in an analogous way. Each sub-population of GPe neurons
inhibits one group of STN neurons, as is also illustrated in Figure 17. Within each GPe
sub-population GPeij, there are also local inhibitory connections.

The model also includes 16 GPi neurons, each receiving input from a single corre-
sponding STN neuron. Thus, the rhythmic, bursty, synchronized outputs of each STN
cluster induce rhythmic, bursty, synchronized activity in a corresponding group of GPi
neurons. These GPi activity patterns mimic those seen experimentally in parkinsonian
conditions. The network architecture is set up so that members of each such synchronized
GPi group (GPi1 or GPi2) send synaptic inhibition to the same TC neuron, and hence
each TC neuron receives a rhythmic inhibitory signal in the parkinsonian network (see
Figure 17), which disrupts the fidelity of TC relay responses to excitatory inputs.

4.1.2. Averaged GPi Synaptic Input to TC

In our network model, the synaptic input from the GPi to a TC neuron, IGPi→TC, comes
from a subgroup of GPi neurons. As illustrated in Figure 17, the first GPi subgroup maps to
the first TC cell and the second GPi subgroup maps to the second TC cell. Following [21,37],
we will let vTCj denote the membrane potential of the j-th TC cell. It follows that this input
will take the form

IGPij→TC = gGPi(vTCj − vGPi) ∑
k∈Ωj

sk
GPij

, j = 1, 2, (11)
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where each Ωj is an index set for the neurons in the GPi group, gGPi is the maximal
conductance, and vGPi is the synaptic reversal potential for inhibition from the GPi group.
Each sk

GPij
in Equation (11) satisfies the equation

s′GPi = αGPi(1− sGPi)S∞(ṽ)− βGPisGPi, (12)

where S∞(x) = (1 + e−(x+57)/2)−1 and ṽ represents the membrane potential of the k-th GPi
neuron from subgroup GPij.

Based on the structure of Equation (12), we can see that each sk
GPij

is between 0 and 1.
We define the quantities sg1 and sg2 by

sg1 = ∑
k∈Ω1

sk
GPi1 , (13)

and
sg2 = ∑

k∈Ω2

sk
GPi2 . (14)

Since each sk
GPij

is between 0 and 1, it follows that sg1 and sg2 are each between 0 and 8.
In our computational study, we use the variability of the time-average of each sgi as an
indicator of GPi rhythmic bursting activity. We do this by constructing histograms based
on the frequency with which each sgi time series, averaged over 25 ms time windows, takes
different values in bins that cover the range of [0, 8]. In analyzing both the parkinsonian
state and the adaptive stimulation protocols, we will construct the histograms over the
time window during which stimulation is applied from 2000 to 7000 ms. Specifically, we
display six bins centered at 1 through 6, respectively, and each represents a subinterval of
1 ms/cm2, except that all values less than 1.5 are placed in the 1 bin and all values greater
than 5.5 are placed into the 6 bin. In the parkinsonian network without external stimulation,
the average sgi values fall into the 1 and 6 bins, as seen in Figure 18.

This result occurs because the GPi firing is both rythmic and bursty (see the top traces
in Figure 19). Studying the top traces in blue in Figure 19 in panels B and C, we see that
the GPi synaptic output is high during each bursting episode and low in between bursting
events. A few values will be sorted into the middle bins 2 through 5 in Figure 18 due to
the transition between bursting and quiescent phases. We will show that very different
results emerge when our adaptive stimulation protocols are applied to the STN neurons
(Figures 4, 7 and 12).

Figure 18. Histograms of sg1 (left) and sg2 (right) in the parkinsonian network, in ms/cm2. Both
histograms include two dominant bins, centered at 1 and 6, due to the quiescent and bursting phases,
respectively, of GPi activity.
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4.1.3. TC Relay Responses and Error Index

Based on the network architecture described above, the synaptic input from the GPi to
the target TC cells is both rhythmic and bursty (see Figure 19 Panels B and C, top curve).
While there are instances where the TC neuron fires a single spike in accordance with
the excitatory input that it receives (see Figure 19 Panels B and C, middle curve), other
excitatory inputs to the TC neuron either result in no spiking activity or firing multiple
spikes in response to a single excitatory input. This failure in one-to-one response between
excitatory input and TC response is how we will characterize and define TC relay fidelity.

Figure 19. STN clusters in the parkinsonian network. Panel (A) shows that the 16 model STN neurons
form two synchronized clusters. Panels (B,C) show the membrane potentials of the two TC neurons
(bottom curve, black) responding to excitatory sensorimotor signals (middle curve, red), along with
the total synaptic input the corresponding TC cell receives from eight GPi neurons (top curve, blue).

In our computational study, we quantify the relay performance of each TC neuron
using a simple error index, which is computed by dividing the total number of errors—
instances in which the TC cell either does not fire or fires multiple spikes in response to a
single excitatory input—by the total number of excitatory inputs. That is, we define

error index =
b + m

n
, (15)

where n is the total number of excitatory inputs. In Equation (15), b will represent the
number of excitatory inputs in which the TC neuron gives a bad response consisting of
more than one spike. Typically this will be in the form of a bursting episode but will
also include a single-spike response followed after a delay, but before the next input,
by additional spikes [37]. The number m in Equation (14) will represent the number of
excitatory inputs that are “missed” by the TC neuron. That is, it is the number of excitatory
inputs to the TC neuron that results in no corresponding spiking activity during a detection
window [37]. Consistent with [37,39], the detection window used in our study extends
from the beginning of each excitatory input to 18 ms after each input. This error index was
first introduced in [39] and was used previously with the same error detection algorithm
to quantify how different patterns of inhibitory GPi signals obtained from experimental
recordings of normal and parkinsonian monkeys, with and without DBS [62], affect the TC
relay response [37].

Adaptive deep brain stimulation (aDBS) is a closed-loop and demand-controlled
method where DBS is turned on and off according to a feedback signal. In this approach,
stimulation is administered only when necessary and to an extent dependent on the
measured neuronal activity or symptoms [13]. Examples of stimulation trigger events or
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biophysical markers include action potentials from the targeted region of the brain and the
amplitude of the beta-band local field potential (LFP) of the subthalamic nucleus (STN)
measured via implanted electrodes [13]. In this study, we used the interspike time—the
time between successive spikes—of the STN neurons to monitor the amount of ongoing
abnormal neuronal activity to determine when stimulation will be applied to the network.
We chose to use the interspike time between successive STN spikes as our biological signal
due to several considerations. First, in our biophysical model, it is not difficult to detect
when the action potential occurs. Second, this measurement is coming from the targeted
region for stimulation and thus will form a closed feedback loop in the network. This
feedback loop will help modulate the stimulation in real-time. Additionally, the use of the
interspike time of successive STN neurons as a biological signal to control the adaptive
delivery of stimulation has not been studied yet. Using this as our detection method, we
aim to not only desynchronize the bursting dynamics of the parkinsonian network but
to provide stimulation in such a way that the bursting dynamic of the STN neurons is
eliminated completely, and we seek to improve the TC relay performance. The stimulation
patterns that we will be testing under this adaptive scheme are constant pulse DBS (acDBS)
and local field potential DBS (aLFPDBS) with coordinated reset shuffling.

4.2. Adaptive Constant Pulse DBS

The acDBS is given by the formula

Istim
k =

Nk

∑
i=1

a0H(t− ti,1)(1− H(t− ti,2)), (16)

where a0 denotes the amplitude of the constant pulses, and H is the Heaviside function,
where the times ti,1 and ti,2 are determined from the spiking mechanism of the STN neurons.
These times are identified to track the interspike interval. For the adaptive protocol, if the
interspike interval is larger than a preset threshold parameter, then the stimulation is turned
off. After the stimulation has been turned off, stimulation will resume if the interspike
interval is even smaller than the preset threshold. The corresponding turn-on time is ti,1,
and the off time is ti,2. That is, when t = ti,1, H(t− ti,1) = 1 and 1− H(t, ti,2) = 1, and
thus, the stimulation is on, and when t = ti,2, H(t− ti,1) = 0, and thus, the stimulation will
be off.

4.3. Adaptive Multi-Site LFP Stimulation

Local field potentials (LFP) are transient electrical signals generated in nervous and
other tissues by the aggregate electrical activity of the individual cells in that tissue (e.g.,
neurons). Since the LFP reflects the activity of many neurons in the vicinity of the recording
electrode, it is therefore useful in studying local network dynamics.

Extracellular potentials are generated by transmembrane currents, and in the presently
used volume conductor theory, the system is envisioned as a three-dimensional smooth
extracellular continuum where the transmembrane currents are represented as volume
currents [63]. In volume conductor theory, the fundamental formula for the contribution of
extracellular potential φ(r, t) from the activity in an N-neuron model is given by

φ(r, t) =
1

4πσ

N

∑
n=1

In(t)
|r− rn|

. (17)

Here, In(t) denotes the transmembrane current in compartment n positioned at rn, and σ is
the extracellular conductivity.

The measured raw LFP(t) is filtered online by applying a linear damped oscillator

ẍ + aẋ + bx = µLFP(t). (18)
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In the equation above, b approximates the frequency of the LFP oscillations and is expressed
by b = 2π/T where T is the mean period of the LFP. The parameters a and b are chosen in
such a way that a2 < 4b to guarantee that Equation (18) represents a harmonic oscillator.
The parameter µ controls the strength of the stimulation. We first choose the values of
a = 0.0025 and b = 0.00136 so that the period of the harmonic oscillator is the same as the
natural frequency of the bursts present in the STN clusters.

The aLFPDBS is given by the formula

Istim
k =

µ

n

Nk

∑
i=1

4

∑
k=1

H(t− ti,1)(1− H(t− ti,2))e−2dist(j,k)xk(t− (k− 1)τ), (19)

where n is the number of STN cells, dist(j, k) is the distance between the jth neuron and
the kth stimulation site, and xk(t− (k− 1)τ) is the time-delayed signal from Equation (18)
that is delivered at the kth stimulation site, where τ is the delay and k = 1, 2, . . . 4. Here,
we calculate the distance in a two-dimensional Euclidian space. For instance, the distance
between STN cell 2 and stimulation site 4 is given by dist(2, 4) =

√
0.252 + 0.52. As before,

the times ti,1 and ti,2 will be identified from the spiking mechanism of the STN neurons to
track the interspike interval needed to control the delivery of the adaptive stimulation.

This formula is applied to the STN neurons through four stimulation sites, as illus-
trated in Figure 20. The 16 model STN neurons are represented by solid circles arranged
in a four-by-four grid centered at the plus in the center. The first row on the square
grid is STN1, STN2, STN3, and STN4 from left to right. STN5–STN8, STN9–STN12, and
STN13–STN16 are in rows 2, 3, and 4, respectively. These neurons are spaced in such a way
that the horizontal and vertical distance between any two neurons is 0.1. The four small
boxes in Figure 20 are the stimulation sites, numbered 1, 2, 3, and 4, proceeding clockwise
from the left. These sites are arranged to be at the center of a smaller two-by-two block
formed by the four nearest STN cells.

Figure 20. Sixteen STN cells (solid circles) on a square grid with the center (plus sign) where an
electrode can measure the local field potential. The four square boxes are the stimulation sites where
the signal will be shuffled through in a clockwise fashion. The signal will be on a time delay of
τ through each site. In the acDBS protocol (Equation (16)), there is no delay and no shuffling of
the stimulation.
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Abbreviations
The following abbreviations are used in this manuscript:

aDBS adaptive deep brain stimulation
acDBS adaptive constant pulse deep brain stimulation
aLFPDBS adaptive local field potential deep brain stimulation
DBS deep brain stimulation
GP globus pallidus
GPe external segment of the globus pallidus
GPi internal segment of the globus pallidus
HF conventional high-frequency stimulation
PD Parkinson’s disease
LFP local field potential
STN subthalamic nucleus
TC thalamacortical neurons

Appendix A

In the following text, we use gi to denote conductance in mS/cm2 and vi to denote
reversal potentials in mV, where the subscript i is from the set {L, Na, K, Ca, AHP, T,
E, GPi, GPe → GPe, GPe → STN, GPe → GPi, STN → GPe, STN → GPi}. τ with a
subscript or both a superscript and a subscript is a time constant in units of ms. All α and β
with subscripts are rate constants in units of ms−1. Other parameters are either constants
without units or with units given in the following text.
Functions for TC neurons in system (6):

m∞(v) = 1/(1 + e−(v+37)/7), p∞(v) = 1/(1 + e−(v+60)/6.2),
h∞(v) = 1/(1 + e(v+41)/4), r∞(v) = 1/(1 + e(v+84)/4),
τh(v) = 1/(ah(v) + bh(v)), τr(v) = 0.4(28 + e−(v+25)/10.5),
ah(v) = 0.128e−(46+v)/18, bh(v) = 4/(1 + e−(23+v)/5).

Parameters for TC neurons:
gL = 0.14, gNa = 3, gK = 5, gT = 5, gE = 0.018, gGPi = 0.009,
vL = −72, vNa = 50, vK = −90, vT = 90, vE = 0, vGPi = −85,
p = 50 ms, d = 5 ms, wino f f = 18 ms.

GPi currents:
IL(v) = gL(v− vL), INa = gNa(m3

∞(v))h(v− vNa), IK = gKn4(v− vK),
IT = gTa3

∞(v)r(v− vCa), ICa = gCas2
∞(v)(v− vCa),

IAHP = gAHP(v− vK)([Ca]/([Ca] + k)),
ISTN→GPi = gSTN→GPisSTN→GPi(v− vSTN→GPi), where sSTN→GPi is listed under STN

equations, and
IGPe→GPi = gGPe→GPisGPe→GPi(v − vGPe→GPi), where sGPe→GPi is listed under

GPe equations.
Iappi = −1 µA is a constant applied current.

GPi equations and functions:
n′ = φn(n∞(v)− n)/τn(v), h′ = φh(h∞(v)− h)/τh(v), r′ = φ(r∞(v)− r)/τr,
[Ca]′ = ε(−ICa − IT − kCa[Ca]), s′Gi = α(1− sGi)S∞(v)− βGisGi, where S∞(v) is given

in Section 2.2.



Int. J. Mol. Sci. 2023, 24, 5555 22 of 25

X∞(v) = 1/(1 + e−(v−θX)/σX ), where X = m, n, h, r, a, s, and
τX(v) = τ0

X + τ1
X/(1 + e−(v−θτ

X)/στ
X ), where X = n, h.

GPi parameters:
gL = 0.1, gNa = 120, gK = 30, gT = 0.5, gCa = 0.1, gAHP = 30, gSn→Gi = 0.5,

gGe→Gi = 1,
vL = −55, vNa = 55, vK = −80, vCa = 120, vGPe→GPi = −100, vSTN→GPi = 0,
τ0

n = 0.05, τ1
n = 0.27, τ0

h = 0.05, τ1
h = 0.27, τr = 30,

φr = 1, φn = 0.1, φh = 0.05,
k1 = 30, kCa = 15, ε = 0.0001 msec−1,
θr = −70, θm = −37, θn = −50, θh = −58, θa = −57, θs = −35, α = 2, θτ

n = −40,
θτ

h = −40,
σm = 10, σn = 14, σh = −12, σr = −2, σa = 2, σs = 2, στ

n = −12, στ
h = −12,

βGPi = 0.08, kCa = 15.

STN currents:
IL, INa, IK, ICa, IAHP are as given above for the GPi neuron, and IT = gTa3

∞(v)b∞(r)(v−
vCa). The synaptic currents from GPe to STN are the following:

IGPe→STN = gGPe→STN ∑j∈Λ sj
GPe→STN(v− vSTN→GPe), where Λ is a subgroup of GPe

cells and sGPe→STN is given in GPe equations.
For the stimulation current Istim, see details in Sections 4.2 and 4.3.

STN equations and functions:
n, h, r, [Ca] equations and functions X∞(v), τX(v) are the same as given above for the

GPi neuron, except there is no r∞(v) used and we introduce b∞(r) = 1/(1 + e(r−θb)/σb)−
1/(1 + e−θb/σb).

The synaptic input from STN to GPe and GPi is described as:
s′STN→GPe = αSTN→GPe(1− sSTN→GPe)s∞(v− 30)− βSTN→GPesSTN→GPe,
s′STN→GPi = αSTN→GPi(1− sSTN→GPi)s∞(v− 30)− βSTN→GPisSTN→GPi.

STN Parameters:
gL = 2.25, gNa = 37.5, gK = 45, gT = 0.5, gCa = 0.5, gAHP = 9, gGPe→STN = 0.9,
vL = −60, vNa = 55, vK = −80, vCa = 140, vGPe→STN = −100,
τ0

n = 1, τ1
n = 100, τ0

h = 1, τ1
h = 500, τ0

r = 7.1, τ1
r = 17.5,

φr = 0.5, φn = 0.75, φh = 0.75,
k1 = 15, kCa = 22.5, ε = 5× 10−5,
θr = −67, θm = −30, θn = −32, θh = −39, θa = −63, θs = −39, θb = 0.25,
θτ

n = −80, θτ
h = −57, θτ

r = 68,
σm = 15, σn = 8, σh = −3.1, σr = −2, σa = 7.8, σs = 8, σb = 0.07
στ

n = −26, στ
h = −3, στ

r = −2.2,
αSTN→GPe = 5, αSTN→GPi = 1, βSn→Ge = 1, βSTN→GPi = 0.05, wk = 0.45.
PHFS parameters: ρ1 = 0.7, a1 = 0.9, a0 ∈ [36, 100], τ0 ∈ [16.5, 60.5].
LFP parameters are all given in the text.

GPe currents:
IL, INa, IK, ICa, IAHP are modeled as given above for the GPi neuron. The synaptic

currents to GPe are:
ISTN→GPe = gSTN→GPe ∑j∈Λ sSTN→GPe(v− vSTN→GPe), where Λ is a subgroup of STN

neurons and sSTN→GPe is given under STN equations.
IGPe→GPe = gGPe→GPe ∑j∈Λ sGPe→GPe(v− vGPe→GPe) where Λ is a subgroup of STN

neurons and sGPe→GPe is the same as sGPe→STN given under GPe equations.
Iapp = −1.2 is a constant applied current.

GPe equations and functions:
n, h, r, [Ca] equations and function X∞(v), τX(v) are as given above for the GPi neuron.
The synaptic input from STN to GPe and GPi is described as:
s′GPe→STN = αGPe→STN(1− sGPe→STN)s∞(v− 20)− βGPe→STNsGPe→STN ,
s′GPe→GPi = αGPe→GPi(1− sGPe→GPi)s∞(v− 20)− βGPe→GPisGPe→GPi.
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GPe parameters:
Most parameters for GPe are the same as those for GPi. We only list those that have

different values and the additional ones not present in the GPi model.
gSTN→GPe = 0.18, gGPe→GPe = 0.01, vSTN→GPe = 0, vGPe→GPe = −80,
αGPe→STN = 2, αGPe→GPi = 1,
βGPe→STN = 0.04, βGPe→GPi = 0.1.
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