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Abstract: As an effective herbicide, 1, 3, 5-Triazine herbicides (S-THs) are used widely in the pesticide
market. However, due to their chemical properties, S-THs severely threaten the environment and
human health (e.g., human lung cytotoxicity). In this study, molecular docking, Analytic Hierarchy
Process—Technique for Order Preference by Similarity to the Ideal Solution (AHP-TOPSIS), and a
three-dimensional quantitative structure-active relationship (3D-QSAR) model were used to design
S-TH substitutes with high herbicidal functionality, high microbial degradability, and low human
lung cytotoxicity. We discovered a substitute, Derivative-5, with excellent overall performance.
Furthermore, Taguchi orthogonal experiments, full factorial design of experiments, and the molec-
ular dynamics method were used to identify three chemicals (namely, the coexistence of aspartic
acid, alanine, and glycine) that could promote the degradation of S-THs in maize cropping fields.
Finally, density functional theory (DFT), Estimation Programs Interface (EPI), pharmacokinetic, and
toxicokinetic methods were used to further verify the high microbial degradability, favorable aquatic
environment, and human health friendliness of Derivative 5. This study provided a new direction for
further optimizations of novel pesticide chemicals.

Keywords: triazine herbicides; cleaner production; 3D-QSAR; molecular docking; molecular dynam-
ics; microbial degradation pathways; field application program

1. Introduction

Triazine herbicides (THs) have long held an important position in the pesticide market.
They are applied primarily to maize cropping fields [1], owing to their broad spectrum,
high performance, and low cost [1], but they also have high toxicity, environmental per-
sistence, and endocrine disrupting effect [1,2]. THs target the D1 protein (D1-PSII) of the
photosynthetic system II (PSII) and act as herbicides by inhibiting plant photosynthesis [3].
However, only 10–30% of THs are currently absorbed by target plants or adsorbed by soil
particles, with the majority polluting water bodies, such as surface water, via surface runoff
and irrigation, eventually reaching the ocean [4]. In 2020, the US Environmental Protection
Agency (EPA) designated atrazine (ATZ), promazine, and simazine as pesticides “likely to
adversely affect (LAA)” in species and ecosystems [5]. Furthermore, the introduction of
bans or restrictions on the use of 1, 3, 5-Triazine herbicides (S-THs) in the EU, Ulaanbaatar,
Nigeria, and India highlights the continued residues and biohazards of S-THs in the envi-
ronment [6]. The continuing residues and biohazards of S-THs in the environment have
attracted widespread attention.

S-THs are highly persistent in soil and aqueous sediment environments, with half-lives
of 4–12 weeks for prometryne (PRT) [7] and 4–57 weeks for ATZ in soil environments,
respectively [8]. In addition, S-THs can pollute the aquatic environments through rainfall,
irrigation, and surface runoff, causing long-term damage to aquatic organisms. For exam-
ple, S-THs are acutely toxic to fish, and 1200 µg/L PRT can significantly reduce embryo
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hatching and survival in carp [9]. Hao et al. [10] discovered that ATZ reduced zebrafish
hatching rates and increased the incidence of malformations and embryo mortality with
increasing ATZ exposure, which also caused necrosis and congestion in carp gill epithe-
lial cells [11], oxidative stress in catfish liver and gills [12], and ovarian lesions in female
blackhead dull fish [13]. Furthermore, S-THs can be harmful to humans, with PRT being
toxic to human pulmonary adenocarcinoma cell lines and human bronchial epithelial cell
lines [14], and ATZ causing carcinogenesis, teratogenesis, and mutagenesis after long-term
exposure [15,16].

Soil microorganisms such as Acinetobacter spp. Brisou and Prévot (Moraxellales:
Moraxellaceae), Arthrobacter sp. Conn and Dimmick (Micrococcales: Micrococcaceae),
Agrobacterium sp. Conn (Hyphomicrobiales: Rhizobiaceae), Bacillus sp. Cohn (Bacil-
lales: Bacillaceae), Deinococcus sp. Brooks and Murray (Deinococcales: Deinococcaceae),
Microbacterium sp. Orla-Jensen (Micrococcales: Mycobacteriaceae), Nocardioides sp. Prauser
(Propionibacteriales: Nocardioidaceae), and Rhodococcus rhodochrous Tsukamura (Mycobac-
teriales: Nocardiaceae), among others, have been shown to degrade S-THs partially [17–24].
White-rot fungi (Phanerochaete chrysosporium Burds. (Polyporales: Phanerochaetaceae)) and
lignocellulose-degrading fungi (Pleurotus pulmonarius Fr. (Agaricales: Pleurotaceae)) can
dechlorinate ATZ water to produce hydroxylated ATZ and dealkylated ATZ metabolites
with nitrogen [25,26]. Although various microorganisms can degrade S-THs, none of the
triazine rings are broken, resulting in the persistence of S-THs in the soil. Vonberg et al. [27]
showed that, although ATZ has been banned in Germany for 31 years, residue can still be
detected in groundwater, surface water, and soil. Therefore, developing functional and
environmentally friendly substitutes for S-THs is crucial for the ecological environment
and human health.

The three main research objectives of this study are as follows: (1) create S-THs
substitutes (with high herbicidal functionality, high microbial degradability, and high
environmental friendliness but low human lung cytotoxicity). (2) to design and screen
optimal field application schemes (with high microbial degradation promotion in maize
cropping fields. (3) to further verify and assess the excellent comprehensive performance
of S-THs substitutes and their degradation products (with high microbial degradability,
and favorable aquatic environment, and human health friendliness).

2. Results
2.1. Construction and Evaluation of the Single-Effect and Comprehensive-Effect 3D-QSAR Models
of Herbicidal Functionality Properties, Microbial Degradability, and Human Lung
Cytotoxicity of S-THs

The structural information of 26 S-THs was used as an independent variable, and the
docking score (LibDock Score, LDS) values of herbicidal functionality properties, microbial
degradability, and human lung cytotoxicity (hereafter referred to as herbicidal functionality
properties, degradability, and toxicity) of S-THs were adopted as the dependent variables
to build the single-effect CoMSIA models for herbicidal properties, degradability, and
toxicity of S-THs (Table S1). In addition, the final weight results of herbicidal functionality
properties, degradability, and toxicity of the comprehensive value (CV) are shown in
Figure S1, and the results of the CV calculations are shown in Table S1. The CV was
adopted as a dependent variable to construct the comprehensive-effect CoMSIA model of
herbicidal functionality properties, degradability, and toxicity of S-THs. Table S2 lists the
relevant modeling materials.

In addition, the evaluation parameters of the single-effect CoMSIA and comprehensive-
effect CoMSIA models of herbicidal functionality properties, degradability, and toxicity
of S-THs are shown in Table 1. The comprehensive-effect CoMSIA model of herbicidal
functionality properties, degradability, and toxicity of S-THs was used as an example; the
model cross-validation coefficient q2 was 0.751 (>0.5), the best principal component n was
10, the non-cross-validation coefficient R2 was 0.998, and the standard deviation was 0.008,
manifesting that the constructed model had an excellent internal prediction and fitting
ability [28]. In addition, the model test set external validation interaction test coefficient
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r2
pred was 0.678 (>0.6), manifesting that the constructed model had favorable external

prediction ability [29]. The model (R2 − q2)/R2 (<30%) manifested that the constructed
model was not over-fitted [30].

Table 1. CoMSIA model evaluation parameters for the herbicidal functionality properties, degrad-
ability, and toxicity of S-THs and their comprehensive effects.

CoMSIA
Models Enzymes q2 n R2 SEE F r2

pred (R2 − q2)/R2 (%)

Comprehensive ALL 0.789 8 0.993 0.007 132.292 0.615 20.54
Herbicide 1FC9 0.751 9 0.997 0.393 207.333 0.785 24.67

Degradation 4L9X 0.757 5 0.986 1.529 157.196 0.713 23.23
Toxicity 6K1J 0.706 10 1.000 0.285 1660.695 0.792 29.40

2.2. Design of S-TH Substitutes Based on the 3D Isopotential Diagrams of the CoMSIA Model

ATZ, which is primarily used in agriculture, was chosen as the target molecule to ana-
lyze the three-dimensional (3D) isopotential diagrams of single-effect and comprehensive-
effect CoMSIA models of herbicidal functionality properties, degradability, and toxicity
and to design the substitutes. Figure S2 depicts the molecular structure and proposed
modification sites for ATZ.

The 3D isopotential diagrams of the hydrophobic (H), hydrogen-bonded acceptor (A),
hydrogen-bonded donor (D), electrostatic (E), and steric (S) fields for the single-effect and
comprehensive-effect CoMSIA models of herbicidal functionality properties, degradability,
and toxicity of S-THs are shown in Figure 1.
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(b) hydrogen-bonded acceptor field; (c) hydrogen-bonded donor field; (d) electrostatic field, and
(e) steric field.

In this study, we aimed to reduce the cytotoxicity of S-THs in the human lung by
designing ATZ substitutes based on the reverse law of the substitution principle of 3D
isopotential diagrams. According to the single-effect and comprehensive-effect CoMSIA
models of herbicidal functionality properties, degradability, and toxicity of S-THs, and the
contribution ratio of each force field in the 3D isopotential diagrams (Table 2), single, double,
and multiple substitutions could be performed at the 1–5 point sites of ATZ (Table S3).
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Table 2. The proportion of each force field in the single-effect and comprehensive-effect CoMSIA
models of herbicidal functionality properties, degradability, and toxicity of S-THs based on the 3D
isopotential diagrams.

Fields

Proportion of Fields (%)
CoMSIA Models

For
Comprehensive

Activity

For
Herbicidal

Activity

For
Degradation

Activity

For
Toxicity
Activity

Hydrophobic (H) 37.4 50 29.3 32.5
Hydrogen-bond acceptor (A) 4.7 6.9 7.1 6.9

Hydrogen-bond donor (D) 26.2 6.8 27.6 22.8
Electrostatic (E) 16.8 18.8 17.8 19.4

Steric (S) 14.9 16.5 18.1 18.4

Therefore, hydrophobic groups (-F, -Cl, -Br, -SH, -C≡C, -OCH3, and -CF3) were intro-
duced to site 1, a more electronegative group (-CF3) was introduced to site 3, and a small
volume of group (-CH3) was introduced to site 4, to design and screen a total of S-THs with
improved single- and comprehensive-effects of S-TH substitutes (Table S3).

2.3. Prediction and Evaluation of the Single-Effect and Comprehensive-Effect 3D-QSAR Models of
Herbicidal Properties, Microbial Degradability, and Human Lung Cytotoxicity of S-THs

In this study, the herbicidal functionality properties, degradability, and toxicity of the
40 designed substitutes were predicted using four constructed CoMSIA models, and the
predicted values were normalized using Formula (2). The functionality and degradabil-
ity (positive indices) were normalized by “bigger, better type,” while toxicity (negative
indices) was normalized by “smaller, better type” (Table S4). The comprehensive effect of
the 40 S-TH substitutes ranged from -26.79% to 70.44%, while the eight S-THs, D-3, D-4,
D-5, D-18, D-29, D-30, D-31, and D-35, were consistent with the weighted values of the
comprehensive-effect model (49.31%:25.17%:25.52%). The results verified the effectiveness
of the comprehensive-effect CoMSIA model of herbicidal functionality properties, degrad-
ability, and toxicity of S-THs, the reasonableness of the molecular design of the substitutes,
and verified that the hydrophobic, electrostatic, and steric fields of the comprehensive-effect
CoMSIA model were the primary factors influencing the comprehensive effects of S-THs.

2.4. Evaluation of the Microbial Degradability Universality and Toxicity of Antioxidant Systems in
Fish of S-TH Substitutes
2.4.1. Evaluation of the Microbial Degradability Universality of S-TH Substitutes

We selected three other target proteins for the microbial degradation of S-THs in
addition to triazine hydrolase (TrzN), namely AtzC (PDB ID: 2QT3), LiP (PDB ID: 1B85), and
MnP (PDB ID: 1MNP) [31,32] using the Protein Data Bank (PDB) database [33]. Molecular
docking of the S-TH substitutes with the above three proteins was carried out. The LDS was
used as an evaluation index to assess the microbial degradability of the S-TH substitutes. It
was found that the microbial degradability of the eight S-TH substitutes, including D-3,
D-4, D-5, D-18, D-29, D-30, D-31, and D-35, improved to varying degrees compared to ATZ
or remained essentially unchanged (Table S5).

2.4.2. Evaluation of the Toxicity of Antioxidant Systems in Fish of S-TH Substitutes

We selected two antioxidant proteins from carp, SOD (UniProt ID: Q8JFG7) and CAT
(UniProt ID: E2CWE8), using the UniProt database [34]. Eight S-TH substitutes previously
screened were molecularly docked to the two antioxidant proteins. The LDS of the two
proteins were added together using a 1:1 weighting, and the CV of the toxicity of the
antioxidant system in fish of S-TH substitutes was calculated (Table S6). Compared to
ATZ, the toxicity of five S-TH substitutes (D-4, D-5, D-19, D-21, and D-25) was lower in
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the antioxidant system (range 0.12–23.98%), with substitute D-5 showing a significant
reduction.

2.5. Screen of Optimal Field Application Schemes to Promote the Microbial Degradation of S-TH
Substitutes in Maize Cropping Fields

Compared to the blank control group (group 1, with a binding energy of −93.414 kJ/mol),
the results of the Taguchi orthogonal experiment (Table S7) revealed that the binding energy
values of groups 2, 10, 14, 15, 19, 21, 26, 27, 28, and 29 all showed varying degrees of
reduction (1.51–58.32%), with group 2 (binding energy of −147.893 kJ/mol) showing the
most significant reduction. Therefore, the external conditions from group 2 (aspartic acid
(Q), alanine (R), and glycine (S)) were chosen as a field application scheme to perform a
full factorial design experiment used with the 3-factors (Q, R, and S) and 2-levels (0 for no
addition and 1 for addition), with a total of 8 different sets of external conditions schemes.
The absolute values of the binding energy of the eight schemes were calculated and used
as the response values for the factor analysis about the main-, second-, and third-order
interaction effects among the three factors (Figure 2, Table S8).
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The results of the main-, second-, and third-order interaction effects of each scheme
(Figure 2) showed that the main-effect values of Q, R, and S (groups 2, 3, and 4) were
positive, indicating that the main-effect factors (Q, R, and S) in the optimal field application
schemes could promote the microbial degradation of S-TH substitutes in maize cropping
fields. In the second-order interaction effects (groups 5, 6, and 7), the second-effect values of
Q and R, and Q and S were positive, while the second-effect value of R and S was negative,
indicating that the coexistence of aspartic acid and alanine, and aspartic acid and glycine
exhibited synergistic effects in promoting the microbial degradation of S-TH substitutes
in maize cropping fields. In contrast, the coexistence of alanine and glycine exhibited
antagonistic effects. In the third-order interaction effects (group 8), the third-effect value
of Q, R, and S was positive, indicating that aspartic acid inhibited the antagonistic effects
of alanine and glutamic acid on the microbial degradation of S-TH substitutes, indicating
significant synergistic effects of aspartic acid, alanine, and glycine. Consequently, combined
with the maximum response value of Q, R, and S in Group 8 (value 147.893), the coexistence
of Q, R, and S could be screened as the optimal field application schemes to promote the
microbial degradation of S-TH substitutes in maize cropping fields.
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2.6. Simulation of Microbial Degradation Pathways of S-TH Substitutes

Figure 3 shows that the microbial degradation pathways of ATZ and substitute D-5
have the same process, Stage 2, with the only difference being the reactants and products
of Stage 1. Therefore, the microbial degradation of ATZ and substitute D-5 was analyzed
by comparing the differences of the two-step (Steps 1 and 2) reaction energy barrier (∆E) in
Stage 1 (Table 3).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

inhibited the antagonistic effects of alanine and glutamic acid on the microbial 
degradation of S-TH substitutes, indicating significant synergistic effects of aspartic acid, 
alanine, and glycine. Consequently, combined with the maximum response value of Q, R, 
and S in Group 8 (value 147.893), the coexistence of Q, R, and S could be screened as the 
optimal field application schemes to promote the microbial degradation of S-TH 
substitutes in maize cropping fields. 

2.6. Simulation of Microbial Degradation Pathways of S-TH Substitutes 
Figure 3 shows that the microbial degradation pathways of ATZ and substitute D-5 

have the same process, Stage 2, with the only difference being the reactants and products 
of Stage 1. Therefore, the microbial degradation of ATZ and substitute D-5 was analyzed 
by comparing the differences of the two-step (Steps 1 and 2) reaction energy barrier (ΔE) 
in Stage 1 (Table 3). 

 
Figure 3. Simulation of microbial degradation pathways of ATZ and substitute D-5. Figure 3. Simulation of microbial degradation pathways of ATZ and substitute D-5.



Int. J. Mol. Sci. 2023, 24, 5691 7 of 17

Table 3. Calculation of reaction energy barrier and change rates of the microbial degradation of ATZ
and substitute D-5 in Stage 1.

Compounds Steps Reactants Products
∆E ∆E (Total) Change Rate

(%)(kJ/mol) (kJ/mol)

ATZ
1 ATZ ATZ-1 160.893

200.806 -
2 ATZ-1 Com-1 39.913

D-5
1 D-5 D-5-1 60.147

94.533
−62.62

2 D-5-1 Com-1 34.386 −13.85

It has been shown that the ∆E (>0) represents the difficulty of reaction occurrence,
with smaller values indicating that the reaction is more likely to occur [35]. Compared
to the ∆E values of Stage 1 (Steps 1 and 2) of the ATZ, that of the substitute D-5 were
reduced by 62.62% and 13.85%, respectively, indicating that the groups on the modified
S-THs triazine ring (-C2H5SNF, and -C3H5NF3) were more susceptible to be hydrolyzed to
triuric acid by microorganisms. In addition, the above analysis results demonstrated that
the microbial degradability of S-TH substitute D-5 was significantly enhanced, confirming
the rationality of the comprehensive-effect CoMSIA model of herbicidal functionality
properties, degradability, and toxicity of S-THs and the precision of the molecular design
of substitutes constructed in this study.

2.7. Evaluation of Aquatic Biotoxicity and Human Health Risks of Microbial Degradation Products
of S-TH Substitutes

As shown in Tables S9 and S10, regarding aquatic toxicity, the intermediate microbial
degradation products D-5-P1 and D-5-P2 were significantly less toxic to green algae and
fish and, to a lesser extent, Daphnia than ATZ. Regarding human health risks, compared to
that of ATZ, the hepatotoxicity of D-5-P1 and D-5-P2 was significantly reduced, whereas
the maximum tolerated dose was significantly increased. The carcinogenicity of D-5-P1 in
male mice was reduced to nontoxic levels. The toxicity levels of the five toxicity models,
including skin irritation, sensitization, and carcinogenicity, remained unchanged in male
and female rats and female mice. The skin sensitization level of D-5-P2 was reduced to a
low toxicity level, and the toxicity levels of the five toxicity models, including skin irritation
and rodent carcinogenicity, remained unchanged.

3. Discussion

In the present work, the single-effect and comprehensive-effect CoMSIA models of
herbicidal functionality properties, microbial degradability, and human lung cytotoxicity
of S-THs were constructed, which showed excellent stability, predictability, and fitting, and
the S-TH substitutes with excellent comprehensive performance were designed based on
the 3D isopotential diagrams of the above models.

Overall, the hydrophobic field contributed the highest proportion to the molecular
effect of S-THs in the four CoMSIA models, which was regarded as the main modifying
force field to improve the herbicidal functionality properties of the S-TH substitutes. The
single-effect CoMSIA model of herbicidal functionality properties contributed the highest
proportion among the four models. The analysis of the 3D isopotential diagrams of the
single-effect CoMSIA models of degradability and toxicity showed that the electrostatic
fields have the largest and most comprehensive difference in the color block distribution,
with the largest contribution of the E fields to the S-THs performance (17.8% and 19.4%,
respectively). Therefore, the E field was regarded as the main modifying force field to
improve the degradability of the S-TH substitutes and avoid increased toxicity. Further-
more, in the single-effect CoMSIA model of toxicity, the stereoscopic field accounted for
the highest proportion, which was regarded as the main modifying force field to reduce
the toxicity of substitutes for reverse design. Similar to our previous study, based on the
constructed plant-microbial synergistic degradation CoMISA model of quinolones (QNs),
the hydrophobic field and electrostatic field of this model were regarded as the main mod-
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ifying force field. By introducing groups with hydrophobicity (-SH, -Cl, and -F), as well
as groups with strong electronegativity (-CF3, -CH3, and -CH2F), QNs substitutes with
enhanced plant-microbial synergistic degradation effect were designed reasonably [36].

In addition, the optimal field application scheme of aspartic acid, alanine, and glycine
indicated the effective role of amino acids in the promotion of S-THs microbial degradation.
Shen et al. [37] found that the stress of organic pollutants, such as petroleum hydrocarbons,
could lead to a positive plant response and, to some extent, promote the secretion of amino
acids in soil inter-roots. Furthermore, amino acid content had been correlated with soil
N effectiveness, which improved the activity and respiration of soil microorganisms, and
further enhanced the degradation of organic pollutants by soil inter-rooted microorgan-
isms [38,39]. In addition, Li et al. [40] discovered that root secretions could effectively
stimulate microbial degradation of organic pollutants within plant roots, which was consis-
tent with the results of the present study that the coexistence of the three root secretions,
aspartic acid, alanine, and glycine, could promote the microbial degradation of S-THs
substitutes in maize cropping fields.

The simulation of microbial degradation pathways of S-TH substitutes indicated that,
compared to the ∆E values of Stage 1 (Steps 1 and 2) of the ATZ, the substitute D-5 were
reduced by 62.62% and 13.85%, respectively, indicating that the groups on the modified
S-THs triazine ring (-C2H5SNF, and -C3H5NF3) were more susceptible to be hydrolyzed to
triuric acid by microorganisms. In addition, the above analysis results demonstrated that
the microbial degradability of substitute D-5 was significantly enhanced, confirming the ra-
tionality of the comprehensive-effect CoMSIA model of herbicidal functionality properties,
degradability and toxicity of S-THs, and the precision of the molecular design of substitutes
constructed in this study. Furthermore, Fu et al. [41], Li et al. [42], and Xue et al. [43] all
used pharmacokinetic and toxicokinetic methods to predict and evaluate the human health
risks of designed substitutes. The predicted results of indictors (hepatotoxicity, maximum
tolerated dosage, skin sensitization, skin irritation, and rodent carcinogenicity) all indicated
that the designed molecules had a low risk to human health. According to the above studies,
the human health risk assessment based on pharmacokinetic and toxicokinetic methods
had certain rationality and reliability. Therefore, the aquatic biotoxicity and human health
risks of the microbial degradation products of the substitute D-5 designed in the present
work were significantly reduced.

The in-silico methods used in this study have certain efficiency, rationality, and conve-
nience, which could provide a new direction for the research and development of more sim-
ilar functional chemicals. However, in the future, we still need to combine as much experi-
mental data as possible. The environmental and human health hazards, as well as economic
applicability and other aspects, should be taken into more comprehensive consideration in
order to obtain more efficient and environmentally friendly new chemical substitutes.

4. Materials and Methods
4.1. Characterization of Herbicidal Functionality Properties, Microbial Degradability, and Human
Lung Cytotoxicity of S-THs—Molecular Docking Method

This study selected 26 S-THs, including ATZ. First, the molecular structures were
drawn and optimized using the Sketch Molecule, Minimize and Align Database mod-
ules of SYBYL-X2.0 software (Tripos, Inc.: St. Louis, MO, USA). Then, the molecu-
lar structures were optimized using Tripos force fields, Gasteiger-Huckel charges, and
10,000 iterations [44] to achieve the optimal conformation with the lowest molecular energy.

The PDB database [33] was used to identify and select the three target proteins men-
tioned above (Figure 4): the D1 protein of Tetradesmus obliquus Turpin (Sphaeropleales:
Scenedesmaceae) photosynthetic system II (D1-PSII, PDB ID:1FC9) [45], the triazine hy-
drolyzable protein of Paenarthrobacter aurescens Phillips (Micrococcales: Micrococcaceae)
(TrzN, PDB ID:4L9X) [46], and the human H2AX protein (H2AX, PDB ID:6K1J) [47] (the
rationale for the selection of the above three proteins is shown in the appendix). The
Discovery Studio (DS) 2020 software (BIOVIA Inc.: Shenzhen, Guangdong, China) used
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the three proteins mentioned above as receptor proteins. Furthermore, the structurally
optimized S-THs molecules were used as ligand molecules in the LibDock module for
rapid ligand-receptor docking to characterize the ligand-receptor binding ability using LDS.
These include herbicidal functionality properties, degradability, and toxicity.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 18 
 

 

the triazine hydrolyzable protein of Paenarthrobacter aurescens Phillips (Micrococcales: 
Micrococcaceae) (TrzN, PDB ID:4L9X) [46], and the human H2AX protein (H2AX, PDB 
ID:6K1J) [47] (the rationale for the selection of the above three proteins is shown in the 
appendix). The Discovery Studio (DS) 2020 software (BIOVIA Inc.: Shenzhen, 
Guangdong, China) used the three proteins mentioned above as receptor proteins. 
Furthermore, the structurally optimized S-THs molecules were used as ligand molecules 
in the LibDock module for rapid ligand-receptor docking to characterize the ligand-
receptor binding ability using LDS. These include herbicidal functionality properties, 
degradability, and toxicity. 

 
(a) (b) (c) 

Figure 4. Schematic structure of the herbicidal, degradative, and toxic receptor proteins of S-THs: 
(a) 1FC9; (b) 4L9X; (c) 6K1J. 

4.2. Characterization of the Comprehensive Effects of Herbicidal Functionality Properties, 
Microbial Degradability, and Human Lung Cytotoxicity of S-THs—AHP-TOPSIS Method 

In this study, we used the Analytic Hierarchy Process—Technique for Order 
Preference by Similarity to the Ideal Solution (AHP-TOPSIS) [48] to normalize the 
herbicidal functionality properties, degradation, and toxicity indices of S-THs and 
calculated the comprehensive herbicidal functionality properties, degradation, toxicity, 
and CV of S-THs molecules according to the weighting ratios of the AHP-TOPSIS method. 
In addition, the CV was normalized using the AHP-TOPSIS method. The equations are as 
follows: 

(1) Subjective weighting W1 (j) of herbicidal functionality properties, degradability, 
and toxicity of S-THs—SPSSAU software method 

This study is primarily concerned with the herbicidal functionality properties of S-
THs. The Analytic Hierarchy Process (AHP) module of SPSSAU software (QingSi 
Technology Ltd.: Beijing, China) was used to calculate the weight W1 (j) (the calculation 
and weighting methods are shown in the appendix). 

(2) Objective weighting W2 (j) of herbicidal functionality properties, degradability, 
and toxicity of S-THs—TOPSIS weighting method 

The docking scores of herbicidal functionality properties, degradability, and toxicity 
of S-THs were normalized in this study based on the type of indicator (positive and 
negative indicators, respectively), where herbicidal functionality properties and 
degradability are positive indicators, and toxicity is a negative indicator, and are 
calculated as follows: 

Normalization of positive indicators of herbicidal functionality properties or 
degradability: Z୧୨ା = X୧୨ − min {X୧୨}max൛X୧୨ൟ − min {X୧୨} (1)

Normalization of negative indicators of toxicity: 

Figure 4. Schematic structure of the herbicidal, degradative, and toxic receptor proteins of S-THs:
(a) 1FC9; (b) 4L9X; (c) 6K1J.

4.2. Characterization of the Comprehensive Effects of Herbicidal Functionality Properties, Microbial
Degradability, and Human Lung Cytotoxicity of S-THs—AHP-TOPSIS Method

In this study, we used the Analytic Hierarchy Process—Technique for Order Prefer-
ence by Similarity to the Ideal Solution (AHP-TOPSIS) [48] to normalize the herbicidal
functionality properties, degradation, and toxicity indices of S-THs and calculated the
comprehensive herbicidal functionality properties, degradation, toxicity, and CV of S-THs
molecules according to the weighting ratios of the AHP-TOPSIS method. In addition, the
CV was normalized using the AHP-TOPSIS method. The equations are as follows:

(1) Subjective weighting W1 (j) of herbicidal functionality properties, degradability,
and toxicity of S-THs—SPSSAU software method

This study is primarily concerned with the herbicidal functionality properties of S-THs.
The Analytic Hierarchy Process (AHP) module of SPSSAU software (QingSi Technology
Ltd.: Beijing, China) was used to calculate the weight W1 (j) (the calculation and weighting
methods are shown in the appendix).

(2) Objective weighting W2 (j) of herbicidal functionality properties, degradability, and
toxicity of S-THs—TOPSIS weighting method

The docking scores of herbicidal functionality properties, degradability, and toxicity of
S-THs were normalized in this study based on the type of indicator (positive and negative
indicators, respectively), where herbicidal functionality properties and degradability are
positive indicators, and toxicity is a negative indicator, and are calculated as follows:

Normalization of positive indicators of herbicidal functionality properties or degradability:

Z+
ij =

Xij − min
{

Xij
}

max
{

Xij
}
− min

{
Xij
} (1)

Normalization of negative indicators of toxicity:

Z−
ij =

max
{

Xij
}
− Xij

max
{

Xij
}
− min

{
Xij
} (2)

where i denotes the S-THs molecule (i = 1, 2, . . . , 26), j denotes the receptor protein (j = 1, 2, 3
for 1FC9, 4L9X, and 6K1J, respectively), Zij

+ denotes the positive indicator of the S-THs
molecule normalized for herbicidal functionality properties or degradability, Zij

− denotes
the negative indicator of the S-THs molecule normalized for toxicity, and Xij denotes the
molecular docking scoring value of the ith molecule to the jth protein.
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The docking scores of herbicidal functionality properties, degradability, and toxicity
of S-THs were used as column vectors a1, a2, and a3 to construct a 3 × 26 normalized data
matrix (a1, a2, a3), and the best and worst values of each column were selected to construct
the best vector A+ = (a1

+, a2
+, a3

+) and the worst vector A− = (a1
−, a2

−, a3
−), respectively.

The normalized data vector of each S-THs molecule was then compared to the best and
worst vectors. Closer to the best vector indicates that the S-THs molecule’s comprehensive
effect is better. In contrast, closer to the worst vector indicates that the S-THs molecule’s
comprehensive effect is worse. Therefore, the elements of the optimal and worst vectors
were calculated as follows:

a+j =

{
max

(
Xij
)
, Xij is a positive indicator

min
(
Xij
)
, Xij is a negative indicator

(3)

a−j =

{
max

(
Xij
)
, Xij is a positive indicator

min
(
Xij
)
, Xij is a negative indicator

(4)

where aj
+ is the jth column element of the best vector and aj

− is the jth column element of
the worst vector.

Based on the optimal and inferior vectors A+ and A–, the distances of each S-THs nu-
merator from the optimal and inferior vectors were calculated, and a positive relative error
matrix R+ = (r)ij

+
3×26 and a negative relative error matrix R− = (rij

−)3×26 were constructed
based on the ratio between them and the maximum distance.

r+ij =

∣∣∣Xij − a+j
∣∣∣

max
(
Xij
)
− min

(
Xij
) (5)

r−ij =

∣∣∣Xij − a−j
∣∣∣

max
(
Xij
)
− min

(
Xij
) (6)

where r+ij denotes the element in row i, column j of the positive relative error matrix, and
r−ij denotes the element in row i, column j of the negative relative error matrix.

The cosine of the relative error angle between the herbicidal functionality properties,
degradability, and toxicity indicators of the S-THs was calculated based on the relative
error matrix θj:

θj = cos < r+ij , r−ij >=
∑m

i=1 r+ij ·r
−
ij√

∑m
i=1 r+

2

ij ·
√

∑m
i=1 r−

2

ij

(7)

The objective TOPSIS weights W2(j) for herbicidal functionality properties, degrad-
ability, and toxicity of the comprehensive effect of S-THs were calculated by normalizing
the cosine of the relative error clincher.

W2(j) =
θj

∑m
j=1 θj

(8)

(3) The compound weighting of subjective and objective
The minF optimization problem was designed using the minimum entropy principle.

The following are the calculated comprehensive weights w(j) of the herbicidal functionality
properties, degradability, and toxicity of S-THs.
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minF =
m

∑
j=1

w(j)ln
w(j)

W1(j)
+

m

∑
j=1

w(j)ln
w(j)

W2(J)
(9)

s.t.∑m
j=1 w(j) = 1, w(j) > 0 (10)

The comprehensive weights w (j) for herbicidal properties, degradability, and toxicity
of the comprehensive effects of S-THs were calculated using the Lagrange multiplier
method to solve the above equation. The subjective weights W1 (j) and objective weights
W2 (j) was substituted to calculate the comprehensive weights.

w(j) =
√

W1(j)W2(j)/∑3
j=1

√
W1(j)W2(j), j = 1, 2, 3 (11)

4.3. Construction of a Model for the Comprehensive Effects of Herbicidal Functionality Properties,
Microbial Degradability, and Human Lung Cytotoxicity of S-THs—3D-QSAR Model

The optimized molecules from the SYBYL-X2.0 software [49] Minimize module were
classified into training and test sets in a 3:1 ratio randomly (template molecules were
present at both the training and test levels; the molecular distribution of the model training
and test sets is shown in Table S2), with the more widely used Propazine (PRZ) chosen as
the template molecule. The Align Database module [50] was used for molecular stacking
(the molecular structure and common backbone are shown in Figure S3).

The stacked training set molecules and docking scores were imported using the
SYBYL-X2.0 software (where the comprehensive value was imported to construct the
CoMSIA model [36,50] for the comprehensive effect of herbicidal properties, degrad-
ability and toxicity of S-THs). The Calculate Properties module output the calculated
values for the hydrophobic (H), hydrogen bond acceptor (A), hydrogen bond donor (D),
electrostatic (E), and steric fields (S) were output using the Calculate Properties module,
and cross-verification and non-cross-verification [36,50]. The molecules from the superim-
posed test set were then imported into SYBYL-X2.0 software. Based on the analysis results
of the CoMSIA model constructed using the training set molecules, the predicted value
of the test set molecule output was obtained using the Predict function under the Add a
Computed Column module [36,50]. Finally, using the Calculate Properties module [36,50],
the predicted values were externally validated against the original scoring values (the
comprehensive model for the comprehensive values). After passing all the above vali-
dations, the built model of the herbicidal, degradation, and toxicity effects of S-THs and
their comprehensive effects proved stable, predictive, and well-fitting. The parameters and
model evaluation criteria for the training sets and test sets of the CoMSIA model developed
in this study are listed in Table S11 [36].

4.4. Design of S-TH Substitutes—SYBYL-X2.0 Software

In this study, using the SYBYL-X2.0 software, we propose the selection of the most
widely used ATZ as a template molecule and determine the substitutable group sites
and substitution groups based on the 3D isopotential diagrams of each force field (in-
cluding hydrophobic field (H), hydrogen bond acceptor field (A), hydrogen bond donor
field (D), electrostatic field (E), and steric field (S)) of the constructed CoMSIA model of
the comprehensive effect of herbicidal properties, degradability, and toxicity of S-THs. The
introduction of hydrophobic substituents (-CH3, CF3, -F/Cl/Br, -OCH3, and -SH) near
the yellow region of the hydrophobic field (H) and hydrophilic substituents (-OH, -CHO,
-COOH, and -NH2) near the white region of the hydrophobic field (A) improved the activi-
ties of the compounds. The addition of hydrogen bond acceptors (-NO2, NF2, and -COCF3)
in the purple region of the hydrogen bond acceptor field (A) and hydrogen bond donors
(-NH2, -OH, -COCH3, and -CONH2) in the red region of the field improved the activities of
the compounds. The addition of hydrogen bond donors in the cyan region of the hydro-
gen bond donor field (D) and hydrogen bond acceptors in the purple region of the field
improved the activities of the compounds. Introducing less electronegative substituents
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(-H, -OH, -COOH, and –NH) in the blue region of the electrostatic field (E) improved the
activities of the compounds. The introduction of less electronegative substituents (-H,
-OH, and -CH3) in the blue region of the electrostatic field (E) and more electronegative
substituents (-CF3, -F, -CH2 F, and -CHF2) in the red region of the field improved the
activities of the compounds. The activities of the compounds were improved by increasing
the size of the substituents in the green region of the steric field (S) and decreasing the size
in the yellow region [51]. The Sketch Molecule, Minimize, and Align Database modules of
the SYBYL-X2.0 software were used to map and optimize substitutes [36].

4.5. Evaluation of the Microbial Degradability Universality and Toxicity of Antioxidant Systems in
Fish of S-THs Substitutes—Molecular Docking Method
4.5.1. Evaluation of the Microbial Degradability Universality of S-THs Substitutes in the
Soil Environment

The PDB database was used to search and select three proteins as the target proteins of
microbial degradation (Figure 5, the rationale for the selection of the above three proteins
is shown in the appendix), which are AtzC of Pseudomonas sp. Migula (Pseudomonadales:
Pseudomonadaceae) ADP (PDB ID: 2QT3), LiP of Phanerodontia chrysosporium Burds. (Poly-
porales: Phanerochaetaceae) (PDB ID: 1B85), and MnP (PDB ID: 1MNP). The LibDock
module of DS software was used to perform molecular docking between the designed
S-TH substitutes and the above proteins. LDS was used to characterize the microbial
degradability of S-TH substitutes, which was used as an evaluation index of the microbial
degradability universality of S-TH substitutes in the the soil environment.
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Figure 5. Schematic diagram of the structure of a universal degrading protein of S-TH substitutes in
the soil environment: (a) 2QT3; (b) 1B85; (c) 1MNP.

4.5.2. Evaluation of the Toxicity of Antioxidant Systems in Fish of S-TH Substitutes in the
Aquatic Environment

The UniProt database [34] was used to identify superoxide dismutase (SOD, UniProt
ID: Q8JFG7), and hydrogen peroxide proteins (CAT, UniProt ID: E2CWE8) (Figure 6) as
receptor proteins in carp (the rationale for the selection of the above three proteins is shown
in the appendix). The above proteins were molecularly docked with S-TH substitutes with
universal microbial degradability using the LibDock module of the DS software. Protein
activity was more likely to be inhibited when the docking score was higher. The docking
scores of the two proteins were added at a weight of 1:1, and the comprehensive value was
used to characterize the toxic effect of S-TH substitutes on the antioxidant system of fish.
The higher the comprehensive value, the stronger the toxicity of S-TH substitutes on the
antioxidant system of fish.
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4.6. Screen of Optimal Field Application Schemes to Promote the Microbial Degradation of S-TH
Substitutes in Maize Cropping Fields—Taguchi Orthogonal Experiments, Full Factorial Design of
Experiments, and Molecular Dynamics Methods

THs are applied primarily to maize [1]. In this study, the maize cropping field was
selected as the primary research area to explore the influence of different external stimulus
conditions (such as fertilizer and crop root secretion) of the maize cropping field on the
microbial degradability of S-TH substitutes in the soil environment and to screen and
determine the best field application scheme of S-TH substitutes. Furthermore, root exudates
can promote microbial degradation near the rhizosphere [40]. In this study, 18 compounds,
including the most widely used nitrogen fertilizer [52] and 17 kinds of rhizosphere secretory
substances of maize, were selected (Table S12) [53,54] as external addictive conditions to
investigate their influence on the degradability of S-TH substitutes.

In this study, 18 compounds (Table S12) were chosen as external conditions to design
an 18-factors and 2-levels (0 for no addition, 1 for addition) Taguchi orthogonal experiment,
with a total of 32 different sets of external conditions schemes. In addition, the binding
energy of the substitute D-5, triazine hydrolysate protein 4L9X, and the complex system
of external conditions (Table S7) were calculated to screen the optimal field application
schemes to promote the microbial degradation of S-TH substitutes preliminary.

The Taguchi orthogonal experimental design is a method for independently evaluating
the single-factor-level effects [55]. Eighteen compounds were chosen as external additives
in this study. The Taguchi (T) module under the design of the experiment module in
Minitab 20 software was used to construct a Taguchi orthogonal experimental design
with 18 factors and two levels (0 represents no addition, 1 represents addition). A total of
32 groups of external condition-adding schemes were included. Among them, the S-TH
substitutes and 4L9X proteins selected as fixed conditions were added to this scheme’s
molecular dynamics calculation system.

The Gromacs 4.6.5 software (GROMACS development team: Stockholm, Sweden) [56]
was used to simulate the molecular dynamics of the 32 groups of schemes. After docking,
the compound system of S-TH substitutes, external condition compounds, and 4L9X
protein were placed in a periodic cubic aqueous solution with a side length of 15 nm. The
GROMOS96 43a1 force field was utilized for molecular restraint. In addition, a positively
charged Na+ neutralizing system was added. The binding energy between S-TH substitutes,
external condition compounds, and 4L9X proteins in each group was calculated using the
Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) method (the smaller
the binding energy, the stronger the promoting effect of the scheme on the microbial
degradation of S-TH substitutes). Finally, the external condition addition scheme with the
minimum binding energy was used as the initial screening scheme for the subsequent total
factorial experimental design. Furthermore, the best field application scheme is conducive
to degrading S-TH substitutes by soil rhizosphere microorganisms in maize cropping fields.

The full factorial design of experiments is a method that allows rapid screening
of multilevel, multifactorial, and correlated vital factors, thereby reducing experimental
workload and increasing efficiency [57]. In this study, we used the Factor (F) module
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under the design of the experiment module of the Minitab 20 software (Minitab LLC.:
Centre County, Pennsylvania, United States) to construct an n-factor 2-level full factorial
design of the experiment based on the initial screening scheme of the Taguchi orthogonal
experiment (assuming the number of external conditions in the scheme is n). Molecular
dynamics was used to calculate the binding energies of S-THs, external conditions, and
4L9X protein. In addition, using Minitab 20 software, the absolute values of binding
energies were entered as response values into the constructed design of the experimental
table, and the factorial design was analyzed using the Factorial (F) module under the design
of the experimental module. The interaction mechanisms (synergistic and antagonistic)
between the n-factors were further analyzed to verify the reliability of the screened optimal
field application options.

4.7. Simulation of Microbial Degradation Pathways of S-TH Substitutes—DFT and Microbial
Degradation Pathway Simulation

In this study, the microbial degradation pathways of S-THs before and after molecular
modification were simulated and inferred from that of ATZ indicated in the literature
(Figure S4) [58]. Furthermore, the possible intermediate and final products produced
during the degradation and the change of microbial degradation degree molecules before
and after modification were analyzed based on DFT. Gaussian09 software (Gaussian Inc.
Wallingford, Connecticut, United States) was used to optimize and calculate the reaction
energy barrier (∆E > 0, with a smaller energy barrier indicating a more accessible reaction)
of the microbial degradation of S-THs before and after molecular modification at the
B3LYP/6-31G* unit level [35,59]. It has been shown that the ∆E (>0) represents the difficulty
of reaction occurrence, with smaller values indicating that the reaction is more likely to
occur [35]. Therefore, the ∆E results were used to evaluate the microbial degradation of
S-THs before and after molecular modification.

4.8. Evaluation of Aquatic Biotoxicity and Human Health Risks of Microbial Degradation Products
of S-TH Substitutes—EPI Software Method, Pharmacokinetic and Toxicokinetic Methods

Estimation Programs Interface (EPIWEB 4.1) software (SRC Inc.: Syracuse, New York,
NY, USA) [60] was used in this study to predict and evaluate the aquatic toxicity of interme-
diate microbial degradation products by calculating the toxicity of the aquatic organisms
(green algae (EC50), Daphnia (LC50), and fish (LC50)). In addition, the pharmacokinetic and
toxicokinetic methods in the ADMET module of the DS software were used to calculate
the human health risks (hepatotoxicity, maximum tolerated dosage, skin sensitization, skin
irritation, and rodent carcinogenicity) of S-THs and their substitutes’ microbial degradation
products. These indicators can be used to predict and evaluate the human health risks
posed by microbial degradation products.

5. Conclusions

This study developed an ecological and sustainable S-THs control scheme that can
effectively reduce the environmental and human health impacts of S-THs application in
maize cropping fields through molecular source prevention, field application process con-
trol, and end-of-soil degradation evaluation. The main findings were as follows: (1) the
design of a substitute to S-THs with high herbicidal functionality and microbial degrad-
ability, low human health risk, and environmental friendliness using three-dimensional
quantitative structure-activity relationship (3D-QSAR) modeling and molecular docking
methods; (2) the simulation and screening of fertilizer and soil secretion that can promote
microbial degradation of the substitute to S-THs in maize cropping fields using Taguchi
orthogonal experiments and full factorial design of experiments; and (3) Based on the DFT,
we simulated and calculated the degradation pathways and reaction energy barrier of S-TH
molecules before and after modification, and confirmed that the designed S-TH substitutes
have stronger microbial degradability. This study developed a source modification scheme
for S-TH substitutes, an optimal application process control scheme for S-TH substitutes
in maize cropping fields, and an environmental and human health evaluation scheme for



Int. J. Mol. Sci. 2023, 24, 5691 15 of 17

their terminal potential degradation products, which provides theoretical guidance for
minimizing the risk of S-THs application to the environment and human health in maize
cropping fields.
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