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Abstract: Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used world-
wide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at
therapeutic doses, may harm fetal development. Here, we examined whether exposure to metham-
phetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs).
The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as
ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from
the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine
(10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs,
but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1,
Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine
could impair VMDN differentiation by altering the expression of important neurogenesis-related genes.
Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during
pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.

Keywords: methamphetamine; dopaminergic neurons; fetal neurodevelopment; ventral midbrain;
embryonic neurons
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1. Introduction

According to the United Nations Office on Drugs and Crime’s most recent estimate,
approximately 14 to more than 53 million people worldwide are abusers of the addictive,
illegal, narcotic methamphetamine [1]. Methamphetamine is a neurotoxic drug that can cause
prolonged consequences in abusers despite its considerable popularity as a recreational drug
due to its widespread availability, relative affordability, and longer euphoric effects [2–4].
The short-term administration of methamphetamine results in behavioral changes induced
by the activation of dopaminergic systems in various parts of the brain [5]. Long-term
abuse of methamphetamine can lead to neuropsychiatric adverse effects, including addiction,
psychosis, and cognitive impairments [6], and it can also cause Parkinsonism [7]. Further-
more, some cognitive deficits are connected to the neurodegenerative alterations induced by
methamphetamine use in human addicts [8]. Methamphetamine is one of the most popular
“hard” drugs used by expectant mothers [9,10] and ranks among the most often used illicit
narcotics in the Czech Republic and in eastern and middle Europe [10–12]. According to
statistics, ~17% of female drug methamphetamine abusers in the USA used it as their major
drug of choice, while ~40% used it during their pregnancy because of its anorectic effects [9].
Methamphetamine exposure during pregnancy has been shown to harm embryonic brain
development because of its neurotoxicity [13]. Moreover, microglia that play crucial roles in
brain development and neuronal network maintenance are affected by methamphetamine-
induced neuronal impairment, which results in oxidative stress, transcription factor activation,
mitochondrial metabolism malfunction, DNA damage, excitatory toxicity, apoptosis, and
neuronal inflammation [13–16]. Therefore, organizations such as The National Institute on
Drug Abuse in the USA have attempted to encourage research by increasing funding to
understand the effects of methamphetamine use during pregnancy. However, the effects,
especially the long-term consequences of prenatal exposure to methamphetamine, have not
yet been explored fully [10].

Serotonin, norepinephrine, and dopamine transporters are the primary sites of action
that are competitively inhibited by methamphetamine [17–19]. Of these three targets,
increased expression of serotonin and norepinephrine transporters in the placenta has been
reported in several studies [19,20]. These transporters play a primary role in maintaining
the balance between amniotic fluid and circulation in the fetus [19,21]. Moreover, they have
also been shown to be associated with vasoconstriction of placental vessels, thereby leading
to complications such as preeclampsia [22], fetal abruption, intrauterine growth restriction,
and preterm labor [19,23]. However, the effects of prenatal exposure to methamphetamine
on fetal brain development during pregnancy are elusive.

Ventral midbrain dopaminergic neurons (VMDNs) play crucial roles in controlling
cognitive function and motor activities. VMDNs are generated from the floor plate at
the ventral midbrain during early embryonic development. During their development,
the progenitors migrate from the ventricle and intermediate zones to the mantle zone,
where maturation occurs. The development of VMDNs is controlled by different signaling
cues [24]. These neurons are essential for regulating key functions in the brain, such as
reward processing, learning movements, regulation, and motivation. Therefore, we hypoth-
esized that assessing the effects of methamphetamine exposure on the growth of VMDNs
can provide insights into its effects on brain neurogenesis. To test this hypothesis, we
isolated VMDNs from embryonic ventral midbrain neurons (EVMNs) of mice and assessed
the effects of methamphetamine exposure on the gene expression and morphological traits
of VMDNs. Furthermore, to capture the complexity of the native brain tissue, a 3D cul-
turing technique was employed in this study. Ultrashort self-assembling peptide-based
scaffolds were used to establish a 3D in vitro VMDNs model. These peptides self-assemble
into nanofibrous networks in physiological buffers without chemical or UV cross-linking,
which make them suitable biomaterials for a myriad of tissue engineering applications.
The peptide sequence selected in this study was successfully used in previous studies to
develop 3D in vitro neuronal models [25,26].
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2. Results
2.1. Methamphetamine Did Not Alter the Metabolic Activity of EVMNs

As shown in Figure 1, we isolated the EVMNs and cultured them for 3 days, followed
by treatment with 10 µM methamphetamine, and assessed its effects on the viability of
EVMNs and ATP release. Our findings showed that methamphetamine did not affect
neuronal survival (p < 0.1173) (Figure 2A). Similarly, we observed a non-significant de-
crease (p < 0.3413) in ATP synthesis in the cultures that were exposed to methamphetamine
compared to that in the control cultures (Figure 2B). These findings suggest that metham-
phetamine neither disrupts the mitochondrial electron transport chain (ETC) nor causes
metabolic dysfunction.
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Figure 2. Effect of methamphetamine on the viability of embryonic ventral midbrain neurons
(EVMNs) (A) and ATP release (B). The VMDNs on day three of culture were treated with 10 µM
methamphetamine; control cultures were treated with phosphate-buffered saline (PBS). Data are
expressed as mean ± SEM, n = three technical replicates, seven biological replicates (viability), and
three biological replicates (ATP release). Data were analyzed using a t-test.

2.2. Methamphetamine Did Not Affect the Morphogenesis of VMDNs

The effects of methamphetamine on the morphogenesis of VMDNs were evaluated in
immune-stained cultures with tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1).
As shown in Figure 3A,B, compared to the control, methamphetamine had non-significant
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effects on neurite length (p < 0.549) and dominant neurite length (p < 0.344). In addition, it
showed no obvious differences in the number of branches (p < 0.741) or neurites (p < 0.880)
(Figure 3C,D) between methamphetamine-treated and control cultures. Representative images
of immunolabeled VMDNs with TH revealed the aforementioned results (Figure 3E–H). These
findings revealed that methamphetamine exposure at a dose of 10 µM did not alter the ability
of neurons to differentiate.
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Figure 3. Effects of methamphetamine on neurite length (A), dominant neurite length (B), branch
number (C), and neurite number (D). Representative photos and illustrations of VMDNs immunola-
beled with tyrosine hydroxylase (TH) in control (E,E’) and methamphetamine-treated (F,F’) cultures.
(G,H) Images show a large field of view (20×) for both groups: control and methamphetamine
treated-cultures, respectively.; n = three technical replicates and four biological replicates. Data
are shown as the mean ± standard error of the mean (SEM). Data were analyzed using a t-test.
Scale bar = 50 µm (E,F). Scale bar = 10 µm (G,H). Red arrows show examples of branches.

2.3. Methamphetamine Did Not Change the Morphogenesis of Non-Dopaminergic Ventral
Midbrain Neurons

The effects of a 10 µM dose of methamphetamine on the morphogenesis of non-
dopaminergic ventral midbrain neurons (VMNs) (TH−/TUJ1+) were evaluated in labeled
cultures to determine its effects on this neuronal subtype. Total neurite length (p < 0.285),
dominant neurite length (p < 0.155), and the number of branches (p < 0.668) and neurites
(p < 0.675) did not differ significantly between the control and methamphetamine-treated
cultures (Figure 4A–H). These results suggest that 10 µM methamphetamine does not affect
non-dopaminergic VMNs’ differentiation and morphogenesis.
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Figure 4. The morphogenesis of non-dopaminergic VMNs was not significantly changed upon
exposure to methamphetamine (A–D). There were no discernible differences between the control
(E,E’) and meth-treated (F,F’) groups in representative photos and illustrations for non-dopaminergic
VMNs immunolabeled with class III beta-tubulin (TUJ1). (G,H) Images show a large field of view
(20×) for both groups: control and methamphetamine-treated cultures, respectively; n = three
technical replicates and four biological replicates. Data are shown as the mean ± SEM. Data were
analyzed using a t-test. Scale bar= 50 µm (E,F). Scale bar= 10 µm (G,H). Red arrows show examples
of branches.

2.4. Methamphetamine Altered the Expression of Dopaminergic-Related Genes in VMDNs

Next, we evaluated the effects of methamphetamine on the expression of genes in-
volved in neurogenesis. The expression of Lmx1a was downregulated (p < 0.0455) in the
methamphetamine-treated cultures compared to that in the control cultures
(Figure 5A). Similarly, the expression of En1 was also significantly decreased (p < 0.0329) in
the methamphetamine-treated cultures compared to that in the control cultures, whereas
expression of Nurr1 showed a non-significant alteration (p < 0.2767) (Figure 5B,C). Further-
more, methamphetamine exposure in vitro significantly reduced the expression of Pitx3
(p < 0.0029) and Th (p< 0.004) (Figure 5D,E), indicating that methamphetamine affects
VMDN maturation. The expression of Chl1 was significantly downregulated (p < 0.0264)
in the present study (Figure 5F), suggesting that neurogenesis and maturation of VMDNs
were altered by methamphetamine exposure.
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Figure 5. Effects of methamphetamine exposure on the expression of Lmx1a (A), Nurr1 (B), En1 (C),
Pitx3 (D), Th (E), Chl1 (F), Dat (G), Drd1 (H), and Bdnf (I). Data are represented as mean ± SEM;
n = three technical replicates and four biological replicates; * p < 0.05, ** p < 0.01 and *** p < 0.001.
Data were analyzed using a t-test.

Furthermore, we assessed the effects of methamphetamine on downstream targets
of Nurr1, including Bdnf, Dat, and Drd1, which are crucial for VMDN development
and neurogenesis [24,27–29]. The expression of Dat (p < 0.001) and Drd1 (p < 0.0472)
was significantly decreased, while the expression of Bdnf showed a non-significant el-
evation (p < 0.7224) in response to methamphetamine treatment (Figure 5G–I). Collec-
tively, these findings suggest that methamphetamine affects VMDN differentiation via the
Lmx1a/En1/Pitx3/Th/Chl/Dat/Drd1 pathway. It can be inferred that methamphetamine
adversely affects the normal developmental course of VMDNs by altering the expression
of important genes involved in neurogenesis.

3. Discussion

Acute administration of methamphetamine, a psychostimulant, results in behavioral
changes induced by the activation of dopaminergic systems in various parts of the brain [5].
Accumulating evidence shows that exposure to methamphetamine during pregnancy
causes neurotoxic effects in offspring [13]. In this study, we demonstrated that metham-
phetamine at 10 µM was relatively non-toxic to EVMNs and did not affect the release
of ATP. Similarly, the morphogenetic analysis showed that methamphetamine (10 µM)
did not alter the neurite length and number and length of branches of VMDNs and non-
dopaminergic VMNs.

Nevertheless, the analysis of the expression of Dat, Chl1, Th, En1, Drd1, Pitx3, and
Lmx1a, crucial genes for preserving regional identity in the midbrain [30], revealed that ex-
posure to methamphetamine disrupted early neuronal development in VMDNs. Metham-
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phetamine dramatically changed the expression of most of these genes by altering or
modulating their expression. The genes Lmx1a/b, Mash1, and Ngn2 (which regulate early
DA destiny), Wnt5a/7a and Netrin1 (which affect axonal plasticity), and Wnt5a, Pitx3, and
Th (which are crucial for neuronal maturation) are important neurogenesis-related genes.
However, none of these genes fully accounted for all processes involved in VMDN devel-
opment [31–34]. Lmx1a and b with 64%, 83%, and 100% amino acid sequence identity in the
LIM domain, LIM domain, and homeodomain domain, respectively [35], are involved in
the fate and functional activities of mDA progenitors [36]. Transcription factors and genes
such as Lmx1a, Nurr1, and Mash1 allow the direct generation of VMDNs from murine and
human fibroblasts without reversing to the progenitor cell stage [37]. Numerous studies
have suggested that some genes, such as Foxa2, Pitx3, Otx2, Nurr1, and En1, are crucial for
maintaining the phenotype of neurons and are associated with the early development of
VMDNs [38]. According to previous studies, Lmx1a promotes Nurr1, which then activates
Th, which is involved in VMDN neuronal development [39,40]. In an earlier work by our
group and others, Chl1 was connected to the emergence of VMDNs [40,41].

It was noted that methamphetamine exposure resulted in a substantial downregulation
in the gene expression of Dat and Th. The results are consistent with those of earlier studies
in which repeated high-dose amphetamine injections were administered quickly, leading to
reductions in Th and Dat in the rat striatum [2,42]. Alterations in transcription factors that
control the gene expression of these dopaminergic markers could also be a secondary cause
of differential alterations in the levels of Th and Dat induced by methamphetamine use.
Recent transcriptional investigations have also demonstrated the involvement of certain
genes and elements specific to a particular lineage, including Nurr1, Lmx1b, Pitx3, En1, Th,
and Lmx1a, that play key roles in the growth and preservation of the functional archetype
of VMDNs [40,43,44]. Another study found that Lmx1a has practical utility in the child’s
life after birth and is still present in mitotic residual precursors and actively specialized
neurons [45]. As function-related genes have been affected by methamphetamine exposure
as shown in the present study, it is critical to investigate the effects of methamphetamine
on dopamine release in vitro and in vivo.

The findings of this study raise the possibility that pregnant women should not
use methamphetamine because the risk of cognitive defects and neuronal harm is never
minimized. However, the clinical judgment made in light of methamphetamine therapy
during pregnancy may be influenced by the findings of this study. To validate the findings
of this study, additional research is required to determine whether the developmental
transcription factors evaluated in this study control the dopaminergic circuitry in adult
brains upon exposure to other dopaminergic modulators. Additionally, it is crucial to
investigate whether larger doses of methamphetamine would have similar effects on the
dopaminergic-related genes as reported with the dose used in the current study.

4. Materials and Methods
4.1. Isolation of Primary Mouse Embryonic Ventral Midbrain Neurons

All animal experiments in this study (Figure 1) were carried out in compliance with
international norms for the use of animals in research and were approved by the Ethics
Committees of King Abdulaziz University (KAAU) and Taif University (7-CEGMR-Bioeth).

Female Swiss mice (adults) obtained from King Fahad Medical Research Center were
mated with Swiss mice males at night at Animal housing at KAAU, Jeddah, SA. When
a vaginal plug was visible the following morning, it was considered embryonic day (E)
0.5. The dissection of embryonic ventral midbrain has been performed as previously
described [46]. Breifly, the embryos from the timed-mated mice were obtained at E12.5,
and ventral midbrains (VMs) were isolated and transferred to an ice-cold L15 medium
(Thermo Fisher Scientific, Waltham, MA, USA). The isthmic organizer, telencephalon, and
mesencephalon boundaries were cut to separate the midbrain and cortical tissues. Tissue
from the rear of the midbrain was collected to increase the number of dopaminergic cells in
the culture. The separated VMs were treated with 0.05% trypsin and 0.1% DNase diluted
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in Ca/Mg-free Hank’s Balanced Salt Solution (HBSS) for 15 min at 37 ◦C. The tissues were
washed three times in HBSS medium before re-incubation in N2 medium (comprising F12
medium, 6 mg/mL glucose, Minimum Essential Medium, 1% penicillin/streptomycin,
15 mM HEPES, 1 mM glutamine, 1 mg/mL bovine serum albumin, and 1% N2 supplement;
Thermo Fisher Scientific). Primary neurons were prepared in vitro approximately 3 days
before the study, depending on the experiments (shown in the sections below).

4.2. Three-Dimensional (3D) Neuronal Cell Culture and Methamphetamine Treatment

In order to recapitulate the complex brain tissue architecture, a 3D in vitro VMDN
model was used in this study to assess viability, ATP release, morphogenesis, and gene
expression. To this end, ultrashort self-assembling peptides proved to be promising bioma-
terials for the development of functional 3D neuronal models [25,26]. An Ac-Ile-Ile-Cha-
Lys-NH2 (IIZK) tetrameric self-assembling peptide was used in this study to establish the
3D neuronal cultures as described previously [47].

The IIZK-based hydrogel was prepared in a final concentration of 2 mg/mL by dis-
solving the peptide powder in a volume of sterile water equivalent to half the required
final volume. A peptide base was first prepared in the cell culture plates to ensure efficient
3D encapsulation of the VMDNs within the peptide scaffold. In a 96-well plate, 20 µL of
the prepared peptide solution was added to each well followed by an equivalent volume
of 2xDPBS to promote the hydrogel formation. The plate was then incubated at 37 ◦C
for 5 min to ensure complete hydrogel formation. To establish the VMDN 3D construct,
10 µL of the peptide solution was added on top of the previously prepared peptide base.
6 × 104 of the VMDNs in 2xDPBS were then deposited and briefly mixed with the peptide
solution. The plate was then incubated again for 2–3 min. The cell culture plates were
then filled with N2 media and incubated for 72 h at 37 ◦C and 5% CO2. Methamphetamine
was prepared in sterile 1× PBS (Sigma-AldrichSt. Louis, MO, USA), and 10 µM metham-
phetamine was added to the methamphetamine-treated group. The dose was determined
based on previous studies that measured the concentration of methamphetamine in blood
and plasma [48–51].

4.3. Assessment of the Viability of EVMNs and ATP Release

We evaluated the viability of EVMNs and ATP release in response to methamphetamine
treatment after three days of culture. The alamarBlueTM Cell Viability Assay Reagent kit
(Thermo Fisher Scientific) was used to determine the viability of the EVMNs in the control
and methamphetamine-treated cultures.

The CellTiter-Glo® 3D Cell Viability Assay (Promega, Madison, Wisconsin, WI, USA)
was used to measure ATP release to assess the metabolic activity of the cells following the
manufacturer’s instructions. Briefly, CellTiter-Glo® Reagent (Promega) was added in a
volume equal to that of the cell culture media in the plate and mixed by pipetting up and
down 10 times to break the 3D construct comprising cells and hydrogel. Afterward, the
plates were incubated for 25 min at room temperature, and the luminescent signal was
recorded using a PHERAstar FS plate reader (BMG LabTech, Ortenberg, Germany).

4.4. Immunocytochemistry

VMDNs were fixed in culture using 4% paraformaldehyde after 3 days of metham-
phetamine treatment (and control cultures) and stored at 4◦C in 1× PBS until the staining
procedure. TUJ1 (1:1500; Promega) and TH (1:500; Abcam, Cambridge, UK) primary an-
tibodies were incubated with fixed cultures overnight at room temperature in a blocking
buffer comprising 5% goat serum, 0.3% Triton-X, and 0.2% sodium azide.

After removing the primary antibodies, the cells were treated with a blocking solution
for 1 h at room temperature. Subsequently, the cells were incubated with goat anti-rabbit
IgG H&L (Alexa Fluor® 555) and anti-mouse Alexa 488 (Abcam, ab150078) secondary
antibodies at 1:200 dilutions for 2 h at room temperature. The wells were then cleaned and
maintained in 1× PBS and treated with DAPI (Thermo Fisher Scientific; D1306) diluted in
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1× PBS for 5 min. Imaging was performed using a DMi8 inverted fluorescence microscope
(Leica, Wetzlar, Germany).

4.5. Morphogenetic Analysis

The effects of methamphetamine on VMDN morphogenesis were evaluated in immuno-
stained cultures with TH and TUJ1 following the protocol described in a previous study [41].
The length of the dominant neurites, the total number of branches, the number of neurites,
and the overall length were estimated. The neurites originate from the cell body of the
neurons, while the neurites that originate from other neurites are considered as branches.
The analysis was performed using the Leica Application Suite X (LAS X) software (Leica),
and shorter and overlapping neurites were excluded from the analysis to prevent bias. Data
from cultures treated with methamphetamine were standardized to those of the control
group. The data were then reported as a percentage change from the control, which was
taken as 100%.

4.6. Quantitative PCR

The expression of important genes crucial to neuronal differentiation was examined.
RNA was isolated using RNeasy Plus Universal Mini Kit (Qiagen, Hilden, Germany)
following the manufacturer’s instructions. Briefly, after 3 days of methamphetamine
treatment (and control cultures), the cells were homogenized using TissueLyser II (Qiagen).
VMDN RNA was extracted from both methamphetamine-treated and control cultures.
RNA extracted from mouse tissues other than the brain was used as a negative control.
Table 1 lists the primer sequences used for the selected genes.

Table 1. Sequences for the gene-specific primer pairs used in RT-PCR.

Gene Name Primer Sequence 5 to 3

Gapdh Forward primer:
Reverse primer:

TGA AGG TCG GAG TCA ACG GA
CCA ATT GAT GAC AAG CTT CCC G

Th Forward primer:
Reverse primer:

TGA AGG AAC GGA CTG GCT TC
GAG TGC ATA GGT GAG GAG GC

Nurr1 Forward primer:
Reverse primer:

GAC CAG GAC CTG CTT TTT GA
ACC CCA TTG CAA AAG ATG AG

Lmx1a Forward primer:
Reverse primer:

GAG ACC ACC TGC TTC TAC CG
GCA CGC ATG ACA AAC TCA TT

En1 Forward primer:
Reverse primer:

TCA CAG CAA CCC CTA GTG TG
CGC TTG TCT TCC TTC TCG TT

Pitx3 Forward primer:
Reverse primer:

CAT GGA GTT TGG GCT GCT TG
CCT TCT CCG AGT CAC TGT GC

Chl1 Forward primer:
Reverse primer:

TGG AAT TGC CAT TAT GTG GA
CAC CTG CAC GTA TGA CTG CT

Dat Forward primer:
Reverse primer:

TTG CAG CTG GCA CAT CTA TC
ATG CTG ACC ACG ACC ACA TA

Drd2 Forward primer:
Reverse primer:

CTC AAC AAC ACA GAC CAG AAT
GAA CGA GAC GAT GGA GGA

Bdnf Forward primer:
Reverse primer:

ACT ATG GTT ATT TCA TAC TTC GGT T
CCA TTC ACG CTC TCC AGA

The raw cycle threshold (CT) data for Gapdh (housekeeping/reference gene) and
Nurr1, Pitx3, Drd2, Lmx1a, Th, En1, and Bdnf (target genes) were obtained using the RT-
PCR StepOne System and Data Assist software. Before analysis using the CT method, we
normalized the target gene CT to the reference gene CT and those of the test sample to the
control sample and calculated the differences [(CT target gene − CT reference gene); (CT
test sample − CT control sample)], and finally, we calculated the relative quantification
(Rq = 2 − CT) and fold change (log2FC) to assess the expression of the target genes under
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various experimental conditions. All samples from all the groups’ Rq values for each gene
were compared, and p-values indicated significant expression of the genes.

4.7. Statistical Analysis

All quantitative data were expressed as mean ± standard error of the mean (SEM).
GraphPad Prism v 8.1.2 was used to perform Student’s t-tests, and differences with a
p-value of <0.05 were considered significant.

5. Conclusions

This study demonstrated the effect of methamphetamine (10 µM; equivalent to its ther-
apeutic dose) on VMDNs, which control cognition, coordination, movement, and behavior.
Using primary mouse EMVNs, we demonstrated that methamphetamine consumption
during pregnancy at doses normally used therapeutically is potentially harmful to the
neuronal development of the developing fetus. Exposure to methamphetamine consid-
erably downregulated Pitx3, Th, Lmx1a, Dat, En1, Chl1, and Drd1 expression, suggesting
that methamphetamine adversely affects the normal developmental course of VMDNs by
altering the expression of important genes involved in neurogenesis and affects VMDN
differentiation via the Lmx1a/En1/Pitx3/Th/Chl/Dat/Drd1 pathway. Overall, the study
suggests that the clinical use of methamphetamine in expecting mothers must be exercised
with strict caution, keeping these findings under consideration. However, to understand
how methamphetamine influences the formation, functionality, and behavior of VMDNs,
further studies are required to investigate the effects of methamphetamine on VMDNs
in vivo, which may help guide clinical decisions on using this drug.
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