
Citation: Valentová, J.; Lintnerová, L.;

Miklášová, N.; Oboňová, B.; Habala,

L. Analogues of Anticancer Natural

Products: Chiral Aspects. Int. J. Mol.

Sci. 2023, 24, 5679. https://doi.org/

10.3390/ijms24065679

Academic Editors: Junmin Zhang

and Elaine Lai-Han Leung

Received: 18 February 2023

Revised: 8 March 2023

Accepted: 9 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Analogues of Anticancer Natural Products: Chiral Aspects
Jindra Valentová *, Lucia Lintnerová , Natalia Miklášová , Bianka Oboňová and Ladislav Habala *
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Abstract: Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be
they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact
disparately with different enantiomers of chiral compounds, creating a preference for a particular
enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many
pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers.
Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharma-
cokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a
drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance
regarding the structure of natural products since the great majority of these compounds contain
one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer
chemotherapy and highlight the recent developments in this area. Particular attention has been given
to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a
major pool of new pharmacological leads. Studies have been selected which report the differential
activity of the enantiomers or the activities of a single enantiomer and the racemate.

Keywords: natural products; chirality; anticancer activity; semisynthetic drugs; enantiomers;
chemotherapy

1. Introduction

Cancer is one of the leading causes of death globally, second only behind ischemic
heart disease. Lung, prostate, colorectal, stomach, and liver cancer are the most common
types of cancer in men, while breast, colorectal, lung, cervical, and thyroid cancer are the
most common among women [1].

The primary treatment modalities encompass surgery, chemotherapy, radiation, im-
munotherapy, etc. However, the mainstay treatment is based on chemotherapy which
employs various compounds of natural and synthetic origin that can kill cancer cells or
stop their unwanted proliferation [2,3].

The compounds used in the chemotherapy of cancer disease are quite varied in struc-
ture and mechanism of action, comprising alkylating agents; antimetabolite analogues of
folic acid, pyrimidine, and purine; natural products; hormones and hormone antagonists;
and a variety of agents directed at specific molecular targets. The majority of anticancer
agents interact with DNA or its precursors, inhibiting the synthesis of new genetic material
and causing damage to DNA in both normal and malignant cells [4,5]. The rapidly ex-
panding knowledge of cancer biology has brought about the discovery of entirely new and
more cancer specific targets (e.g., growth factor receptors, intracellular signalling pathways,
epigenetic processes, tumour vascularity, DNA repair effects, and cell death pathways [6,7].

Throughout history, natural products have been the basis of therapy for a variety of
diseases. More than half of the currently used drugs are based on natural compounds [8].
Besides molecules isolated directly from natural sources and applied as such in therapy, this
category encompasses also compounds derived from them using chemical methodology,
as well as fully synthetic compounds which employ the natural compounds as structural
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models for the preparation of more efficient analogues. These derivatisation and modifica-
tion strategies provide drugs with improved pharmacological activities and facilitate the
overcoming of inherent drawbacks associated with many drug-like compounds isolated
from natural sources, such as poor aqueous solubility and marked adverse reactions [9–12].
Thus, pharmacomodulation employs a natural compound with known biological activity
as the origin, lead, prototype, or series head. Combinatorial chemistry in combination
with high-throughput synthesis provides large libraries of bioactive compounds, making it
possible to identify new lead molecules [13]. Manipulation of biosynthetic pathways consti-
tutes another powerful tool for the preparation of derivatives of bioactive compounds [14].
Biosynthesis often affords structures not accessible through chemical synthesis due to
their high structural and stereochemical complexity. Semisynthetic derivatives of natural
products also play an important role in the development of prodrugs [15].

2. Anticancer Natural Products and Their Semisynthetic Congeners

Today, the fraction of anticancer drugs related in one way or another to natural sources
amounts to over 60% [16,17]. Although in the 1990s they temporarily fell out of favour with
commercial pharmaceutical research due to the emergence of targeted therapies, recently
we have encountered a revived interest in this category of bioactive compounds. According
to a study of new and approved drugs for cancer by the United States Food and Drug
Administration (FDA), from 1940s–2010, of the 175 small molecules, 74.8% were other than
synthetic [18].

Historically, (terrestrial) plants constitute the first major source of natural products.
The main categories of anticancer natural compounds of herbal origin (including their
semisynthetic derivatives) comprise taxanes, vinca alkaloids, camptothecins, and podophyl-
lotoxins. Representative members of these drug classes are shown in Figure 1.
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Taxanes are among the most important chemotherapeutic agents in clinical use [19–21].
They belong to the group of microtubulin-stabilising agents. The parent compound of the
taxane class is paclitaxel, isolated from the bark of the Pacific yew tree (Taxus brevifolia).
Docetaxel is a semisynthetic analogue with improved anticancer activity along with better
pharmacokinetic properties. A number of structural analogues have been developed with
a view to overcome the limitations of paclitaxel and docetaxel [22].
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Podophyllotoxin is a lignin isolated from the roots and rhizomes of Podophyllum species.
It has a long history of use in traditional medicine for various indications. Podophyllotoxin
inhibits the polymerisation of tubulin, destabilising microtubules and preventing cell
division. Its use in antineoplastic therapy is impaired especially by low bioavailability
and high toxicity. Thus, several semisynthetic analogues have been developed, the most
successful of them being etoposide, teniposide, and etopophos [23,24]. They are irreversible
inhibitors of topoisomerase II, inducing DNA cleavage.

Vinca alkaloids are microtubulin-disrupting agents, originally isolated from the peri-
winkle plant Catharanthus roseus. Most important among them are vinblastine and vin-
cristine, efficacious anticancer drugs in clinical practice [25]. Numerous semisynthetic
analogues have been developed, including vinorelbine, vindesine, vincamine, and vin-
flunine [26]. These particular compounds show marked differences in their spectrum of
activity as well as toxicity profiles [27]. Consequently, they have differing clinical applica-
tion areas in antineoplastic therapy.

Camptothecin is an alkaloid found in the bark of the Chinese tree Camptotheca acumi-
nata. Its anticancer activity relates to the inhibition of topoisomerase I via the formation of
a ternary complex between the enzyme, DNA, and camptothecin, preventing DNA relega-
tion [28]. Despite its marked antineoplastic effect, its clinical utility is limited due to severe
adverse reactions, as well as unsatisfactory solubility and bioavailability [29]. In order to
improve its pharmacological profile and to reduce the side effects, many semisynthetic
analogues have been prepared and evaluated [30,31]. Thus, irinotecan and topotecan have
found their way into clinical practice; other examples include belotecan, silatecan, cositecan,
exatecan, lurtotecan, and rubitecan.

Microbial-based compounds are among the oldest and most important chemotherapeu-
tic agents in use, including bleomycin, actinomycin, ansamycin, anthracyclines, epothilones,
and enediynes, among others [32]. Examples of their structures are given in Figure 2. A
substantial majority of antitumour antibiotics originate from various Streptomyces species.
A wide variety of structural analogues with improved pharmacological profiles can be
obtained by a combination of genetic engineering techniques and methods of organic
synthesis [33]. A modern and useful technique for the identification of new microbial
secondary metabolites is genome mining [34]. Recently there has been increasing inter-
est in the discovery of new cytotoxic compounds from unconventional sources, such as
plant-associated microorganisms or marine habitats.
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Despite the enormous biodiversity of marine organisms, only a small fraction of
marine habitats has been pharmacologically explored. Recent advancements in isolation
and purification techniques, structure elucidation, synthetic modification, and biological
assays rendered possible the isolation and pharmacological evaluation of numerous unique
anticancer compounds from ocean habitats [35–37]. In this regard, a major source of
anticancer compounds are various marine sponges. In addition, diverse organisms such
as molluscs, tunicates, algae, marine microbes, and various chordates can be sources of
bioactive agents of astounding structural diversity [38,39]. Figure 3 shows the structures of
selected marine-derived molecules with antineoplastic activity. Cytarabine is a synthetic
drug modelled after the natural compound found in the Caribbean sponge Tectitethya
crypta. Trabectedin is an antitumour chemotherapeutic drug discovered in the extract
from the sea squirt Ecteinascidia turbinata. Eribulin is a synthetic analogue of the marine
natural product halichondrin B (found in the sponge Halichondria okadai), both compounds
being potent mitotic inhibitors. An interesting anticancer agent is brentuximab vedotin, a
semisynthetic bioconjugate prepared from the chimeric monoclonal antibody brentuximab
and monomethyl auristatin E, a synthetic analogue derived from dolastatins, natural
peptides occurring in the marine mollusc Dolabella auricularia.
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3. Chirality in Drug Design

Stereoisomers are compounds which differ only in the three-dimensional arrangement
of their constituent atoms in space. Such isomers may be divided into two
groups—enantiomers and diastereoisomers. Enantiomers are pairs of compounds which
are non-superimposable mirror images of each other and, in terms of physicochemical
properties, differ only in their ability to rotate plane polarised light. Such isomers are
called chiral and are referred to as optical isomers. Diastereoisomers are stereoisomers
which do not appear as mirror images of each other. They can be chiral or geometrical
(cis/trans) isomers. A mixture of equal quantities of two enantiomers is called racemate or
racemic mixture.

Chirality is a property inherent to all biological systems. Biomacromolecules composed
of simpler chiral subunits (amino acids, sugars, lipids) fold into complex three-dimensional
architectures, exhibiting supramolecular chirality. Chiral macromolecular scaffolds contain
asymmetric binding sites and catalytic centres capable of recognising and discriminating
between individual stereoisomers of other chiral molecules [40–42]. Most often, chirality
arises from the presence of asymmetric centres in organic molecules; generally, these are
tetracoordinate centres to which four different atoms or group are connected, such as in the
chiral chemotherapy agent melphalan (Figure 4A). Much less frequently, chirality is caused
by atropoisomerism, i.e., the hindered rotation about a single bond, e.g., ortho-substituted
biphenyl derivatives are chiral due to restricted rotation; an interesting example is gossypol,
a bioactive yellow pigment of natural origin (Figure 4B).
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(A) Melphalan carrying the stereogenic centre (marked with asterix)—carbon with four different
atoms or groups. (B) Gossypol stereoisomers resulting from atropoisomerism. Stereoisomers are
denoted according to the configuration of stereogenic centre (R)- (S)-, or their optical activity (+), (−).

Many biochemical processes during drug action require interaction with chiral
biomolecules, hence it is not surprising that enzyme and receptor systems frequently
exhibit a stereochemical preference towards one of a pair of enantiomers. Enantiomers
may differ both quantitatively and qualitatively in their biological activities. The Easson
Stedman hypothesis is generally used to explain the difference in the biological activity
of enantiomers. It asserts that the difference in activity is caused by differential binding
of the pair of enantiomers to the common binding site [45]. The more active enantiomers
must be involved in a minimum of three intermolecular interactions with the receptor
surface; the less potent enantiomer only interacts with two sites (Figure 5). In some cases,
especially in the interaction of drugs with enzymes, it is asserted that a fourth location,
either a direction requirement or an additional binding site is essential to discriminate
between the enantiomers [46].

The differential pharmacodynamic and toxicological properties of the enantiomers of
chiral drugs have been known for a number of years, affecting essentially all categories of
drugs [47–51]. At one extreme, one enantiomer may be devoid of any biological activity; at
the other extreme, both enantiomers may exhibit qualitatively different biological activities.
Furthermore, the required activity may reside in both enantiomers, but the adverse effects
can be predominantly associated with only one enantiomer, or the enantiomers may have
opposite effects on the same biological target [52]. These stereoselective differences may
arise not only from drug interactions at the pharmacological receptors but also from
pharmacokinetic events [53]. Differences between enantiomers may occur during their
absorption, distribution, metabolism, and excretion. Thus, following the administration
of a racemic drug, the individual enantiomers do not reach their site of action in equal
concentrations [54,55].

As a result of advances in chemical techniques, especially in the methodology of stere-
oselective syntheses and stereospecific analyses, together with regulatory requirements,
the number of chiral drugs submitted for approval to regulatory authorities as single enan-
tiomers rather than racemates has increased considerably [56]. Compared to the end of the
last century, when about 55% of clinically used drugs were chiral and half of them were
used as racemates, the current trend in the development of new drugs is mainly towards
substances containing one single enantiomeric form [57,58]. In addition to new chemical
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entities, a number of established racemic drugs have been re-evaluated as potential single
enantiomer products with the possibility of an improved therapeutic profile or applica-
tion in other therapeutic indications. As an example of this “chiral switching“ concept,
the originally racemic nonsteroidal anti-inflammatory drugs (e.g., ibuprofen, ketoprofen)
were marketed as single (S)-enantiomers, since this enantiomer is mainly responsible for
the antiphlogistic effect [59]. Several studies demonstrated the association of these anti-
inflammatory drugs with decreased cancer incidence and recurrence [60,61]. Interestingly,
the (R)-enantiomer of flurbiprofen has been found effective against colon and prostate
cancer as well as against formation of glioblastomas in in vitro and in vivo models [62–64].
Investigating the influence of varying configuration at the chiral centre on biological ef-
fects is rapidly becoming a significant part in the discovery of novel chemotherapeutic
agents [55,65].
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at two sites only, regardless of its orientation towards the active site.

Chirality is one of the important factors that determine the structure of a particular
anticancer drug and its interaction with cancer molecular targets. This is true not only
for purely organic drugs but also for metal-based drugs developed for anticancer applica-
tions [66]. The chiral metal-based anticancer drugs have been comprehensively reviewed in
the literature [66,67] and the influence of chirality on the antineoplastic effect of synthetic or-
ganic compounds was surveyed by Valentova et al. [68]. The antitumour activity of natural
and synthetic chiral flavonoids is the subject of a literature review by Pinto et al. [69].

This review deals with recent studies on diverse chiral antineoplastic agents exhibiting
different mechanisms in their anticancer effects. We focus on selected examples of chiral
natural anticancer compounds and their analogues to provide the reader with an overview
of the most important developments. Only studies which report the anticancer activities
of both enantiomers, or a comparison between a single enantiomer and the racemate are
considered, thus allowing the assessment of the influence of stereochemical arrangement
on antitumour activity.
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4. Chiral Analogues of Natural Compounds with Stereospecific Cytotoxic Activity
4.1. Chiral Xanthones

Many naturally occurring xanthones, those isolated from plants as well as marine
sources, are chiral and exhibit interesting biological activities [70–72]. Chemically, xan-
thones are compounds with an oxygen-containing dibenzo-pyrone heterocyclic
scaffold—9H-xanthen-9-ones (1) (Figure 6). Within this class of compounds and their
synthetic derivatives, the main biological activities reported have been antitumour and
antimicrobial activities [73,74].
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The renowned Garcinia plants widespread in tropical zones of Asia, Australia, and
America are a major source of natural polyprenylated xanthones and benzophenones
with significant antitumour activity [75]. Different mechanisms can play a role in the
cytotoxic effects of xanthones, including the induction of apoptosis, cell proliferation arrest
and autophagy, and inhibition of telomerase. They also demonstrated antimetastasis,
anti-angiogenesis and anti-inflammatory activities [71].

Several Garcinia species are important in local medicine, and some are cultivated
for their fruit or as ornamentals [76]. Recently, three pairs of newly discovered polyiso-
prenylated xanthone enantiomers, (±) paucinervins L, M, N (2–7) (Figure 7) and two new
xanthones, (−) paucinervin O and paucinervin P, along with thirteen known xanthones
were isolated from the stem of Garcinia paucinervi [77]. All isolated xanthones were evalu-
ated for anticancer activity against the myeloid–promyelocytic cell line HL-60, the human
prostate cancer cell line PC-3, and the colon adenocarcinoma cell line Caco-2 [77]. Enan-
tiomeric pairs of paucinervins L-N exhibited the strongest antiproliferative effects against
the HL-60 cell line (IC50 in the range 0.8–8 µM). Interestingly, the xanthones with dextro-
rotation (+) showed more a potent effect that those with laevo-rotation (−). In the case of
paucinervin M, the (−)-enantiomer was ten times more cytotoxic than the (+)-enantiomer.

Differences in antitumour activity of the chiral synthetic derivatives of xanthones
were reviewed by Fernandez et al. [78]. The synthetic analogues of xanthone-4-acetic acid,
one of the most studied xanthones with regard to its pharmacological activities, are worth
mentioning [79,80]. The dimethyl analogue of xanthone-4-acetic acid is a tumour vascular-
disrupting agent leading to vascular collapse and tumour necrosis by immunomodulation
and the action of cytokines. [81]. Its chiral analogues (8) (Figure 8) exhibited enantioselec-
tivity in their antitumour activity—the ability to cause early haemorrhagic necrosis of colon
tumours in mice. The (S)-(+) enantiomer of 5-methyl-α-xanthone-4-acetic was much more
dose-potent than the (R)-(−) enantiomer in both in vitro and in vivo tumour assays. This
suggests that the enantiomers have different intrinsic activities rather than differing in their
in vivo metabolism [79].

4.2. Chiral Baicalin

The different anti-neoplastic activities in different cell lines were also demonstrated
with the chiral derivatives of baicalin, a flavonoid extracted from Scullaria baicalensis Georg,
and used as a potential antitumour active ingredient in Chinese traditional medicine [82,83].
Chiral derivatives of baicalin were prepared by combining baicalin with either D- or L-
phenylalanine methyl ester [84]. Antitumour activities of chiral derivatives of
baicalin—BAL (9) (derived from L-phenylalanine methyl ester) and BAD (10) (derived
from D-phenylalanine methyl ester) (Figure 9) were investigated against lung (A549, H460,
Calu-1) and breast cancer cell lines (MBA-M-435, MCF-7, T47D) in in vitro and in vivo
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studies. The prepared derivatives had a stronger inhibitory effect on lung cancer cell lines,
especially on the A549 cell line, compared with pure baicalin. The antiproliferative activity
of BAL was more remarkable than that of BAD. The inhibition rates of 50 mg/mL BA, BAD,
and BAL on A549 cells at 48 h were 31.1%, 88.9%, and 94.1%, respectively.
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In breast cancer lines, both BAL and BAD exhibited stronger inhibitory activity in T47D
cells compared with baicalin. In contrast, BAL and BAD did not inhibit the proliferation of
MDA-M-435 cells and exhibited inhibition in MCF-7 cells only at high concentrations.

BAL and BAD had a good inhibitory effect on subcutaneous tumour growth in nude mice
in in vivo experiments, and the effect was shown to follow the order BAL > BAD > baicalin,
which was consistent with the results in vitro. The higher antitumour activity of BAL com-
pared with BAD and baicalin was related to the promotion of apoptosis of tumour cells via
the phosphatidylinositol 3-kinase signalling pathway [84].

4.3. Chiral Derivatives of Ricinoleic Acid

(R)-(Z)-ricinoleic acid (RA) (11–12) is a natural fatty acid and is the main component
of castor oil from Ricinus communis L., seeds. Many synthetic derivatives of RA with
interesting biological activities have been obtained [85]. In particular, amides, esters, and
glycosides exhibited potent antiproliferative and cytotoxic activities [86,87].

The modification of the parent compounds by amines resulted in increased cytotoxicity
of the obtained products against HT29, HCT116, MCF-7, and AGS cancer cells (human
colorectal adenocarcinoma cell line, human colorectal carcinoma cell line, human breast
adenocarcinoma cell line, and human gastric adenocarcinoma cell line, respectively). The
antitumour effect was observed for both enantiomeric forms. The most promising cytotoxic
effects in terms of anticancer potential were obtained for ethanolamine-derived amides
(13–14) [88].

Blaszczyk and co-workers [89] reported the synthesis and cytotoxic activity of both (R)-
and (S)-enantiomers of ricinoleic acid amides and their acetates. The ricinoleic acid amides
as well as acetate derivatives of ethanolamine amides were studied (15–22) (Figure 10) to
demonstrate the influence of the stereogenic centre on their potential anticancer activity.
The cytotoxic effect of the prepared compounds was evaluated against several cancer cell
lines (HT29, HTC116, AGS, MFC7). Subsequently, the mechanism of cytotoxicity by the
prepared enantiomers of RA-amide derivatives was evaluated using HT29 cancer cells.
The ability to induce oxidative stress, DNA damage, and apoptosis was tested. Prepared
compounds caused DNA damage and induced apoptotic and necrotic cell death. In most
cases, only slight differences between the activities of the two enantiomers were observed.
In the case of (R)- and (S)-enantiomers of one of the tested acetates (21,22), a significant
difference in the ability to induce DNA damage was observed, which showed the impact
of the stereogenic centre on the activities of these compounds [89].

4.4. Chiral Anthramycin Derivatives

Derivatives of anthramycin belong to antibiotics produced by various actinomycetes.
Their selective cytotoxic activity towards tumour cells makes them a possible source of
anticancer agents [90,91].

Mieczkowski et al. [92] reported the synthesis of novel chiral anthramycin analogues
possessing a fused piperazine ring instead of a pyrrole and evaluated their cytotoxic activity
in several cancer cell lines (Figure 11). Some of them were prepared as enantiomerically
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pure (S)- and (R)- isomers and were tested as single enantiomers for their antiproliferative
potential on human biphenotypic B myelomonocytic leukaemia (MV-4-11) and human
urinary bladder (TCC-UM-IC-3) cell lines. Cisplatin was used as a positive control (IC50
was 0,4 and 4,8, respectively). Most of the tested compounds showed similar cytotoxic
effects in both cell lines (IC50 in the range of 10–44 µM). A significant difference between
enantiomers was observed only in the case of (S) and (R) isomers of the derivative with a
biphenyl substituent (23–25). The (S)-configuration at the chiral centre and the presence of a
hydrophobic 4-biphenyl substituent were determined as key structural features responsible
for the cytotoxic effect. Cell cycle arrest at the G1/S checkpoint and apoptosis associated
with production of reactive oxygen species were also encountered in the most effective
compounds [92].
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4.5. Derivatives of Tetrahydroquinolin-8-Amines

Substituted tetrahydroquinolins are important structures present in a wide variety of
natural alkaloids and synthetic analogues with high biological activity as potent antitumour
agents [93,94]. Amino-quinoline derivatives have been reported to have antiproliferative
activity due to their ability to induce mitochondrial dysfunction by increasing ROS levels in
the sensitive cervical epithelioid carcinoma cell line HeLaS3 and in the multi-drug resistant
human cervical cancer KB-vin cell line [95,96].

Based on these findings, Facchety et al. [97] investigated a new series of chiral deriva-
tives of 2-methyl-5,6,7,8-tetrahydroquinolin-8-amine for their cytotoxic activity against a
panel of human cancer cell lines: human T-lymphocyte (CEM), cervix carcinoma (HeLa),
and dermal microvascular endothelial (HMEC-1) cells, as well as colorectal adenocarcinoma
(HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H) cells.
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analogues [92].

The influence of spatial arrangement of compounds on their biological effect is some-
times difficult to predict. In the case of chiral tetrahydroquinolin derivatives, the cytotoxic
effect of enantiomers manifested differently depending on the type of cancer cells. In
order to evaluate the different interaction of each enantiomer with their biological tar-
gets, the active compounds in the series were synthesised in an enantiomerically pure
form—metylphenol derivative (26); pyridine derivative (27), and imidazole derivative
(28) (Figure 12). Both enantiomers of prepared compounds were evaluated for their
in vitro antiproliferative activity in three human tumour cell lines (HT-29, A2780, and
MSTO-211H). All enantiomers showed a marked antiproliferative activity in A2780 cells
(IC50 5.4–17.2 µM). Remarkable differences between biological activities of the enantiomers
were found in imidazole derivatives. The most effective was (R)-28 and the least active was
(S)-28.
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Conversely, the two chiral forms of metylphenol and pyridine derivatives did not
show any difference in terms of IC50, suggesting a similar cytotoxic effect. This behaviour
was also confirmed in MSTO-211H cells and indeed, a comparable cytotoxic effect was
observed in cells incubated with (R)-27 and (S)-27, while both (S)-26 and (R)-26 were
inactive in this cell line. On the other hand, the (R)-28 enantiomer, unlike (S)-28, which
appears ineffective, induced an appreciable inhibition of cell growth. Regarding colorectal
adenocarcinoma cells (HT-29), they appeared resistant towards all synthesized compounds
(IC50 > 20 µM). For the most active pyridine derivative, (R)-27, the mechanism of the
cytotoxic effect was investigated. The compound was able to affect cell cycle phases and
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to induce mitochondrial membrane depolarisation and cellular ROS production in A2780
cells [97].

5. Inhibitors of Microtubule Polymerisation
5.1. Combretastatin A-4 Analogues

Microtubules are important components of the cytoskeleton formed by polymerisation
of the α- and β-subunit. Microtubules play a role in separating the daughter chromosomes
to opposite poles during mitosis. The disruption of microtubules will result in the inter-
ruption of mitosis and leads to apoptosis of the cells [98]. Natural compounds such as
colchicine (isolated from Colchicum autumnale) and combretastatin CA-4 (29) (isolated from
the bark of the African tree Combretum caffum) with strong tubulin inhibitory activity served
as templates for preparing more potent synthetic derivatives (30–33) (Figure 13) [99,100].
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Figure 13. The structures of combrestatin (30) and its selected derivatives with strong tubulin-
inhibitory activity (31–34).

Zhou and co-workers [99] presented the synthesis and biological evaluation of diverse
chiral β-lactam-bridged combretastatin A-4 analogues. In the cytotoxicity studies, the
majority of the prepared target compounds displayed moderate to potent anti-proliferative
activities against four human cancer cell lines (A2780, Hela, SKOV-3, and MDA-MB-231).
The studies of structure–activity relationships revealed that the absolute configurations
of the chiral C-4 atoms were critically important for the activity; more specifically, the
(S)-configuration for 3-methylene-substituted series and the same orientation for other ana-
logues. On this basis, trans-configuration of substituents at the 3,4-positions of the β-lactam
scaffold benefits the antiproliferative activity. Among all the synthesised compounds,
derivatives (32) and (33) turned out to be the most potent and were selected for further
pharmacological studies. The co-crystal structures of tubulin in complex as determined
by X-ray crystallography showed that derivatives (32) and (33) bind to the same site as
colchicine with a similar binding mode.

5.2. Analogues of 4-Arylisochromenes

Weak inhibitory activity against tubulin polymerisation was also found in the
4-arylisochromenes derivatives isolated from the peel of Musa sapine tum. L (banana) [101].
Li et al. [102] prepared more effective chiral 4-arylisochromenes (34) (Figure 14) which are
structural analogues of the natural inhibitor (±)-7,8-dihydroxy-3-methylisochroman-4-one.

Antiproliferative activity of prepared compounds was manifested against a panel of
cancer cells: epithelial carcinoma (KB), ileocecal adenocarcinoma (HCT-8), breast cancer
(MDA-MB-231), chronic myelogenous leukaemia (K562), and hepatocellular carcinoma
(H22) cells, with IC50 values ranging from 10 to 25 nM. The racemic form and the (R)-
enantiomer (34) were the most active against the K562 cell line with an IC50 value of
10 nM, which was more potent than the combretastatin (CA-4) (IC50 = 15 nM) used as a
positive control, whereas the (S)-enantiomer (35) displayed a significant decrease of activity
(IC50 = 460 nM).
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Figure 14. Structure of a chiral derivative of natural 4-arylisochromenes as an inhibitor of tubulin
polymerisation. * stereogenic centre.

Chiral isomers of 4-arylisochromenes (34) also showed potent inhibitory activity
against tubulin polymerisation. The (R)-enantiomer was slightly more potent than racemate,
whereas the (S)-enantiomer displayed a significantly lower activity. The difference in
activity for single enantiomers was illustrated by molecular modelling studies with tubulin
crystal structures (PDB, 5lyj). The (R)-(+)-isomer exhibited very similar positioning with
that of CA-4. The phenolic hydroxyl and 4-methyl groups of the (R)-enantiomer and CA-4
formed hydrogen bonds with Thr179 and Cys241 residues, respectively. The oxygen atom
in the isochromene ring interacted with the Asn258 residue by a weak hydrogen bond. On
the other side, the binding pose of the (S)-enantiomer was flipped over 180◦ compared with
that of CA-4, which may explain why both the antitubulin and antiproliferative activity of
the (S)-enantiomer decreased dramatically (Figure 15) [102].
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(shown in yellow); (S)-(−)-enantiomer (shown in violet). Reprinted with permission from Ref [102].
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5.3. Taxol Isomers

Nowadays, molecular docking is important in the investigation of the interaction
between ligands and proteins and is among the most basic strategies for drug discovery.
Molecular docking studies of interactions between active ligands and β-tubulin proteins
have been utilised in the search for the most active chiral paclitaxel isomers. Paclitaxel (trade
name Taxol®) is active in breast, ovarian, lung, bladder, prostate, melanoma, oesophageal,
and other types of solid tumour cancers [103–105]. The molecule exerts its anticancer
activity by inhibiting mitosis through enhancement of the polymerisation of tubulin and
consequent stabilisation of microtubules [106,107].
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Paclitaxel is produced by extraction from the bark of yew trees (Taxus brevifolia), which
grow very slowly. Therefore, obtaining paclitaxel from natural sources is not sufficient,
and this has prompted extensive searches for alternative sources, including semisynthesis,
cellular culture production and chemical synthesis. Taxol contains 11 chiral centres which
makes it a very difficult target for total synthesis (Figure 16).
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Figure 16. The structure of Taxol (35) and its diastereoisomers (36–37) with high affinity to β-tubulin
according to molecular modelling studies. * stereogenic centre.

Ghadari et al. [108] investigated the effect of variations of chiral centres of Taxol (35) on
the binding to β-tubulin by molecular modelling methods. They studied the hypothetical
Taxol ligands which have been obtained by changing the configuration of atoms on one of
the chiral centres. The binding activities of 12 different diastereoisomers were compared to
the activity of the original Taxol structure.

In docking studies, the structures with better binding towards the protein were selected
for further investigation using molecular dynamic simulation methods. The results showed
that the structures with reversed configuration on the 5 and 8 chiral centres (36,37) have
better affinity towards β-tubulin in comparison with Taxol and are thus good candidate
compounds for further experimental studies. Derivatives with reversed configurations
1, 3, and 9 have similar affinity towards β-tubulin in comparison with Taxol. This work
provides new opportunities for simplifying future preparation of synthetic analogues of
Taxol by omitting the chiral centres which are not essential for the anticancer activity.

5.4. Maytansinoids

Significant differences in antitumour activity of enantiomeric forms based on inter-
action with microtubules were seen in chiral maytansinoids, the synthetic derivatives of
maytansine. This compound was originally isolated from the African shrub Maytenus
ovatus and belongs to the most potent microtubule inhibitors [109]. Some maytansinoid
structures have been prepared in order to be linked to monoclonal tumour-specific antibod-
ies [110]. It has been reported that maytansinoids with an L-configuration of the methyl
group at the C3 position exhibited 100–400-fold higher antitumour activity than those with
a D-configuration [111].

Based on these results, Li et al. [112] determined the high-resolution crystal structure
of the tubulin complex with maytansinol and two stereoisomers of C3-ester side-chain
derivatives D-DM1-SMe and L-DM1SMe. (38–40) (Figure 17).
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Figure 17. The structures of chiral derivatives of maytansine.

The study of crystal structures revealed differences at the C3 side chain in D-DM1-SMe
and L-DM1-SMe. The carbonyl oxygen atom of the ester moiety and the tail thiomethyl
group at the C3 chain of L-DM1-SMe create strong intramolecular interactions with the
hydroxyl at position 9 and the benzene ring, respectively, fixing the bioactive conformation
and enhancing the binding activity. The C3 side chain of D-DM1-SMe is swung to the
opposite direction, thereby losing the ability to create intramolecular interactions. The
conformational differences may provide an explanation for how the chirality of the methyl
group at the C3 position affects the anticancer activity (Figure 18).
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class of drugs for the treatment of liquid tumours, such as multiple myeloma and mantle 
cell lymphoma, and they are being investigated for other diseases as well [114]. Borte-
zomib was the first proteasomal inhibitor to be approved by the US Food and Drug Ad-
ministration. Carfilzomib and Ixazomib have recently been approved, and more drugs are 
in development [115]. However, these protease inhibitors have not demonstrated suffi-
cient activity against solid tumours, and peripheral neuropathy is a dose-limiting toxic 
side effect for their clinical use [116]. 

Non-peptide inhibitors targeting different components of the proteasome system ap-
pear to be a promising alternative for the treatment of solid tumours. Anchoori et al. [117] 
presented the development of novel derivatives targeting the 19S regulatory particle unit 
which contains the ubiquitin receptor RPN13, RA 183, and RA375. 
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permission from Ref. [112]. Copyright© (2021), Elsevier.
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6. Proteasome Inhibitors

The ubiquitin–proteasome pathway is the most important intracellular protein degra-
dation system, and it is involved in processes such as apoptosis, cell survival, cell-cycle
progression, DNA repair, and antigen presentation, among others. The proteosomal system
includes different kinds of enzymes, which are modified by binding of several regulatory
complexes to the core particle (the 20S proteasome) [113].

Inhibitors of the 20S proteasome (targeting the 20S catalytic particle) are an important
class of drugs for the treatment of liquid tumours, such as multiple myeloma and mantle
cell lymphoma, and they are being investigated for other diseases as well [114]. Bortezomib
was the first proteasomal inhibitor to be approved by the US Food and Drug Adminis-
tration. Carfilzomib and Ixazomib have recently been approved, and more drugs are in
development [115]. However, these protease inhibitors have not demonstrated sufficient
activity against solid tumours, and peripheral neuropathy is a dose-limiting toxic side
effect for their clinical use [116].

Non-peptide inhibitors targeting different components of the proteasome system
appear to be a promising alternative for the treatment of solid tumours. Anchoori et al. [117]
presented the development of novel derivatives targeting the 19S regulatory particle unit
which contains the ubiquitin receptor RPN13, RA 183, and RA375.

The preparation of new derivatives was rationalised. To improve their specificity and
potency, several libraries of molecules were generated to probe the pharmacophore of the
benzylidenepiperidone core unit and to identify the active compounds. Based on these
findings and molecular modelling data, they introduced a methyl group at the ring carbon
atom next to the nitrogen, and thus prepared chiral derivatives of perspective RPN13
inhibitors (41–42) (Figure 19).
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The docking studies suggested the potential for differing RPN13 binding and cyto-
toxicity potencies of the racemic form R414 and the (S)-isomer R413S, and for weaker
toxicity for R413R. Consequently, each form of active compound was synthesised and
tested against several ovarian cancer cell lines. The cytotoxicity studies confirmed the
theoretical predictions. RA413S was 5-fold more cytotoxic for HeLa cells than RA413R
(23 nM vs. 172 nM). Similar phenomena appeared also in additional cell lines derived
from ovarian cancer (e.g., SKOV3, TOV21G) and cervical cancer (HeLa, CaSki, SiHa). The
cytotoxicity of RA413S for normal human cells was much weaker (IC50 > 100 nM).

The mechanism of antitumour activity for the active (S)-isomer RA413S and the
racemate was further evaluated. The cancer cell toxicity was associated with improved
binding to RPN13 lysates, ATP depletion, mitochondrial damage, oxidative stress, and
glutathione and NF-κB inhibition [117].

7. PPARs Proliferator

Peroxisome proliferator-activated receptors (PPARs) belong to the group of nuclear
receptors. They exist in three different isoforms: PPARα, PPARβ, and PPARγ, and are
mainly produced in brown adipose tissue, gut, immune cells, liver, kidney, heart, and
other tissues. PPARs play major regulatory roles in energy homeostasis and metabolic
function by activation of fatty acid metabolism and stimulation of glucogenesis [118]. The
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modulatory function of PPARs-α and -γ is evident in immunity inflammation, vascular
functions, cellular proliferation, differentiation, development, and apoptosis [119].

PPARs have become interesting therapeutic targets for the treatment of various
diseases—dyslipidaemia, type 2 diabetes, cardiovascular diseases, obesity, cancer, and
metabolic diseases [120]. PPAR modulators, including agonists and antagonists, could
represent a novel strategy for preventing and treating multiple types of cancer [121]. The
antitumour effect of PPARα and PPARγ in various types of cancers, both in laboratory
and in clinical settings, have been recently reviewed [122,123]. The synthesised PPARγ
modulators thiazolidinediones (TZDs), also known as glitazones, are involved in clinical
phase trials for the treatment of prostate cancer, liver cancer, melanoma, and lung cancer.

In order to diminish the side effects of TZD treatment, novel PPAR ligands with
different molecular scaffolds are being developed [124].

Sabatino et al. [125] prepared and biologically evaluated new chiral derivatives of
phenoxyacetic acid, acting as PPARγ partial agonists (43–49) (Figure 20). Their antipro-
liferative activity was evaluated in colorectal carcinoma cell lines (HT-29 and CRC). All
compounds exhibited an antiproliferative effect in the range of 31–82% of residual vitality;
with respect to the 60 % produced by the full i PPARγ agonist rosiglitazone. The com-
pounds 45 (RS)-, (S)-isomers, and 49 (RS) forms were subjected to further evaluation since
they combine the best antiproliferative activity (31–47% of residual vitality) and a limited
trans activation (efficacy ranging between 55% and 65%) in comparison with the effects of
all other compounds.
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Piemontese et al. [126] designed a new class of dual PPARα/γ agonists based on the
2-oxy-propanoid acid moiety linked to diphenylmethane (50) (Figure 21). This structural
skeleton is an active pharmacophore for the activation of PPARα/γ subtypes. Prepared
diphenylmethane derivatives were tested for their agonist activity towards the human
PPARα, PPARβ, and PPARγ subtypes. The highest activity was obtained in R1 compounds
(47% activation compared to reference compounds). Single enantiomers were prepared
to evaluate the influence of configuration on receptor activation. Unexpectedly, both
enantiomers of R1 displayed similar activity towards all PPAR subtypes. To rationalise
this effect, docking experiments were performed. The docking experiment predicted that
both (S)-1 and (R)-enantiomers favourably bind to the PPARγ ligand-binding domain,
adopting a similar U-shaped configuration that wraps around H3. In case of PPARα,
both enantiomers fit the PPARα pocket well. The carboxylate head groups form the well-
recognised H-bonding network with residues Y464, Y314, and S280, which is supposed to
be critical for PPARα ligands’ activity.
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The antiproliferative activities of racemate and both enantiomers were evaluated
against HT-29 cells, with the (S)-enantiomer eliciting a more robust activity than the (R)-
enantiomer. The alternative antiproliferative pathways were tested. The ability of the
compounds to inhibit cell proliferation in colon cancer lines seems to be due to downreg-
ulation of Wnt/β-catenin signalling which is overexpressed in the majority of colorectal
cancers. The (S)- and (R)-enantiomers strongly influenced mitochondrial function, as they
activated the carnitine shuttle system through upregulation of the carnitine/acylcarnitine
carrier and carnitine palmitoyl-transferase genes [126].

8. Conclusions

Chirality can be considered one of the major topics in the design, discovery, devel-
opment, and marketing of new drugs. Chirality plays an important role for biological
activities, so when a chiral centre is present in a drug, both enantiomers must be studied for
the evaluation of their pharmacological properties. One enantiomer of a chiral drug may
be a medicine for a particular disease, whereas another enantiomer of the same molecule
may not only be inactive but can even be toxic.

This review outlines a variety of some recent examples of structurally diverse natural
anticancer chiral compounds and their analogues exhibiting different mechanisms in their
anticancer effect. The present survey represents up-to-date studies of the difference in
biological activities between single enantiomers of anticancer agents and their racemic
mixtures. The influence of stereoselectivity on anticancer activity is difficult to generalise, as
it is manifested specifically for each individual chiral compound as well as in dependence
on the type of cellular targets. The stereospecificity of new anticancer agents manifests
itself in the cytotoxicity effect at the cellular level or in the interaction with subcellular
structures. The awareness of the stereochemistry of anticancer compounds can help to
understand some critical processes underlying their toxicity towards cancer cells and can
provide a rational basis for the design of new antitumour drugs.
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