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Abstract: Undeniably, immunotherapy has markedly improved the survival rate of cancer patients.
The scenario is no different in lung cancer, where multiple treatment options are now available and
the inclusion of immunotherapy yields better clinical benefits than previously used chemotherapeutic
strategies. Of interest, cytokine-induced killer (CIK) cell immunotherapy has also taken a central
role in clinical trials for the treatment of lung cancer. Herein, we describe the relative success of
CIK cell therapy (alone and combined with dendritic cells as DC/CIKs) in lung cancer clinical trials
and discuss its combination with known immune checkpoint inhibitors (anti-CTLA-4 and anti-PD-
1/PD-L1). Additionally, we provide insights into the findings of several preclinical in vitro/in vivo
studies linked to lung cancer. In our opinion, CIK cell therapy, which recently completed 30 years
and has been approved in many countries, including Germany, offers tremendous potential for lung
cancer. Foremost, when it is optimized on a patient-by-patient basis with special attention to the
patient-specific genomic signature.

Keywords: lung cancer; NSCLC; SCLC; CIK cells; immune checkpoint; PD-1; PD-L1; CTLA-4

1. Introduction

Certainly, cancer is not limited to the dominance of a few cellular/molecular factors;
rather, a large pool of cancer-causing lesions may emerge from the clinical and pathological
stages. Owing to the extensive genomic sequencing approaches, both mutation-related
and pathologically variable molecular features of lung cancers have been elaborated. In
fact, an accumulation of such datasets has also helped to successfully and effectively de-
fine (diagnostically) diverse lung cancer types ranging from non-small cell lung cancer
(NSCLC: squamous cell carcinoma and non-squamous cell carcinoma) to small cell lung
cancer (SCLC: limited stage SCLC and extensive stage SCLC) [1–4]. However, it is still
unclear how lung cancer cells can escape the immune system, posing a serious challenge
to treatment resistance. Cancer, being a heterogeneous entity, grows abnormally with
metastatic properties, and lung cancer, having an annual mortality rate of more than 80%,
is no different in this regard. Certainly, immunotherapy has emerged as an innovative
therapy for various cancers, and the growing success of immune checkpoint inhibitors
(ICIs), the most representative immunotherapy, has led to effective treatment of cancer due
to their durable anti-tumor effects. Among the checkpoint-blocking strategies, blockades
for programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) have gained increasing attention. These in-
hibitors, alone or in combination, improved treatment response and prolonged the survival
time of NSCLC patients, which show superior efficacy to chemotherapy [2,5–8]. However,
in a subset of patients, treatment resistance remains a major challenge. To overcome this,
the combination of ICI with other therapeutic approaches such as adoptive cell therapy
(ACT) is being pursued. From this perspective, cytokine-induced killer (CIK) cells have
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emerged as a feasible and effective prime candidate for adoptive immunotherapy [8,9]. Of
interest, the synergistic effects of ICIs and CIK cells to increase the anti-tumor potency have
been tested in several preclinical and clinical studies (Figure 1). With a special focus on
lung cancer, we present here the current details and results of all preclinical and clinical
studies performed using CIK cells in combination with ICIs.
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2. CIK Cells as a Realistic Option in Cancer Immunotherapy

Recently, we have celebrated 30 years of CIK cell therapy [22]. Meanwhile, CIK cell
treatment is licensed in many countries, including Germany. CIK cells as adoptive cellular
immunotherapy were first described as an effective anti-tumor weapon in 1991 [23]. As
the name implies, CIK cells are peripheral blood mononuclear cells (PBMCs) engineered
by antibody/cytokine cocktails and expanded ex vivo for approximately 14 days. As a
heterogeneous population of cells bearing the CD3+ and CD56+ labels, they contain a mix
of CD3+CD8+, CD3+CD56+, and CD3+CD56- cells, whose function is primarily determined
by their ability to function independently of major histocompatibility complexes (MHCs)
and by their Natural Killer Group 2D (NKG2D) receptor activity. CIK cells have been
demonstrated, by pre-clinical models and clinical trials, to be able to reveal a dominant
anti-tumor activity in solid and non-solid tumors [24]. In addition to simple preparation
methods, as a result of the treatment of CIK cells, various benefits are evident, including
the prevention of recurrence, the improvement of quality of life, the improvement of
progression-free survival and overall survival, the safety and tolerability throughout the
treatment, and significant cytotoxicity against numerous types of cancer. To date, more than
80 clinical trials involving CIK cells have been performed [25]. One of the most important
reasons for using CIK cells in clinics is the possibility of obtaining them also from PBMCs
of healthy donors, especially when the health status of patients (the elderly or patients
with immunodeficiencies) does not make this possible. However, studies indicate tumors
can still progress even under strong immune pressure. It seems tumor microenvironment
conditions composed of variants have an undeniable effect on immunotherapy strategies
such as CIK cells [7]. It is, therefore, undeniable that designing a rational strategy that has
a better outcome when it comes to fighting cancer is of vital importance. Numerous studies
have indicated that combining CIK with other immunotherapy strategies greatly enhances
the effectiveness of both treatments [25–28]. Since immune checkpoint targeting showed a
considerable result in lung cancer, in this review, we want to evaluate the pre-clinical and
clinical output of a combination of CIK cells and immune checkpoints in lung cancer.
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3. CIK Cells Combined with PD-1/PD-L1 in Lung Cancer

One of the first clinical evidences of advanced squamous non-small cell lung cancer
(NSCLC) with severe thrombocytopenia showed dramatic improvement after first-line
treatment with pembrolizumab (anti-PD-1 monoclonal antibody (mAb)) and autologous
CIK cells [10]. Considering the different role of PD-1 inhibitors in NSCLC patients with
varying clinical and molecular features, this rare case report represents an important update
demonstrating that therapy with a PD-1-blocking antibody and autologous CIK cells is well
tolerated. Assuming that CIK cells might be partly exhausted before clinical transfusion,
Zhang et al. suggested implementing combined treatment on CIK cells before transfusion
via antibodies targeting PD-L1, lymphocyte activation gene 3 (LAG-3), T-cell immunoglob-
ulin mucin-3 (TIM-3), and carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM-1) in order to improve the efficiency of CIK therapy for NSCLC patients [29]. In
another study, PD-1 blockade in combination with CIK cells also showed promising clinical
responses in two patients with metastatic renal cell carcinoma and NSCLC [11]. Liu et al.
suggested that CD4+ T-cells are required to effectively reverse the functional exhaustion
of CIK cells infiltration into NSCLC and restore the cytotoxicity of CIK cells through the
IL-17/AKT/T-bet axis [9]. Recently, Zhou et al. conducted a phase IB study of autolo-
gous CIK cells in combination with Sintilimab (a monoclonal antibody against PD-1) plus
chemotherapy in patients with advanced NSCLC [30].The authors clearly demonstrated
well-tolerated effects and encouraging efficacy in patients with previously untreated ad-
vanced NSCLC. Ma et al. also recently evaluated the clinical efficacy of CIK cells combined
with cytotoxic chemotherapy, followed by sintilimab maintenance, in ES-SCLC patients [12].
To investigate the potential impact of genetic background on the efficiency of CIK cells,
Li et al. cultured three genetically distinct NSCLC cell lines with distinct rearrangements
(EML4-ALK, KRAS mutation, and ROS1 rearrangement) in combination with PD-1 and
an anaplastic lymphoma kinase (ALK) inhibitor [13]. The authors hypothesize that CIK
therapy may be a potential alternative in NSCLC patients harboring EML4-ALK rearrange-
ment. Likewise, a study performed whole-exome sequencing (WES) on samples from
NSCLC patients treated with CIK cells and concluded that somatic copy number changes
can predict clinical benefit in patients with lung adenocarcinoma treated with CIK cells
plus chemotherapy [31].

Wang et al. also performed WES and transcriptomic analyses of tumor tissues and
paired adjacent benign tissues collected from different subtypes of patients with NSCLC
before CIK immunotherapy [32]. The authors concluded that CIK immunotherapy is more
effective in patients with lung squamous cell carcinoma (SCC) than in lung adenocarci-
noma. Han et al. recently conducted a retrospective study of PD-1-blocking antibodies
(pembrolizumab or nivolumab) plus autologous CIK cells to evaluate the safety, efficacy,
and impact of this treatment on immune function in patients with advanced NSCLC [14].
The authors concluded that the combination of CIK cells and a PD-1-blocking antibody
appears to be well tolerated and has promising clinical activity, including high response
rates and the potential for deep and durable responses. Some NSCLC subsets have been
shown to express PDL-1, but those with positive PDL-1 and higher numbers of CD8+
tumor-infiltrating lymphocytes (TILs)—conventionally referred to as “hot tumors”—had a
better objective response rate (ORR) with combination therapy of PD-1 inhibitors, CIK cells,
and chemotherapy [30]. Studies indicate that the use of anti-PD-1 increases both NKG2D
and CD56-positive cell populations [14,33,34]. In addition, Chen et al. [35] indicated that
prolonged PD-1 blockade increased the CD3+CD56+ subpopulation rate with a higher
level of NKG2D expression. Further, they demonstrated that the H1975 lung cancer cell
line exhibited higher PDL-1 expression levels compared to other lung cancer cell lines
and that CD3+CD56+ PD-1-blocked cells significantly improved their cytotoxicity with an
increasing effector to target (E:T) ratio. Furthermore, the number of CD107a-positive CIK
cells in the PD-1-blocked CIK cells was 1.5-fold higher than in CIK cells cultured with the
tumor cell line alone. In vivo assays show that CIK cells inhibited with a PD-1 inhibitor
are better at preventing tumor growth. Zhang et al. [36] indicated that stimulating CIK
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cells with Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) can
reduce the PD-1- and TIM-3-positive cell population as an adjuvant. Xia et al. showed
that LINC01140 knockdown, along with CIK administration, suppressed the growth of
subcutaneous lung cancer xenografts by decreasing PD-L1 expression in severe combined
immunodeficient mice [15]. To mention, an interesting study describes that anti-PD-1 mAbs
should be administered before injection of CIK cells to maximize the efficacy of therapy.
Since administration after the injection of CIK cells significantly impairs the binding rate
of anti-PD-1 mAbs to the PD-1 receptor on CIK cells [16]. Recently, a novel PD-1-blocking
nanobody (PD-1 Nb20) in combination with a tumor-specific dendritic cell (DC)/tumor
fusion cell (FC) vaccine was found to effectively enhance the in vitro cytotoxicity of CD8+
T-cells to kill cancer cells, including NSCLCs [32].

As compared to PDL-1, PDL-2 appears to have a less significant role in tumors and
limited expression in dendritic cells, macrophages, and mast cells [37,38]. In addition,
PDL-2 levels are not as high as PDL-1 levels in cancers, and in some cancers such as
NSCLC, prostate, and endometrium, they have been reported [39–41]. In CIK cells, PD-1
expression is elevated in the early phase of generation but decreases in subsequent days;
however, PDL-1 expression has been reported to be high in contrast to PDL-2, such that
more than 50% of CIK cells are PDL-1 positive after 14 days, and similarly, PD-1 can
induce quiescence in CIK cells after binding to CD80 [29]. The efficiency of anti-PDL-1
does not appear to be inferior to that of anti-PD-1. Anti-PD-1 antibodies were designed
not to interfere with immune cell survival and function [42]. In extensive stage small cell
lung cancer (ES-SCLC), atezolizumab, durvalumab, and pembrolizumab in combination
with chemotherapy have been associated with better progression-free survival (PFS) and
overall survival (OS) [1]. The complete details of the clinical trials and preclinical studies of
CIK cells and PD-1/PD-L1 inhibitors are summarized in Tables 1 and 2 and schematically
shown in Figure 2.
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Upregulation of PD-1/PD-L1 or CTLA-4 on MDSCs, Tregs, and TAMs might increase the production
of suppressor cytokines to restrain the function of CIK cells. DC cells capture the antigen with major
histocompatibility complex (MHC) molecules, which bind to the TCR on T-cells to activate T-cells.
However, the interaction of PD-1/PD-L1 or CD80/CD80 with CTLA-4 may damper the recognition
of NKG2D on CIK cells with MICA/B on tumor cells and further influence the cytotoxicity of CIK
cells against tumor cells. (B) Immune checkpoint inhibitors might amplify the cytotoxic potency of CIK
cells through increasing NKG2D expression, inducing a higher CD3+CD56+ population, and reducing
suppressor cytokines that are secreted by MDSCs, Tregs, and TAMs. DCs: Dendritic cells; MDSCs:
Myeloid-derived suppressor cells; Tregs: Regulatory T-Cells; TAMs: Tumor-associated macrophages.
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Table 1. Clinical studies regarding the combination of CIK cells and immune checkpoint inhibitors.

Ref. Clinical Trial Phase Tumor Entity Treatment Regime Pre-Treated LC Patients (n) Patients with
CIK Therapy (n)

Status (for Registered
Clinical Trials), Study

Start Date

Median
PFS/Month

(CIK vs. Control)

Median
OS/Month

(CIK vs. Control)

ORR %
(CIK vs. Control) DCR Rate% Adverse Effects

[30] NCT03987867 I AS & nS
NSCLC Auto CIK + SIN + chemo No 34 34 Results published 19.3 (all patients) 20.3 * 82.4 100

Neutropenia, fatigue, nausea,
leukopenia, thrombocytopenia,
pneumonia, cardiomyopathy,
dysphagia, rash, and cough.

[12] NCT03983759 II ES-SCLC (Chemo + Auto CIK) as first
line + SIN as second line No 13 13 Results published 5.5 11.8 76.9 100

First line: anemia,
thrombocytopenia, nausea,
vomiting, leukopenia, rash,

anorexia, and fatigue.
Second line: increased

aminotransferase.

[14] - Retro AS & nS
NSCLC Auto CIK + PEM or NIV - 7 7 - 9.7 vs. 1.3 21.7 vs. 28.4 42.86 vs. 9.09 57.14 vs. 45.45

Combination= pneumonia and
exfoliative dermatitis.

PD-1 inhibitor alone= adrenal
insufficiency and
hypothyroidism.

[17] - Retro Advanced
NSCLC R-CIK + PEM or NIV DT 7 3 - TTP = 4.8 Not reached 28.6 85.7

Fatigue, anorexia,
leukopenia, fever, rash, and

interstitial pneumonitis.

[18] - I ST include
NSCLC

PEM-activated autologous
DC-CIK cells - 3 3 5.4 † 9 † 0 33.3

Observed in 64.5% of patients † :
fever, chills, anemia, increased
AST, increased ALT, decreased

albumin, leukopenia,
thrombocytopenia, vitiligo, and

hypothyroidism.

- NCT03190811 Pros, I, II ST include LC Auto DC/CIK + PEM Yes, ‡ 100 - RNP, Sep 2016 - - - - -

- NCT03282435 Pros, I NSCLC Auto CIK + Anti PD-1 - 30 - RNP, Jan 2018 - - - - -

- NCT04836728 Pros, II NSCLC SIN + Chemo ± CIK cells No 156 - RNP, Apr 2021 - - - - -

- NCT02886897 Pros, I, II SL include LC Auto CIK + Anti PD-1 No 50 - RNP, Jul 2016 - - - - -

- NCT03360630 Pros, I, II NSCLC PEM ± Auto DC/CIK cells Yes, ‡ 60 - RNP, Nov 2016 - - - - -

- NCT03815630 Pros, Early I ST PEM + Auto DC/CIK cell Yes, chemo 100 - RNP, Feb 2019 - - - - -

* (in squamous patients), not reached in all patients; † In out of 31 enrolled patients; ‡ standard therapy or declined chemotherapy/radiotherapy. Abbrivations: Cryo: Cryotherapy;
LC: Lung cancer; PEM: Pembrolizumab; DC: Dendritic cells; RNP: Results not published; chemo: chemotherapy; Pros: Prospective; ST: Solid tumor; SIN: Sintilimab; AST: Aspartate
transaminase; ALT: Alanine transaminase; NIV: Nivolumab; Retro: Retrospective; AS: Advanced Squamous; nS: non-squamous; PFS: progression-free survival; OS: overall survival;
ORR: Objective response rate; DCR: Disease Control Rate.
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Table 2. Pre-clinical and case studies regarding CIK cells and immune checkpoint inhibitors.

Ref Cell Setting Immune Checkpoint Type of Inhibitor/Modulator Type of Cancer Output

[16] (2022) CIK cells PD-1 Anti-PD-1 + pemetrexed A549, H1299 High CIK cell efficacy in prior anti-PD-1 mAb-treated mice compared with treating mice after CIK cell infusion.

[13] (2022) CIK cells PD-1 NIV + crizotinib (ALK inhibitor)
NCI-H2228 (EML4-ALK)
A549 (KRAS mutation)

HCC-78 (ROS1 rearrangement)

Reduction of PD-1 surface expression after antibody usage;
Higher IFN-γ secretion;

Higher granzyme B in CD3+CD56+;
Higher Fas-L expression on CIK cells;

Lower non-specific cytotoxicity (an adverse effect) in combinational therapy.

[9] (2022) CD4- CIK cells PD-1 Anti PD-1 A549
Higher CD56+ CIK cell subpopulation;

Lower PD-1+ TIM-3+ CIK cells;
Higher IFN-γ+Gzm B+ cell population.

[43] (2021) DC-CIK cells CTLA-4 of CIK cells Nb36 nanobody Hepatocellular carcinoma

Increased CTLA-4 expression during CIK cell generation;
Higher proliferation and differentiation by CTLA-4 inhibition;

Higher pro-inflammatory cytokine secretion by CTLA-4 inhibition;
Higher survival rate by decreasing tumor growth in tumorized mice.

[15] (2021) CIK cells PD-L1 LINC01140 Lung cancer

LINC01140 knockdown lung cancer treated with CIK cells in vivo compared with the control group:
• Higher regression of tumor growth;

• Higher IL-2, TNF-α, IFN-γ;
• Higher CD3+CD56+ CIK cell population;

In co-culturing of CIK and LINC01140 knockdown lung cancer cells compared with non-knockdown tumor cells:
• Higher IFN-γ secretion;
• Lowe tumor cell viability;
• Lower apoptotic CIK cells;

LINC01140 expression inhibits PDL-1 mRNA inhibition, which leads to tumor cell invasion and immune evasion.

[44] (2020) CIK cells CTLA-4 of CIK cells and cell lines, PD-1 IPI A-498 and Caki-2 renal cell lines

No differences in tumor cell viability by CTLA-4 inhibition;
Higher CIK cell proliferation by CTLA-4 inhibition;

No differences in CIK cell cytotoxicity by CTLA-4 inhibition;
Higher IFN-γ secretion by CTLA-4 inhibition.

[45] (2019) DC-CIK cells CTLA-4 of CIK cells, PD-1 Anti CTLA-4 antibody 786 and ACHN (renal cell cancer)

Anti-CTLA-4 acts weaker than anti-PD1;
Higher proliferation and differentiation by CTLA-4 inhibition;

Higher cytotoxicity by CTLA-4 inhibition;

Higher CD62LlowCD44hi cells by CTLA-4 inhibition;
Higher pro-inflammatory cytokine secretion (IFN-γ and TNF-α) and lower suppressor cytokines (IL-10) by CTLA-4 inhibition.

[11] (2018) Auto CIK cells PD-1 PEM Squamous NSCLC
(Case report)

After 185 days of treatment, the patient is still in remission;
No adverse effect has been seen.

[20] (2018) CTLA-4 of CIK cells shCTLA-4 lentiviral particles A549
Increased CTLA-4 expression during CIK cell generation;

Higher proliferation by CTLA-4 inhibition;
Higher proliferation by CTLA-4 inhibition.

[34] (2016) CIK cells PD-1, PDL-1 Anti PD-1, Anti PDL-1 Gastric cancer and
colorectal cancer cell line

Higher PD-1/PDL-1 expression on CIK cells following co-culture with the MGC803 cell line;
Higher CIK cell cytotoxicity toward tumor cells after combining with either anti-PD-1 or anti-PDL-1 in vivo and in vitro;

Higher IFN-γ, CD107a, and NKG2D expression are accompanied by impaired CTLA-4 and LAG-3 signaling by inhibiting
PD-1/PDL-1 binding on CIK cells.

[46] (2016) CIK cells CTLA-4, KIR, LAG-3, PD-1, TIM-3 IPI ALL, AML, MM, and U937, Raji

No differences in CTLA-4 expression during CIK cell generation;
Expression of CTLA-4 ligands on tumor cells;

No differences in CIK cell cytotoxicity by CTLA-4 inhibition compared to KIR, LAG-3, PD-1, and TIM-3 blockade;
No autologous reaction to blocking CTLA-4 CIK cells.

Abbreviations: AS: Advanced Squamous; PEM: Pembrolizumab; IPI: Ipilimumab; NIV: Nivolumab.
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4. CIK Cells Combined with CTLA-4 in Lung Cancer

CTLA-4 has been shown to be more highly expressed in tumor cells and correlates
with poor prognosis [47,48]. However, Zhang et al. reported that CTLA-4 is not expressed
in all NSCLC cell lines [49]. Of interest, two human mAbs that target CTLA-4, ipilimumab
and tremelimumab, have already entered clinical trials. In ES-SCLC, the combination of
ipilimumab and chemotherapy showed a better, although not significant, outcome [1].
Lung cancer patients receiving approved anti-CTLA-4 and anti-PD-1 antibodies achieved
considerable results, though not to the extent of melanoma patients [50,51]. Hellman
et al. suggest that the combination of nivolumab and ipilimumab is more likely to prevent
NSCLC tumor growth compared with chemotherapy [52]. However, Jure-Kunkel et al.
showed that the anti-CTLA-4 antibody can affect the lung cancer cell line M109 only in
combination with ixabepilone [53]. Recently, a study provided a rationale for the benefit
of aPD-1/aCTLA-4 combination therapy in malignant pleural mesothelioma (MPM) by
demonstrating differences in the peripheral blood T-cell compartment in two phase II
clinical trials evaluating aPD-1 monotherapy and aPD-1/aCTLA4 combination therapy [54].
The authors concluded that combined treatment with aPD-1 and aCTLA-4 triggered robust
T-cell proliferation and activation in MPM patients, whereas aPD-1 monotherapy did not.

Although not enough data are available on the synergistic combination therapy of CIK
cells with CTLA-4 in lung cancers, especially in the clinic, which may indicate an intriguing
avenue about the need for further investigation, some studies suggest that the quality and
quantity of CIK/DC-CIK cells against various tumor cell lines, in vivo and in vitro, are in
some way intensified by inhibition of CTLA-4 (Table 2 and Figure 1). Interestingly, Rui
et al. reported that CTLA-4 expression increases when PBMCs are induced into CIK cells
during in vitro culture, and inhibiting CTLA-4 expression by shCTLA-4 lentiviral particles
can enhance CIK cells proliferation ex vivo and their cytotoxicity toward A549 lung cancer
cell lines [20]. A higher expression of CTLA-4 during CIK cell generation can be partially
explained by the culturing conditions, which require IL-2 stimulation. In this context,
Stojanovic et al. reported that CTLA-4 expression, in addition to CD-28, can be induced
by IL-2 in natural killer (NK) cells from C57BL mice. Furthermore, IFN-γ secretion, one of
the most important cytokines against tumor cells, can also be affected by higher CTLA-4
expression [45]. Conversely, Zhang et al. reported that CTLA-4 expression is high in the
early stages of CIK cell transformation but slowly decreases in the following days [29].
Yuan et al. indicated that use of anti-PD1 and anti-CTLA-4 antibodies not only improved
the expansion and differentiation of DC-CIK cells but also increased their cytotoxicity
effects in a renal cancer cell line [55]. As aforementioned, the synergy of CIK cells with
CTLA-4 in lung cancer clinical trials is still an open area that requires attention.

5. CIK Cells and Rational to Investigate Other Immune Checkpoint Inhibitors

The mature CIK cells (at day 15) have been shown to have high expression of PD-L1,
LAG-3, TIM-3, and CEACAM-1 and low expression of the T-cell immunoreceptor with
Ig and ITIM domains (TIGIT), the B- and T-lymphocyte attenuator (BTLA), PD-1, and
CTLA-4 compared with their initial expression [29]. Therefore, it is reasonable to combine
CIK cells with other ICIs as well. In this context, blocking the TIM-3 and PD-1 signaling
pathways of DC-CIK cells with antibodies showed enhanced killing ability of DC-CIK
cells in human lung adenocarcinoma A549 cells [21]. Poh et al. investigated whether
blockade of inhibitory receptors on CIK cells by ICIs could enhance the antitumor efficacy
of ICIs against hematologic malignancies [46]. The authors demonstrated that blockade of
killer-cell immunoglobulin-like receptors (KIR), LAG-3, PD-1, and TIM-3, but not CTLA-4,
resulted in a remarkable increase in the killing rate against defined targets.

6. DC/CIK Cells and Lung Cancer Clinical Spectrum

While only limited evidence is available from a handful of lung cancer trials, the
results concerning DC/CIK cell therapy are encouraging. For instance, considering that
the combination of dendritic cells (DCs) and CIKs can elicit an anti-tumor immune re-



Int. J. Mol. Sci. 2023, 24, 5626 8 of 12

sponse, Zhang et al. investigated the feasibility of DCs/CIKs in combination with thoracic
radiotherapy in patients with locally advanced or metastatic NSCLC, which confirmed the
efficiency and safety of the treatment regimen [56]. Zhu et al. also suggested that combined
DC-CIK therapy with synchronous radiotherapy and chemotherapy to treat stage IIIB
NSCLC was superior to single synchronous radiotherapy and chemotherapy [57]. Chen
et al. demonstrated that pembrolizumab (PD-1)-activated autologous DC-CIK cells exhib-
ited a promising safety profile and showed an encouraging clinical response in patients
with advanced solid tumors, including lung cancer [18]. Li et al. also evaluated the clinical
efficacy of DC-activated CIK cell treatment following regular chemotherapy and the effects
of this therapy on immune responses in patients with NSCLC after surgery [58]. Zhao et al.
also suggested that a combined regimen of DC vaccination and CIK cell therapy with other
treatments to overcome the systemic T helper 2 (Th2)-dominant immune response could
improve the current clinical benefit [59]. Song et al. found that increased cycles of DC/CIK
cell immunotherapy contributed to the decrease in Treg frequency and cancer recurrence
rate in patients with resected NSCLC [60]. Zhang et al. showed that DC-CIK can induce
an immune response against NSCLC, improve quality of life, and prolong overall patient
survival without adverse side effects [61].

7. Conclusions and Future Prospects

We raised the scarcity of knowledge about CIK cells in combination with anti-PD-L1
and anti-CTLA-4 in lung cancer. ICIs can indeed cause a range of long-term side effects
as they impair T-cell tolerance, though most of them tend to be mild [62,63]. A treatment
with systemic steroids also helps well in some severe cases [64–66]. Importantly, ICIs
are still considered less toxic compared to chemotherapy. Since these active compounds
(e.g., ICIs) are used in multiple cancers (mainly in a combinatorial way), we believe that
better tracking of these long-term effects is utterly important. Given that the molecular
pathways targeted by ICIs also have a small overlap with microbiome-induced dysregula-
tion [67], it is equally important to distinguish clinical phenotypes in cancer patients that
are unrelated to antitumor activity. Pseudoprogression is another disconcerting feature of
ICI administration; though it is rare, it has been reported in a few patients with NSCLC
treated with ICIs [68,69]. To our knowledge, there is no evidence of pseudoprogression in
CIK cell trails involving ICIs. Thus, it is reasonable to suggest that the adverse effects of
ICIs (if any) appear to be negligible when they are combined with CIK cells.

Undeniably, ICIs are also expensive compared to other anticancer drugs, and the sce-
nario is no different for lung cancer treatment [70–72]. However, the prognostic significance
of PD-L1 continues to play a central role [73]. As evidenced in advanced-stage NSCLC,
where positive PD-L1 expression has been associated with more aggressive pathologic
features and a poorer prognosis [74]. Importantly, ICIs are well tolerated and significantly
reduce the risk of death from lung cancer. Therefore, early screening for validated biomark-
ers that could predict the prognosis for immunotherapy is crucial for cost-effectiveness.
Eventually, in the near future, the integration of datasets from NGS technologies may help
evaluate appropriate drugs (ICI/cancer drugs) and estimate the potential clinical outcomes
for individual patients. Based on our own experience and the literature information on
lung cancer, it is reasonable to propose that CIK cells (alone and also as DC/CIKs) should
be preclinically assayed with PD-L1 and CTLA-4. Given that epigenetic inhibitors can be
easily tuned with CIK cells, they can be used in a complementary experimental setup with
these particular ICIs. Most importantly, the genetic background underlying the preclinical
lung cancer models should be at the forefront before reaching any conclusions. Regarding
SCLC treated with CIK cells and an immune checkpoint inhibitor, remarkable results are
not yet available.
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