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Abstract: The mechanism of the recently reported catalyzed asymmetric hydrogenation of enyne 1
catalyzed by the Co-(R,R)-QuinoxP* complex was studied by DFT. Conceivable pathways for the
Co(I)-Co(III) mechanism were computed together with a Co(0)-Co(II) catalytic cycle. It is commonly
assumed that the exact nature of the chemical transformations taking place along the actually
operating catalytic pathway determine the sense and level of enantioselection of the catalytic reaction.
In this work, two chemically different mechanisms reproduced the experimentally observed perfect
stereoselection of the same handedness. Moreover, the relative stabilities of the transition states of
the stereo induction stages were controlled via exactly the same weak disperse interactions between
the catalyst and the substrate.
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stereoselection; weak intramolecular interactions

1. Introduction

Obtaining a better understanding of the intrinsic mechanisms for generating chi-
rality via asymmetric catalysis is one of the most important current targets of chemical
research [1,2]. Although significant progress has been made in the experimental characteri-
zation of reactive intermediates, as well as in computational studies of various catalytic
cycles, the results accumulated to date lack sufficient generalization and classification, with
each particular reaction being considered as a specific case with its own mechanism of
chirality generation. Even the simplest conceivable asymmetric catalytic reaction, viz.,
asymmetric hydrogenation, is a field comprising a lot of different suggestions, mechanistic
ideas, reconsiderations, empirical rules, etc. [3-23].

This situation has become still more complicated with the recent rapid development
of new hydrogenation techniques applying asymmetric catalysis with complexes of cheap
and abundant metals [24-26]. Numerous mechanistic studies of the catalytic cycles of
asymmetric hydrogenations have been performed of catalysis by earth-abundant metals,
such as Ni [27-31], Co [32-47], Fe [48-52], Mn [53,54], etc. It seems that each metal has
its own hydrogenation chemistry, which can in turn be subdivided into various catalytic
cycles with different metal oxidation states.

Recently, Zhang et al. reported co-catalyzed asymmetric hydrogenation of enynes
and suggested Co(I)-Co(Ill), with a mechanism based on analogous Rh-catalyzed reactions
being suggested (Scheme 1) [46]. Being interested in the mechanisms of stereoselection
in various catalytic asymmetric reactions, the author decided to study the mechanism of
this new reaction computationally. Unexpectedly it was found that different mechanisms,
either Co(I)-Co(III) or Co(0)-Co(II), which are dissimilar in their chemical details and the
structures of their intermediates, predict the same sense and level of enantioselectivity.
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Scheme 1. Asymmetric hydrogenation of 1.

The author is convinced that this is an important finding for a general theory of
asymmetric catalysis, and presents the results in this paper.

2. Results and Discussion

The authors suggest a Co(I)-Co(IlI) mechanism for the reaction based on the analogous
synthesis of the corresponding Rh-catalyzed hydrogenation [46]. Hence, the corresponding
competing catalytic cycles were first computed.

2.1. Formation of Solvate Dihydrides

QuinoxP*-Co(I) complex 3 was computed to undergo facile hydrogenation yielding
diastereomeric solvate dihydrides 6 and 7 via initial formation of molecular hydrogen
complexes 4 and 5 (Scheme 2).
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Scheme 2. Formation of dihydride complexes 6 and 7. The solvent molecules were not computed
explicitly, and are not shown in this schematic representation. Computed free energies are given
relative to 3 + 1 +Hj, (shown in red and blue for opposite enantiomers).

It was concluded that these hydrogenations are suitable reactions for the dihydrogen
activation and can make a start for a Co(I)-Co(III) catalytic cycle.
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2.2. Oxidative Addition to Catalyst—Substrate Complexes

Stable catalyst-substrate complexes 8 and 9 are formed upon the reaction of 3 with
the substrate 1 (Scheme 3). They give corresponding molecular hydrogen complexes 10
and 11 upon reaction with dihydrogen. However, oxidative addition of H; takes place only
in complex 10, whereas when a hydrogen atom approaches Co in complex 11, a steady
increase in energy results, and this does not lead to any productive transformation.
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Scheme 3. Reaction of the catalyst-substrate complexes 8 and 9 with dihydrogen. Computed free
energies are given relative to 3 + 1 +H, (shown in red and blue for R- and S-pathways, respectively).

This could be a basis for a perfectly enantioselective reaction; however, the complex 12
is not capable of undergoing reductive elimination for the completion of the catalytic cycle.
An extensive search for possible pathways of the reductive elimination in 12 invariably led
to a reverse reaction, an exchange between two hydrides or dissociation of the double bond.

The same situation has previously been described for Rh-catalyzed asymmetric hydrogena-
tions, where it was shown that dissociation of the double bond with its further re-association
in the octahedral complexes is the most feasible pathway for reaction products [11,12].

Thus, the reaction of catalyst-substrate complexes with dihydrogen is unlikely to
contribute to the flux of catalysis in the reaction under study.

2.3. Stereoselective Formation of Chelating Dihydrides—Four Competing Catalytic Cycles

As can be seen from the Scheme 3, the dihydride complexes 6 and 7 are stable and
readily available intermediates. Therefore, their reactions with substrate 1 were studied
(Scheme 4). Initially, encounter complexes 13-16 are formed. In these intermediates, the
substrate is bound to the catalyst via coordination of the oxygen atom of the acetamido group



Int. J. Mol. Sci. 2023, 24, 5568

40f13

to Co and through the non-covalent interactions of the phenylpropinyl group with the t-Bu
and Me substituents of the ligand. Further approach of the double bond to the Co-H unit can
proceed, producing «- or 3- dihydride intermediates in each case, but only the 3-dihydrides
18 and 19 could be located as definite minima. On the other hand, when the double bond
in 13 and 16 achieved a proper orientation for the hydride transfer (coplanar to the Co-H
bond trans- to phosphorus), immediate barrierless migratory insertion takes place yielding
the corresponding monohydride intermediates 21 and 24. Finally, the reductive elimination
yields the product and recovers the catalyst in each of the four pathways (Scheme 4).
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Scheme 4. Four competing pathways in the Co(I)-Co(IIl) mechanism of the asymmetric hydrogena-
tion of 1 with Co complex 3.

Scanning the approach of the double bond to the reactive site (Figure 1) revealed
further details of the process of stereoselection during the formation of chelate cycles.
Apparently, the discrimination between the «- and 3-pathways takes place at the early stage
of this process. Thus, in the range of the interatomic differences 6-8 A, the interconversion
between the different pathways is facile through the rotations around ordinary bonds, and
the Boltzmann distribution strongly favors the x-pathways. Since at shorter interatomic
distances the direct convergence between different pathways becomes impossible, the
-pathways can be excluded from the consideration.
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Figure 1. Scans of the electronic energy changes upon approach of the double bond towards the
appropriate configuration for the migratory insertion step. Red—R(«x), blue—5(«), yellow—R(f3),
green—5([3).

Both a-pathways exhibit definite maxima at around 3 A (R(«) pathway) and around
4 A (S(cx) pathway), due to the necessity of changing the pattern of the disperse interactions
between the substrate and the catalyst. The difference between the free energies of the
corresponding transition states TS4 and TS7 apparently determines the optical yield of
the whole catalytic cycle (Figure 2), since there are no other maxima on the way towards
the corresponding monohydride intermediates 21 and 24 and the barrier of the reductive
elimination of the S(x) pathway is significantly higher than that of the R(«) pathway.
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18 —16.1

2(S)-3 -26.8
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Figure 2. Profile of relative free energies (kcal/mol) in four competing catalytic cycles of the
Co(I)-Co(III) route. Red—R(cx), blue—S(x), yellow—R(f3), green—5S(3).
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The optimized structures of TS4 and TS7 are shown in Figure 3. Comparing them, it
can be concluded that the main contribution to the greater stability of the former originates
from much more pronounced C-H - 7 interactions of the acetylenic unit with the t-Bu
group in the TS4 compared to the same interactions of the Me group in the TS7, since all
other stabilizing intramolecular interactions appear to be very similar in both structures.
These observations promote the triple bond as an effective stereoregulating group.
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Figure 3. Optimized structures and important interatomic distances of the transition states TS4 and
TS7. Black—C, grey—H, blue—N, red—O, violet—P, turquoise—Co.

2.4. Co(0)-Co(1I) Mechanism

The reaction conditions applied in the experimental study suggest that a Co(0)-Co(II)
mechanism is also conceivable. This consideration prompted computations of the corre-
sponding catalytic cycles.

The substrate can coordinate to the neutral solvate complex of Co(0) 25 with either of
its prochiral planes exogonically yielding corresponding catalyst—substrate complexes 26
and 27 (Scheme 5). Endogonic coordination of molecular hydrogen giving complexes 28
and 29 is followed by oxidative addition to either the «- or 3-carbon atom of the double
bond via transition states TS14-TS17.

In the case of an si-coordinated olefin, we failed to locate intermediate dihydrides, since
the migratory insertion proceeded spontaneously, resulting in corresponding monohydrides
30 and 31, which provided R-product coordinated to the catalyst via the corresponding
transition states TS18 and TS19. The corresponding dihydrides 32 and 33, originating from
the re-coordination of the double bond, were located together with the transition states for
migratory insertion TS20 and TS21. Nevertheless, the relative free energies of TS20 and
TS21 are notably lower than those of TS16 and TS17, and the presence of the additional step
in the S-catalytic cycles does not affect the process of enantioselection (vide infra).

Inspection of Figure 4 makes it possible to conclude that the chirality is generated in
the migratory insertion step via the difference in the free energies of TS14(R) and TS17(S)
(Figure 5). Although in this case the reductive elimination becomes the rate-limiting stage,
it does not affect the stereochemical outcome, since the difference in the free energies of the
corresponding transition states (TS18(R) and either TS22(S) or TS23(S)) remains almost
the same and for exactly the same reasons.

It is not easy to make a clear statement on which of the computed mechanisms is
actually operating. The catalytic cycles are quite similar energetically (Figures 2 and 4).
Each of them comprises a final stage with activation barriers around 25 kcal/mol (reductive
elimination in the case of the Co(I)-Co(III) mechanism and H, metathesis in the case of
Co(0)-Co((II) mechanism). Most probably, these two mechanisms can operate simultane-
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ously in a manner that, in accord with the computational results, does not affect the almost
perfect enantioselectivity observed in this reaction.
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Scheme 5. Four competing pathways of Co(0)-Co(II) catalytic cycles proceeding via hydrogenation
of catalyst—substrate complexes.

In either the Co(I)-Co(III) or the Co(0)-Co(II) mechanism, the R-enantioselectivity is
secured via C-H - 7t interactions between the triple bond of the substrate and the t-Bu
group of the catalyst. This means that the handedness of the asymmetric hydrogenation
can be predicted without the need for detailed studies on the catalytic cycle, with the only
reasonable assumption of the hydride coming from the side of the metal.
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Figure 4. Profile of relative free energies (kcal/mol) in four competing catalytic cycles of the
Ni(0)-Ni(II) route. Red—R(«x), blue—S(«), yellow—R(3), green—S(3)
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Figure 5. Optimized structures and important interatomic distances of the transition states TS4 and
TS7. Black—C, grey—H, blue—N, red—O, violet—P, turquoise—Co.

Using the well-known quadrant diagrams introduced by Knowles [55], but bearing in
mind that the t-Bu group, which is rich in C-H bonds, actually provides a stabilizing effect,
although not repulsion, as previously thought [56], one can predict the handedness of the
product by positioning a substrate with groups capable of rendering disperse interactions
against the “bulky quadrants” of the catalyst and determining the sign of chirality in a
typical way, suggesting that the hydrogen atom will come from the side of the metal.

This approach is exemplified in Figure 6. R,R-QuinoxP* has t-Bu groups in the upper
left and lower right quadrants. The R-configuration of the hydrogenation product can
be predicted without detailed mechanistic studies, considering only the coordination
of the substrate in an octahedral complex, upon which the groups capable for building
disperse interactions with ¢-Bu substituents would be positioned in the same quadrants
(Figure 6, left). In the same fashion, the S-configuration of the MACHj, [35] can be predicted
on the basis of the asymmetric hydrogenation with the R,R“P"DuPHOS-Rh complex.
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Figure 6. General scheme for predicting the handedness of asymmetric hydrogenation.

The same predictions are valid for numerous Rh-catalyzed asymmetric hydrogena-
tions [7,8,11,12,33], with the notable exception of enamides with ¢-Bu or adamantyl sub-
stituent [57,58] that choose a (3-coordination pathway [11,12,56,59].

3. Conclusions

The results reported in this paper suggest that the focus of the studies of the mech-
anisms of asymmetric catalytic hydrogenations could be somewhat different from the
commonly accepted one. The catalytic activity important for breaking chemical bonds and
forming new ones is certainly quite sensitive to the electronic states of transition metal
atoms On the other hand, the sense and level of enantioselection seem to be much less
susceptible to redox processes. These considerations can provide an efficient and short way
of arriving at important conclusions when only stereochemical information is required.

The author plans to study the further implications of the regularities reported in this paper.
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4. Materials and Methods
Computational Details

Geometry optimizations were performed without any symmetry constraints (C1 sym-
metry) using the wB97XD functional [60] as implemented in the Gaussian09 software
package [61]. Frequency calculations were undertaken to confirm the nature of the sta-
tionary points, yielding one imaginary frequency for all transition states (TS) and zero
for all minima. Constrained energy hypersurface scans were conducted to investigate
the molecular reactivity and to locate viable reaction channels. Where low-lying barriers
were estimated, frequency calculations were performed at the crude saddle points, and the
obtained force constants were used to optimize the transition state structures by employing
the Berny algorithm [62]. All atoms were described using the 6-31G** basis set for geometry
optimization and frequency calculation [63-68]. In the calculation of single-point energies,
all atoms were described using the 6-311++G** basis set [69-73]. Non-specific solvation was
introduced using the SMD continuum model [74] (acetonitrile). Cartesian coordinates of all
optimized intermediates and transition states are given in the Supporting Information.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms24065568/s1.
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