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Abstract: Despite the undisputed development of medicine, antibiotics still serve as first-choice
drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide
spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial
cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids
and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread
availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword,
since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant
microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians
and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular
antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most
common bacterial resistance strategies are: drug target site changes, increased cell wall permeability
to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay
between the mechanisms of antibiotic actions and bacterial defense strategies against particular
antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide
a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy
of antibiotics.
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1. Introduction

The discovery of antibiotics was one of the greatest achievements in medicine of the
twentieth century. Their introduction into clinical use reduced morbidity and mortality
driven by bacterial infections. From the 1930s to the 1960s, the number of newly identified
antibiotics reached its peak; therefore, this period is regarded as the “Golden Age of Antibi-
otics”. At the same time, strains of antibiotic-resistant bacteria were observed [1]. In the
following decades, the overuse and/or misuse of different antimicrobial agents—which has
been accelerated by overprescribing antibiotics by clinicians as well as by their widespread
use in industry, including animal husbandry and agriculture branches—led to the un-
controlled spread of antibiotic resistance throughout the microbe populations. The most
virulent, nosocomial, multidrug-resistant pathogens of clinical importance form a group,
which has been referred to as “ESKAPE”. This group includes species such as Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp., with “ESKAPE” acting as an acronym [2]. Current reports
have indicated that a growing number of antibiotic-resistant microorganisms are negatively
correlated with the number of effective antibiotics; no new antimicrobial agents have been
introduced recently. In light of such data, it is not surprising that the World Health Organi-
zation (WHO) has recognized a constantly increasing level of antibiotic resistance, accompa-
nied by a growing number of multidrug-resistant microbes, as a major public health threat
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of global concern, with the prospect of a return to the “pre-antibiotic era” [3,4]. According
to the Centers for Disease Control (CDC) report, antibiotic-resistant microorganisms solely
are responsible for two million illnesses in the United States per year; amongst which 23.000
are fatal [5]. Furthermore, it is estimated that ten million people could die from infections
caused by antibiotic-resistant bacteria by 2050 [6].

New strategies are being implemented to overcome antimicrobial resistance, some of
which focus on the research and development of antibiotics. As a result, since 2017, several
new antibiotics have been developed and approved by the U.S. Food and Drug Adminis-
tration (FDA) and/or the European Medical Agency (EMA) [7–9], including cefiderocol,
ceftobiprole, rifamycin, eravacycline, sarecycline, omadacycline, plazomicin, contezolid,
lefamulin, pretomanid, as well as a combination of imipenem, cilastatin, and relebac-
tam [9]. In addition, dozens of other antimicrobial drugs that act against pathogens on the
WHO priority pathogens list are currently under development [7–9]. Among the targets
of the newly approved antibiotics are mostly the carbapenem-resistant Enterobacteriaceae
(CRE), oxacillinase-48-producing Enterobacteriaceae (OXA-48), and β-lactamase-producing
Enterobacteriaceae (ESBL) [7–9]. This review provides a brief overview of the mechanisms of
action of the clinically important antibiotic groups, as well as the mechanisms underlying
microbial resistance to particular antimicrobial agents. It is believed that knowledge of
these mechanisms should lead to the development of new drugs or their new combinations.
This, in turn, may improve the effectiveness of infection therapy caused by bacterial strains
resistant to currently available antibiotics. We also briefly present promising nanomedicine-
based approaches that aim to improve the efficacy of the old antibiotics, as well as current
strategies that focus on searching for new ones.

2. Mechanisms of Antibiotic Actions

The term “antibiotic” was introduced by Selman Waksman in 1942 and was defined
as a substance produced by microorganisms capable of inhibiting growth or killing other
microorganisms [10]. Currently, the definition of antibiotic is broader, and it encompasses
compounds of both natural and synthetic origin exhibiting a wide spectrum of actions [11].
The most common mechanisms of antibiotic action include: (i) the inhibition of bacterial cell
wall biosynthesis, (ii) the disruption of cell membrane integrity, (iii) the inhibition of nucleic
acids and/or protein synthesis, and (iv) disturbances of different metabolic processes [12].

2.1. Antibiotics That Inhibit Cell Wall Synthesis

There are two main groups of antibiotics, whose activities lead to the inhibition of cell
wall synthesis: β-lactams [13] and glycopeptide antibiotics [14–18]. They achieve this by
inhibiting the polymerization of peptidoglycan—which is the primary structural compo-
nent of the bacterial cell wall [19]—in a direct or indirect manner, respectively [13–18]. All
β-lactam antibiotics, to which penicillin [20], cephalosporins, carbapenems, and monobac-
tams belong, share a common structure, which is a four-member β-lactam ring (the 3-carbon
and 1-nitrogen ring). As the attachment within a lactam is formed between the nitrogen
atom and β-carbon atom (relative to carbonyl), this class is known as β-lactams.

In general, β-lactams act by covalent and irreversible binding to penicillin-binding
proteins (PBPs). The PBP exhibit D, D-transpeptidases, and D, D-carboxypeptidases activi-
ties, which are involved in the formation of cross-bridges between neighboring peptide
chains of peptidoglycan, thereby blocking peptidoglycan synthesis [21] (Figure 1(1)).

Differences in chemical structure between the particular representatives of β-lactams
affect their relative affinity for different PBPs, which in turn result in discrepancies in
their antimicrobial actions, including their activity and spectrum of action. As mentioned
above, β-lactam antibiotics have an inhibitory effect on PBPs, enzymes that exhibit D, D-
transpeptidases, and D, D-carboxypeptidases activities. Specifically, PBP catalyze the final
step of peptidoglycan synthesis, which involves the formation of cross-bridges between
neighboring peptide chains to ensure cell wall stability [21].
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The bactericidal activity of β-lactams results from their structural similarity to the
peptidoglycan precursor ending in the D-alanyl-D-alanine group (D-Ala-D-Ala) [22]. At
the molecular level, β-lactam antibiotics target PBP by catalytically acylating an essential
serine residue with a reactive β-lactam core. This acylation step yields a stable acyl–enzyme
complex (AEC), which is followed by the breaking of the amide bond and the opening of the
β-lactam ring [23–25]. The inactive acyl-peptidase adduct is characterized by high stability
and a long half-life because of its slow hydrolysis. This, in turn, leads to the irreversible
inactivation of the enzyme [26] and the inhibition of peptidoglycan biosynthesis, which
are altogether followed by the loss of cell wall integrity and, consequently, bacterial cell
death [27] (Figure 1(1)). Interestingly, the emergence of new therapeutic options gives
reason for optimism in the fight against increasing resistance to beta-lactam antibiotics.
These therapeutic allies include the novel beta-lactam-related drugs, i.e., cefiderocol or
ceftobiprole. Cefiderocol is a representative of a novel group of antibiotics targeting Gram-
negative bacteria, called siderophore cephalosporins, whose mechanism of action consists
in preventing cell wall synthesis through binding to PBP proteins (mainly PBP-3) [28].
The first attempts to use siderophores as transporters of antibiotics into the cell were
made as early as the 1970s, and this strategy was called the "Trojan horse approach".
The unique chemical component of this antibiotic is the addition of a catechol moiety
on the C-3 side chain, which chelates iron and mimics naturally occurring siderophore
molecules [29]. Siderophores are a structurally diverse group of low-mass molecules
(150–2000 Da) with chelating properties and a high affinity for iron. Cefiderocol, after bind-
ing iron, reaches the periplasmic space by active transport, which involves, among others,
the transporters CirA and Fiu in E. coli and PiuA in P. aeruginosa. This transport mechanism
eliminates the problem of resistance associated with a decrease in the number of porins
in the outer membrane or the overexpression of MDR pumps responsible for the efflux
phenomenon [28,29]. Moreover, ceftobiprole (BAL 9141) is a new beta-lactam antibiotic
that exhibits potent bactericidal activity by binding to PBP, inhibiting transpeptidation, and
the formation of the bacterial cell wall, leading to cell lysis and death. The drug can bind to
several PBPs found in both Gram-negative and Gram-positive bacteria [30,31]. Ceftobiprole
rapidly binds and forms a stable inhibitory acyl–enzyme complex with PBP 2′ (PBP 2a) and
PBP 2x, which act on beta-lactam-resistant staphylococci and streptococci, respectively. The
stability of the acyl–enzyme complex, combined with the long side chain, which is located
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deep in the binding pocket of PBP 2′, enhances the binding stability and inhibition of the
enzyme [32].

Another highly important group of antibiotics of clinical relevance whose actions lead
to the inhibition of cell wall synthesis are glycopeptide antibiotics, such as vancomycin, [14],
teicoplanin, oritavancin, and telavancin [15,16]. However, unlike β-lactams, glycopeptide
antibiotics inhibit the peptidoglycan biosynthesis in Gram-positive bacteria by targeting
lipid II. For example, the mode of action of vancomycin relies on binding to the D-Ala-D-Ala
terminus of the peptidoglycan (PG) cell wall precursor Lipid II (undecaprenyl-diphospho-
N-acetylmuramoyl-[N-acetylglucosamine]-l-alanyl-γ-d-glutamyl-l-lysyl-d-alanyl- d-ala-
nine) [33,34]. Such high-affinity binding between them is due to the binding pocket in the
vancomycin molecular structure that adopts a conformation corresponding to the spatial
structure of D-Ala-D-Ala. Moreover, an individual antibiotic molecule – through its single
carboxyl, single amino, and three amide groups—can form five hydrogen bonds with the
corresponding groups of the D-Ala-D-Ala dipeptide, thus, stabilizing the newly formed
complex. This binding blocks the PBP activity and prevents crosslinking Lipid II into
mature peptidoglycan, thereby disturbing the maturation process of the peptidoglycan
layer [33–36]. Ultimately, this leads to osmotic shock and bacterial cell death [37,38]
(Figure 1(2)).

2.2. Antibiotics That Disrupt the Integrity of the Cell Membrane

Amongst the antibiotics whose action leads to the disruption of the bacterial cell
membrane, there are: cyclic lipopeptide [39–49] and polymyxins [50–63] (Figure 2).

The best-known representative of cyclic lipopeptide antibiotics is daptomycin, which
was first obtained from the fermentation medium of the soil bacterium Streptomyces
roseosporus in the 1980s and introduced into clinical practice in 2003 [40,41]. The dap-
tomycin molecule comprises a 13-amino-acid peptide linked to a decanoyl side chain. This
linkage depends on the presence of calcium ions [42–44], which mask the anionic nature of
daptomycin, thereby affecting its physicochemical characteristics. The Ca2+–daptomycin
complex forms micelles that penetrate the inner membrane, bind to negatively charged
phosphatidylglycerol groups, and neutralize them. Then, the Ca2+–daptomycin complex is
inserted into the membrane and undergoes phosphatidylglycerol-dependent oligomeriza-
tion. Together, these events lead to the formation of membrane channels, which, combined
with the loss of membrane integrity, cause the leakage of ions, mainly potassium and
sodium, and a decrease in the transmembrane potential [45–49]. As a result, membrane-
related processes are disrupted, eventually causing bacterial cell death (Figure 2(1)).

Polymyxins are cationic peptide antibiotics produced by the Paenibacillus polymyxa
subspecies (formerly Bacillus polymyxa), after which they are named. There are several
polymyxins, such as polymyxin E (also known as colistin), discovered in 1947 [50,51] as well
as polymyxins A, B, C, and D. Nevertheless, only polymyxins E and B are clinically useful
because of the high toxicity of the others [44]. In general, polymyxins induce chemical
instability in the outer cell membrane of Gram-negative bacteria. Due to their amphipathic
structure, they act as surface-active compounds. The core of the polymyxin molecule
is formed by a cyclic heptapeptide linked to a linear tripeptide side chain. The latter is
attached to a branched fatty acid chain of seven to nine carbon atoms via an α-amide
bond [53–56]. The heptapeptide ring consists of amino acids of the D and L configura-
tions and L-α, γ-diaminobutyric acid (Dab). The positively charged residues of α, and
γ-diaminobutyric acid react electrostatically with the negatively charged phosphate groups
of lipid A, a component of lipopolysaccharide (LPS). This interaction results in the competi-
tive displacement of divalent magnesium and calcium ions, which stabilize the structural
arrangement of monolayer LPS molecules. The N-terminal hydrophobic lipid chain is then
integrated with the lipid regions of the LPS. This leads to an increase in the permeability of
the outer membrane, thus facilitating the entry of subsequent antibiotic molecules [56–58].
The destructive activity of polymyxins also extends to the inner membrane, resulting in
a loss of its physical integrity, a leakage of intracellular components and, consequently,
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bacterial cell death [58–60]. Furthermore, it has been reported that polymyxins can mediate
the fusion of the inner leaflet of the outer membrane with the outer leaflet of the inner mem-
brane, promoting the exchange of phospholipids between the membranes. Such changes in
the lipid compositions of two membranes cause an osmotic imbalance and cell lysis [61–63]
(Figure 2(2)).
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2.3. Antibiotics That Inhibit Nucleic Acid Synthesis

Among the antibiotics that inhibit nucleic acid synthesis as well as being widely used
in clinical practice, there are quinolones and rifamycins.

The first discovered antibiotic from the quinolone group was nalidixic acid in 1962,
which was obtained as a product of the chloroquine (a drug used in malaria) purification
process. Today, nalidixic acid (the first generation of quinolones [64]) is being replaced by a
number of its new derivatives with a broad spectrum of bactericidal activity.

Currently, all of them are generally divided into four generations [65]. Quinolones
directly affect DNA synthesis and change its topology by targeting two important bacterial
enzymes belonging to the type II topoisomerase enzymes: gyrase and topoisomerase IV
(Topo IV) [66]. The canonical role of these two enzymes is to regulate the topological
state of DNA following both transcription and DNA replication, namely by removing the
accumulated positive supercoils. Despite the relatively high similarity between gyrase and
topoisomerase IV in their molecular structures, these two enzymes differ from each other
in their mechanisms of action. In general, gyrase is responsible for maintaining a steady-

Biorender.com
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state level of negative supercoils in DNA, as well as removing the positive ones ahead
of the replication fork or the transcription complex, while topoisomerase IV is engaged
in unlinking newly synthesized DNA. In more detail, the heterotetrameric structure of
DNA gyrase consists of two GyrA subunits (95 kDa) and two GyrB subunits (90 kDa)
(GyrA2:GyrB2). In turn, topoisomerase IV is composed of two ParC subunits (75 kDa) and
two ParE subunits (70 kDa) (ParC2:ParE2). Both gyrase and topoisomerase IV share the
core type II topoisomerase strand passage mechanisms, which are based on transporting
one DNA segment (called the transport or T-segment) through a transient double-strand
break in a second segment of DNA (called the gate or G-segment) in an ATP-dependent
manner. To prevent newly generated single-stranded DNA ends from being further cleaved,
topoisomerases II covalently bind to those 5’-termini, forming the so-called “cleavage
complex”. Therefore, the integrity of the genome is preserved during this process. The
round of catalysis ends when the transfer strand and products of ATP hydrolysis (since
ATP hydrolysis is coupled with the strand passage mechanism) are released and the gate is
closed [67,68].

As mentioned above, quinolones inhibit bacterial DNA synthesis by its binding to
the topoisomerase–DNA cleavage complex within the G segment. The newly formed
quinolone–topoisomerase–DNA complex stabilizes the gap between the nicked DNA
strands, thus preventing movement of the replication fork during the ongoing DNA repli-
cation process. This results in the inhibition of DNA synthesis and blocks the ability of the
bacterial cell to divide, which finally leads to its death [69–73] (Figure 3(1),(2)).
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Rifamycins, which belong to the family of naturally derived ansamycin antibiotics,
constitute the most important group of antibacterial substances that inhibit the synthesis of
bacterial RNA [74,75]. These antibiotics were first isolated in 1959 from the fermentation
medium of the Amycolatopsis mediterranei strain, as a mixture of several substances that
gave rise to rifamycin B and SV [76,77]. Rifamycin SV serves as a precursor of numerous
semisynthetic derivatives, including rifampicin, rifabutin, rifapentin, and rifaximin [78].
Importantly, rifamycin was further engineered by Cosmo Technologies Ltd (with use of the
Cosmo Pharmaceuticals’ Multi Matrix Technology (MMX®)), in order to allow the colonic
release of the active ingredient. In 2018, the drug was approved by the FDA for clinical use
in travelers’ diarrhea caused by noninvasive Escherichia coli strains [9].

Biorender.com
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A characteristic feature of rifamycins’ structure, which determines their bactericidal
properties, is the presence of a macrocyclic ring, which specifically targets the β-subunit
of prokaryotic DNA-dependent RNA polymerase (RNAP) near its catalytic center [79].
By such binding, the transcriptional activity of RNAP is inhibited in the transcriptional
initiation stage [80], which blocks further extension of the nascent RNA [81–83]. This causes
a dramatic decrease in protein synthesis followed by bacterial cell death [84] (Figure 4).
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2.4. Antibiotics That Inhibit Protein Synthesis

A plethora of antibiotics interfere with protein synthesis (which takes place in prokary-
otic ribosomes), including tetracyclines, aminoglycosides, macrolides, lincosamides, strep-
togramins B, and oxazolidinones. Due to the structural differences between the eukaryotic
and prokaryotic ribosomes, the antibacterial agents exclusively target the latter and, there-
fore, are safe for humans [85].

Tetracyclines are bacteriostatic antibiotics that are currently grouped into three genera-
tions. The first one, chlorotetracycline (originally known as aureomycin), was obtained in
1948 from a culture of Streptomyces aureofaciens [86,87]. The name ”tetracyclines” is derived
from their characteristic chemical structure, which is a core consisting of four flat aromatic
hydrocarbon rings (marked as A, B, C, and D) to which various functional groups are
attached [88,89]. In an aqueous solution, they exist as hermaphrodite ions, which react with
magnesium ions through two oxygen atoms at positions C11 and C12, forming the [Mg
(tc)] + complex. This binds to its molecular targets within the 30S subunit of the bacterial
ribosome, i.e., the S7 protein and the helix 34 (h34) of the 16S rRNA [75–77]. Tetracyclines
are also believed to bind to the 50S subunit of the ribosome, albeit to a small extent, and
with low specificity [90,91]. As a result of such binding, the aminoacyl-tRNA-transporting
amino acid cannot physically bind to acceptor site A within the mRNA–ribosome transla-
tion complex, leading to inhibition of the translation. Furthermore, tetracyclines have been
shown to compete with tRNA for the P-site of the ribosome, also resulting in the inhibition
of polypeptide chain elongation [89,91,92] (Figure 5(1)).
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Importantly, several new-generation tetracycline-class antibiotics have been imple-
mented into clinical practice. In 2018, the fully synthetic fluorocycline (fourth-generation
tetracycline antibiotic), eravacycline (TP-434 or 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-
6-deoxytetracycline), was approved by both the FDA and EMA, and indicated for the
treatment of complicated intra-abdominal infections [7–9,93]. Eravacycline acts by bind-
ing the bacterial 30S ribosomal subunit, like other tetracyclines. However, due to two
unique modifications that are localized at the C-7 (addition of the fluorine atom) and C-9
(addition of the pyrrolidinoacetamo group) positions of its tetracycline core, it overcomes
several tetracycline-specific resistance mechanisms acquired by both Gram-positive and
Gram-negative bacterial strains (e.g., tetracycline-specific efflux, and ribosomal protection
and inactivation). It possesses activity against carbapenem-resistant Enterobacteriaceae,
methicillin-resistant Staphylococcus aureus, ESBL-producing Enterobacteriaceae, vancomycin-
resistant enterococci, and the majority of anaerobic pathogens [93–95]. Additionally, com-
pared to tetracycline, eravacycline binds to the bacterial 30S ribosomal subunit with a
ten-fold higher affinity, and a four-fold lower drug concentrations is needed to inhibit
protein translation [93–95].

Another recently developed and FDA-approved tetracycline-class antibiotic is sarecy-
cline, which has been implemented for the clinical treatment of acne vulgaris. Sarecycline is
characterized by the presence of the 7-[methoxy(methyl)amino]methyl] group localized at
the C7 position of ring D. In addition to its molecular structure, its mechanism of action also
differs to that of other tetracycline antibiotics (but it still exerts its antimicrobial activity by
inhibiting protein synthesis). In contrast to other tetracyclines, sarecycline inhibits bacterial
ribosomes (partially) by direct mRNA contact, which is mediated by the sarecycline unique
C7 moiety (the longest and largest group at this position among all of the tetracyclines). The
C7 moiety of sarecycline extends into the messenger RNA (mRNA) channel and directly
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interacts with the A-site codon. This probably leads to the inhibition of mRNA movement
through the channel and its tethering to the 70S ribosome. Another possible consequence
of sarecycline action can be a disruption of A-site codon–anticodon interaction, resulting in
tRNA accommodation disturbances [96].

Moreover, omadacycline—an aminomethylcycline (a semisynthetic compound de-
rived from tetracycline)—was approved by the FDA in 2018 for use in community-acquired
pneumonia and in acute bacterial skin and skin-structure infections. Omadacycline, like
other tetracycline-class antibiotics, acts as a protein synthesis inhibitor by binding to the
30S ribosomal subunit. It exhibits broad-spectrum in vitro activity against Gram-positive
aerobes, Gram-negative aerobes, anaerobes, and atypical bacteria. Its antimicrobial potency
has been increased due to modifications, specifically aminomethyl substitution at the C9
position. It is probably executed by overcoming ribosomal protection (through a higher
affinity for the ribosome and/or bypassing protection conferred by ribosomal protection
proteins, such as Tet M and Tet O) and efflux-mediated resistance [97,98].

Another group of antimicrobial agents, which can inhibit the synthesis of bacterial pro-
tein, are aminoglycosides, which are produced by Streptomyces and Micromonospora strains
and were introduced into routine clinical use nearly eight decades ago [99]. A common
feature of their chemical structure is a ring—that is, a streptamine, 2-deoxystreptamine,
or streptidine—which is linked by a glycosidic bond to an amino sugar molecule. The
different positions of amino and hydroxyl substituents relative to the core structure deter-
mine their discrepancies in the specificity of binding to the A-site (and different regions
within the A-site) in the 16S rRNA of the 30S subunit of the ribosome. This, in turn, un-
derlies different mechanisms of aminoglycoside actions [100–102], although, in general,
most of them are responsible for the misreading of mRNA codons and, consequently, the
mistranslation. The latter is executed by incorporation of the wrong amino acids into the
amino acid sequence of the synthesized peptides. If newly formed, incorrect proteins are
incorporated into the cytoplasmic membrane; they deteriorate membrane permeability,
affecting transmembrane transport and promoting an increased influx of aminoglycosides
into the cell [103]. Some aminoglycosides can inhibit the synthesis of polypeptide chains
by suppressing the formation of the initiation complex or blocking the translocation of
peptidyl-tRNA from the A-site to the P-site of the ribosome [58,92,104]. Furthermore, the
activity of aminoglycosides is also associated with a post-antibiotic effect (PAE), which
involves the long-term suppression of bacterial growth despite a decrease in antibiotic
concentration below the minimum inhibitory concentration (MIC) value [105] (Figure 5(2)).

Of note, in 2018, the United States Food and Drug Administration approved pla-
zomicin, a next-generation semisynthetic aminoglycoside antibiotic derived from sisomicin,
for use in urinary tract infections (cUTI) and pyelonephritis. Plazomicin is a broad-spectrum
antibiotic, which is effective against EBSL (extended-spectrum β-lactamase)-producing
and carbapenem-resistant Enterobacteriaceae (CRE), Klebsiella pneumoniae carbapenemase
(KPC), as well as gentamycin-resistant strains of E. coli strains and colistin (polymyxin
B)-producing bacteria [7,8,106,107]. Like other aminoglycoside antibiotics, plazomicin
inhibits protein synthesis by binding to the bacterial 30S ribosomal subunit. However,
it exhibits a broader spectrum of antibacterial activity due to its unique structure com-
pared to other aminoglycosides. These chemical characteristics include: (i) a lack of
hydroxyl groups (which protects against amikacin, gentamicin, and tobramycin resistance);
(ii) the presence of an unsaturated hydroxyethyl group; and (iii) N-1 substitution with
4-amino-2-hydroxybutanoic acid (both of these modifications confer protection against
aminoglycoside-modifying enzymes, AMEs) [106,107].

The macrolides, lincosamides, streptogramins B, despite the differences in their chemi-
cal structures, belong to the same group, known as MLSB, because of their similar mode of
action: the inhibition of bacterial protein synthesis by interacting with the 50S ribosomal
subunit [108,109].

Macrolides (known since 1952) contain a 14-, 15- or 16-membered lactone ring to which
neutral or amino saccharide substituents are attached. Their semisynthetic derivatives of
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14-membered-ring representatives, named ketolides, are in turn characterized by a 3-keto
group on the lactone ring.

Unlike macrolides, lincosamides lack a lactone ring; instead, they contain a sugar
moiety (α-methylthiolincosamine, α-MTL) and an amino acid moiety (propyl hygric acid).
Both of them serve as a structural analogue of the 3′ end of L-Pro-Met-tRNA and deacylated-
tRNA interacting with the 23S rRNA of the 50S bacterial ribosomal subunit. The prototype
of this class of antibiotics is lincomycin.

In turn, the streptogramin B molecule features a cyclic hexadepsipeptide.
MLSB antibiotics exhibit a high affinity for domains II and V of the 23S rRNA molecule

next to the nascent polypeptide exit tunnel (NPET) in the large ribosomal subunit (50S).
NPET is formed by the L22 and L4 proteins, which build its narrowest constriction. All
growing polypeptide chains move throughout the ribosome from the peptidyltransferase
(PTC) center (where the synthesis of the peptide bonds takes place) to the NPET, through
which they leave the ribosome [110,111]. MLSBs inhibit the peptidyl transferase-dependent
formation of a peptide bond between the ester group of peptidyl-tRNA (attached to the
P-site of the 50S ribosome) and the nucleophilic amino group of aminoacyl-tRNA (bound
to the A-site). Furthermore, the attachment of the antibiotic blocks the entry of NPET
before the L4 and L22 ribosomal proteins constrict, inducing the premature dissociation
of peptidyl-tRNA from the ribosome (which carries polypeptides of no more than 2 to 10
amino acid residues in length). The accumulation of dissociated peptidyl-tRNA molecules
depletes the amount of free tRNA and interrupts protein synthesis [112]. Finally, the MLSBs
disrupt the 50S ribosomal subunit formation, as the addition of macrolides to the bacterial
culture results in a reduced ratio of 50S to 30S subunit activity of the ribosome [113]
(Figure 5(3)).

Oxazolidinones, a group of synthetic antibacterial drugs, date back to the 1980s [114].
Currently, the only oxazolidinones approved for clinical use are linezolid and tedizolid
phosphate [115]. It has been suggested that they bind to the pocket at site A of the PTC
and act on the aminoacyl tRNA residue also located at this site [116–118]. This binding
promotes and stabilizes the altered conformation of nucleotide U2585 within the 23S
rRNA sequence (which is one of the component of the 50S subunit). When this conserved
nucleotide changes its conformation, the peptide bond formation becomes nonproductive,
thus negatively affecting protein biosynthesis. For example, in the case of linezolid, this
is executed by the formation of a hydrogen bond between the nitrogen atom of U2585
and the oxygen atom of the aromatic C-ring of the antibiotic structure. This leads to
conformational changes in the nucleotide U2585 and, consequently, disrupts the correct
position of N-formylmethionine-tRNA (fMet-tRNA) at the P-site and blocks the assembly
of the 70S translation complex, consisting of the 30S subunit of the ribosome, fMet-tRNA,
three initiation factors (IF1, IF2, IF3), GTP, and mRNA [119,120]. If 70S is already formed,
the binding of oxazolidinone interrupts protein synthesis by blocking the translocation of
the peptide chain from the A- to the P site during the formation of peptide bonds [121]
(Figure 5(4)). Another oxazolidinones-group protein synthesis inhibitor that binds to the
50S subunit of bacterial ribosomes, currently in development, is contezolid (MRX-I) [122].
This antibiotic has shown high efficacy in the treatment of bacterial skin and soft tissue
infections caused by resistant Gram-positive bacteria. Additionally, contezolid has shown
the potential to minimize the limiting adverse effects encountered in linezolid therapy,
primarily associated with bone marrow toxicity and serotonergic drug interactions [123].

A new-generation antibiotic, whose action leads to the inhibition of protein synthesis
by binding to PTC within the 50S bacterial ribosome subunit (and preventing the binding
of transfer RNA for peptide transfer), is lefamulin. It belongs to the pleuromutilin antibiotic
class and was approved by the FDA (in 2019) and the European Commission (in 2020)
for the treatment of community-acquired bacterial pneumonia (CABP). In general, the
pleuromutilin and derivatives are characterized by a tricyclic core, a ketone group, and
various C14 side chains, which interact with the A- and P-sites, respectively. This, in turn,
leads to the incorrect positioning of tRNA engaged in peptide bond formation [124].
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An example of an antibiotic with a dual mode of action is pretomanid, i.e, a derivative
of nitroimidazoles, which was developed by the non-profit TB Alliance organization [7] and
approved by the FDA in 2019 as part of the B-L-Pa regimen (B-L-Pa: bedaquiline, linezolid,
pretomanid) for the treatment of tuberculosis. Its antimicrobial activity is aimed against
both replicating (in aerobic conditions) and nonreplicating Mycobacterium tuberculosis (in
anaerobic conditions). In the first case, its activity is executed by inhibiting the oxidation of
the hydroxymycolate to ketomycolate blocks cell wall synthesis. In turn, under anaerobic
conditions, protomanid acts as a respiratory poison by releasing reactive nitrogen species
and, thus, inhibiting Mycobacterium protein synthesis [9].

2.5. Antimicrobial Substances That Interfere with Metabolic Pathways

Antibiotics can also manifest their antimicrobial effects by disrupting the activity of
important metabolic pathways. One of the best-known examples is the inhibition of folic
acid synthesis in bacterial cells, mainly either by sulfonamides alone [125] or in combination
with trimethoprim due to their synergistic effect [126,127].

Sulfonamides belong to the broad-spectrum bacteriostatic antibiotic group [128] en-
compassing biologically active sulphanilamide [129,130], sulfacetamide, sulfadiazine, sul-
famerazine, sulfamethoxazole, sulfanilamide, sulfapyridine, sulfasalazine, sulfathiazole,
and sulfisoxazole [131,132]. All of them are structural analogues of para-aminobenzoic acid
(PABA), which, in turn, is required for the synthesis of folate by bacteria [126–133]. The an-
timetabolite activities of sulfonamides are executed by their competition with PABA for the
active site of the dihydropteroate synthase (DHPS). The latter catalyzes the condensation of
PABA with 7,8-dihydro-6-hydroxymethylpterine pyrophosphate (DHPPP) to dihydropteric
acid, which serves as the precursor of dihydrofolic acid. The sulfonamide-dependent
inhibition of the of dihydrofolic acid synthesis reduces the amount of metabolically active
tetrahydrofolic acid. When folate stores are depleted, the biosynthesis of purines, pyrim-
idines, and some amino acids required for DNA and protein production is blocked, leading
to the inhibition of bacterial growth [126,134,135]. As mammalian cells—unlike bacterial
ones—cannot synthesize folate and do not express DHPS, sulfonamide drugs act selectively
on bacteria cells drugs [135–138] (Figure 6(1)).
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In 1962, another chemotherapeutic, called trimethoprim, was introduced as an in-
hibitor of folic acid synthesis [133–142]. Through its structural analogy to dihydrofolic acid,
it binds to bacterial dihydrofolate reductase (DHFR), which, in turn, converts dihydrofolate
to tetrahydrofolate [143]. The inhibition of DHFR and DHPS activities by trimethoprim and
sulfonamides, respectively, is another example of synergistic antimicrobial combinations
and the only clinically used antifolates to treat bacterial infections [127,141] (Figure 6(2)).

3. Mechanisms of Antibiotic Resistance

Bacteria can exhibit two types of antibiotic resistance: intrinsic and acquired. While
intrinsic resistance is determined by naturally occurring mechanisms conferred by inherent
structural and/or functional features of the bacteria, the acquired resistance results from
the changes in the bacterial genome. These consist of mutations in antibiotic-targeted genes
or the acquisition of exogenous DNA conferring resistance, horizontally transferred by
plasmids, bacteriophages, transposons, or other mobile genetic elements [144–146].

To date, many independent mechanisms of bacterial resistance to antibiotics have
been identified, including primarily modification of the antibiotic target, changes in the cell
envelope’s permeability, active pumping of the antibiotic out of the cell (so-called efflux
system), and enzymatic inactivation [147].

3.1. Modification of the Antibiotic Target Site

The resistance determined by a modification of the target site of an antibacterial
substance action constitutes a large and heterogenous group of mechanisms of a different
mode of action.

In the case of β-lactam-resistant bacteria, the resistance is based on a modification of
the structure of natural PBP proteins and has been best described in methicillin-insensitive
Staphylococcus aureus (MRSA) expressing modified PBP2a (also called PBP2′) [148,149].
PBP2a transpeptidases have a reduced affinity for β-lactams but, at the same time, retain
catalytic functions [150]. The altered PBPs group also includes PBP1a, PBP2b, and PBP2x
enzyme types observed most frequently in Staphylococcus pneumoniae, or PBP5 and PBP3r
observed in Enterococcus hirae S185 isolates [151,152]. The mecA and mecC genes, which
encode PBP2a transpeptidases, determine resistance to almost all β-lactam antibiotics,
except cefaroline and ceftobripol. They are located together with the regulatory genes
mecI and mecR1 within the staphylococcal SCCmec chromosomal cassette integrated into
the bacterial chromosome [153,154]. In contrast, the mecB gene that determines similar
β-lactam antibiotic resistance in Staphylococcus aureus was identified in the large plasmid
pSAWWU4229_1 [155]. Furthermore, a new mecD gene has been detected in Macrococcus
caseolyticus isolates within so-called genomic resistance island. It has been shown that mecD
confers resistance to all β-lactam antibiotics, including cephalosporins, ceftaroline, and
ceftobiprole [156] (Figure 7(1)).

The resistance to glycopeptides is determined by the synthesis of altered peptidoglycan
precursors, which end in carboxyl-terminated D-alanyl-D-lactate (D-Ala-D-Lac) or D-alanyl-
D-serine (D-Ala-D-Ser) The incorporation of the D-Lac residue into the Lipid II chain
prevents the formation of one out of the five hydrogen bonds that connect Lipid II to the
glycopeptide molecule, resulting in an approximately 1000-fold decrease in the affinity of
the antibiotic for D-Ala-D-Lac. In contrast, the substitution of D-Ser in place of one D-Ala
at the precursor end of the pentapeptide leads to an approximately seven-fold decrease
in the binding strength of the glycopeptide to D-Ala-D-Ser, probably due to spherical
effects [157–159]. The ability to express drug-resistant murein precursors is determined
by the presence of Van operons, (i.e., VanA, VanB, VanC, VanD, VanE, VanD, VanG, VanL,
VanM, and VanN) in the bacterial genome [160]. It should be noted that the VanA and
VanB operons (conferring resistance to mainly vancomycin and teicoplanin or only to
vancomycin, respectively) have the highest prevalence in the bacterial world. As they
are encoded by genes located in transposons, they can be transferred between different
bacterial species using plasmids or chromosome fragments [161–163] (Figure 7(2)).
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Resistance to antibiotics that alter the integrity of the outer membrane, i.e., polymyx-
ins, is generally the result of structural modifications of LPS that involve the attachment
of positively charged molecules of 4-amino-4-deoxy-L-arabinose (L-Ara4N), phospho-
ethanolamine (PEtN), or galactosamine to the phosphate groups of lipid A [164]. As a
result, the negative charge of lipid A is reduced, which leads to the inhibition of the elec-
trostatic interactions of polymyxin molecules with this component. The synthesis of LPS
containing L-Ara4N groups is an innate characteristic of Burkholderia spp., Proteus spp.,
and Chromobacterium violaceum [165–167]. In other Gram-negative bacteria, structural mod-
ification is mediated by two major two-component regulatory systems, PhoP-PhoQ and
PmrA-PmrB. The individual system comprises a sensor histidine kinase, PhoQ or PmrB,
and a response regulator, PhoP and PmrA, respectively. The role of the latter is to control
gene expression. Both systems have been identified in Salmonella enterica, Klebsiella pneumo-
niae, Pseudomonas aeruginosa, Escherichia coli, and Yersinia spp. [168–172]. Under conditions
such as low concentrations of Mg2+ and Ca2+, low pH, or in the presence of polymyxins in
the environment, sensor histidine kinase, that is PhoQ or PmrB, trans-autophosphorylates
within its dimer. The phosphate is then transferred to response regulators, that is PhoP or
PmrA, respectively. The latter positively regulate the transcription of genes responsible for
the modification of lipid A in LPS [173].

Furthermore, mutations in genes that encode proteins in these regulatory systems lead
to their constitutive activation, which is reflected in the overexpression of genes indepen-
dently of environmental stimuli and an increased resistance level to polymyxins [174].

Of note, Acinetobacter baumannii has been confirmed to be the only known LPS-deficient
strain to date, due to mutations within the lpxA, lpxC, and lpxD genes, whose products
catalyze the initial steps of lipid A biosynthesis [175]. Thus, the polymyxin molecule cannot
anchor within the Acinetobacter baumannii outer membrane, resulting in cell insensitivity to
antibiotics (Figure 7(3)).

The resistance to quinolone antibiotics involves remodeling the chemical structure of
gyrase and/or topoisomerase IV, which becomes insensitive to the drug. These structural
changes are driven by point mutations in chromosomal genes encoding the gyrase and
topoisomerase IV subunits, particularly the GyrA and ParC ones, respectively. They
occur within specific codons located in the so-called quinolone resistance determinant
region, QRDR within gyrA, gyrB (encoding gyrase subunits), parC, and parE (encoding
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topoisomerase IV subunits) sequences. In the amino acid sequence of the protein, these
regions correspond to stretches comprising domains at the amino end of both subunits that
are adjacent to the tyrosine residues of their active site [176,177].

There is one exception, however, as serine substitutions have been shown not to
affect the efficiency of both topoisomerases II, even in the presence of antibiotics. In
addition to the most frequent mutations within gyrA and parC sequences, mutations that
also occur in genes that encode GyrB and ParE subunits of gyrase and topoisomerase IV,
respectively, can confer resistance to quinolones [178,179]. Notably, in some species—for
example, Staphylococcus aureus, Streptococcus pneumoniae, or Salmonella spp.—a high level
of resistance to quinolones is conferred by several mutations that occur simultaneously in
genes encoding both gyrase and topoisomerase IV [180–182].

The resistance to rifampicins is related to conformational changes in the β-subunit
of DNA-dependent RNA polymerase (RNAP) (resulting in the loss of its affinity for an-
tibiotic) determined by mutations in the rpoβ gene (rarely rpoC and rpoA encoding α

subunit of RNAP) [183–189]. (Figure 7(4)). Among the mechanisms underlying bacterial
resistance to antibiotics, which act on the 50S ribosome subunit, are those executed by
post-transcriptional modifications of 23S rRNA nucleotides resulting from direct methyl-
transferase activity. In the case of macrolides (but only those with a 14- or 15-member
lactone ring), lincosamides, and streptogramins B, the aforementioned strategy is asso-
ciated with the presence of methyltransferases encoded by erm genes. These enzymes,
using S-adenosyl-L-methionine as a donor methyl group, catalyze the monomethylation or
dimethylation reaction of the N6 atom of adenine A2058 (Escherichia coli numbering) within
the PTC 23S rRNA. Subsequently, this inhibits antibiotic binding to this nucleotide [190,191].
Among the Erm methyltransferases described to date, the ErmC class is the most prevalent
in staphylococci (e.g., Staphylococcus aureus), while the ErmB and ErmA classes are the
most common in enterococci (e.g., Enterococcus faecalis) and streptococci (e.g., Streptococcus
pneumoniae) [192–195]. Erm genes in most microorganisms are located within the trans-
posons and, as a mobile genetic element, they are involved in the spread of the so-called
MLSB-type resistance [196–198]. In linezolid-resistant bacteria, plasmid-encoded methyl-
transferases, products of the cfr gene, are responsible for the modification of 23S rRNA by
adding a methyl group to the C8 atom of its A2503 adenine (Escherichia coli numbering).
This mechanism, together with the loss of sensitivity to oxazolidinones, leads bacteria to
acquire resistance to lincosamides, streptogramins A, macrolides with a 16-member lactone
ring, pleuromutilins, and phenicols [199,200].

Moreover, the rRNA within the 30S subunit of the ribosome can be methylated in order
to protect bacterial cells from bactericidal effect of aminoglycosides. For example, ArmA, a
methyltransferase that was primarily identified in Enterobacteriaceae and Acinetobacter bau-
mannii species, methylates the N7 guanine atom of the G1405 16S rRNA and, consequently,
determines high levels of resistance to gentamicin, tobramycin, and amikacin [201].

In addition to rRNA methylation, mutations in genes encoding ribosomal proteins
and changes in 16S and 25S rRNA sequences also lead to a decrease in the affinity of protein
biosynthesis inhibitors for both ribosomal subunits [202,203]. However, mutations that
occur in genes encoding 16S rRNA do not play an important role in bacterial resistance
to aminoglycosides, because such molecular changes (with the exception of the A1408G
substitution) generally cause bacterial cell death [204,205] (Figure 7(5)).

Modification of the target of an antimicrobial substance is one of the most important
mechanisms of the bacterial acquisition of resistance to sulfonamides. Numerous studies
have shown that drug-resistant strains produce modified DHPS due to mutations within
the conserved regions of the chromosomal folP gene (sulA). These mutations result in
reduced drug sensitivity DHPS. At the same time, drug affinity for PABA is maintained
or even increased. In Neisseria meningitidis and Streptococcus pneumoniae mutants, this
type of resistance results from the insertion of six-base-pair-long sequences encoding two
additional amino acids in drug-resistant synthetase (Figure 7(6)).
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3.2. Changes in the Permeability of a Bacterial Cell

The mechanism leading to changes in bacterial cell permeability is commonly em-
ployed by Gram-negative bacteria because the structure of their cell wall (when compared
to that of Gram-positive bacteria) allows greater regulation of the substance penetration
into the cell [206–211]. Reduced outer membrane permeability increases bacterial resistance
to drugs and is particularly conferred by changes in the qualitative composition of porins,
alterations in their functionality or selectivity, as well as in a decrease in porin-encoding
gene expression [212].

For example, Klebsiella pneumoniae possess two main general diffusion porins, Ompk35
and Ompk36, through which antibiotics, i.e., β-lactams and fluoroquinolones, can enter
the cell [213]. The reduced sensitivity of most strains to cefotoxam and cefoxitin, but not
carbapenems, is caused by the loss of Ompk35 and Ompk36 porins, which is associated
with the simultaneous synthesis of Ompk37 porins with a narrow diffusion channel [214].
On the contrary, the lack of expression of genes encoding both of these porins—which is,
generally, driven by point mutations or insertional rearrangements throughout in their
coding or promoter sequences—results in the acquisition of resistance to cephalosporins
and carbapenems [213–215].

Another example is the carbapenem-resistant Pseudomonas aeruginosa strains, whose
resistance to carbapenems (i.e., imipenem and meropenem) is associated with negative
transcriptional regulation or mutations in the oprD gene that directly inhibits OprD porin
synthesis [209,216,217]. Another mechanism is based on a modification of the function
of the WalKR two-component regulatory system. This system is characteristic of Gram-
positive bacteria with a low content of GC pairs in their genomes. It consists of the
histidine kinase WalK and the response regulator WalR, whose orchestrated action alters
the expression levels of genes under their control. One such example is genes involved
in the regulation of cell wall metabolism [218], such as glmU and murG [219,220]. Their
overexpression, which is driven by mutations in genes that encode components of the
regulatory system and/or its upstream elements, results in synthesizing a cell wall with a
higher peptidoglycan content [219,220]. The increased thickness of the cell wall makes it
more difficult for antibiotic molecules to enter the cell, which contributes to the reduced
sensitivity of staphylococci to antibiotics (Figure 8).
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3.3. Active Pumping of the Antibiotic out of the Cell

One common mechanism of drug resistance is the active efflux of drugs from bac-terial
cells to prevent the intracellular accumulation of toxic compounds. Drug-resistant bacteria
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contain energy-driven drug efflux pumps that squeeze out antibacterial agents, thereby
reducing their intracellular concentrations in a way that does not involve alteration or
degradation [221].

These pumps, encoded by genes located on chromosomes, in mobile genetic parts
(MGEs) or plasmids, differ in, e.g., their structures, substrate spectrum, and source of
energy necessary for transport. Therefore, they are divided into six families: MFS (major
facilitator superfamily), SMR (small multidrug resistance family), PACE (proteobacterial
antimicrobial compound efflux), MATE (the multidrug and toxic compound extrusion
family), ABC (ATP-binding cassette superfamily), and RND (the resistance nodulation
division family) [222] (Figure 9).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 36 
 

 

ABC pumps, for example, MacB found in Escherichia coli, allow bacteria to actively 
transport antibiotics such as tetracyclines and macrolides outside the cell [230]. 

Among the different types of efflux pumps, the resistance nodulation division (RND) 
superfamily is considered the main drug efflux pumps family, as it confers drug resistance 
to various species of Gram-negative bacteria.  

RND pumps, as well as some ABC, MATE, and MFS pumps, form three-membered 
protein structures that are located within the entire bacterial cell membrane. The transport 
proteins of these systems are embedded in the inner membrane (cytoplasmic) and interact 
with the proteins acting as channels in the outer membrane, as well as acting as the fusion 
proteins of the periplasmic space (connecting the two membranes), removing antibiotic 
molecules directly to the external environment. This mechanism of action makes it 
difficult for the antibiotic to return to the bacterial cell. On the contrary, most MSF and 
SMR pumps consist of a single protein transporter located in the cytoplasmic membrane, 
which pumps antibiotic molecules only into the periplasmic space, thus allowing them to 
easily return to the cytosol. RND pumps, which serve as substrate/H+ ion antiport, are 
characterized by a broad spectrum of transported substrates [231]. The aforementioned 
pump systems can contribute to multidrug resistance, especially to tetracyclines, 
chloramphenicol, β-lactams, aminoglycosides, quinolones, sulfonamides, or 
trimethoprim [232]. Among the RND pump systems identified so far, which, nota bene, 
are observed only in Gram-negative bacteria, the best known are two ternary complexes: 
MexAB-OprM in Pseudomonas aeruginosa [233] and AcrAB-TolC, which occur in many 
species of the Enterobacteriaceae family, including Escherichia coli, Salmonella enterica serovar 
Typhimurium, or Klebsiella pneumoniae [179]. 

The transport of substances through the efflux system is effectively controlled by 
local regulatory proteins (e.g., BmrR found in Bacillus subtilis), as well as global cellular 
regulatory proteins (e.g., MarR in Escherichia coli) [234]. The overexpression of efflux 
pumps causes an above-average increase in the efficiency of antibiotic elimination from 
the bacterial cell and usually results from mutations (deletions, insertions) within the 
genes encoding these regulatory proteins. 

 
Figure 9. Summary of the six major families of efflux transporters: MFS (a superfamily of the main 
facilitator), SMR (the small multidrug resistance family), PACE (proteobacterial antimicrobial 
compound efflux), MATE (multidrug and toxic compound extrusion family), ABC (ATP binding 
cassette superfamily) and RND (resistance nodulation division family). Figure created with 
Biorender.com. 

3.4. Enzymatic Inactivation 

Figure 9. Summary of the six major families of efflux transporters: MFS (a superfamily of the main
facilitator), SMR (the small multidrug resistance family), PACE (proteobacterial antimicrobial com-
pound efflux), MATE (multidrug and toxic compound extrusion family), ABC (ATP binding cassette
superfamily) and RND (resistance nodulation division family). Figure created with Biorender.com.

MSF family proteins are responsible for conferring resistance to fluoroquinolones,
macrolides, chloramphenicol, linezolid, trimethoprim, and others. One of the examples
is: NorA pumps identified in Staphylococcus aureus and MefB observed in Escherichia coli
strains [223].

SMRs, a small multidrug resistance family, are involved in reducing the susceptibility
of bacterial cells mainly to β-lactams and some aminoglycosides, as confirmed in Escherichia
coli (EmeR pump) and Staphylococcus epidermidis (SMR pump) isolates [222,224].

The PACE pumps identified in the Acinetobacter baumannii isolates probably form four
trans-membrane α-helices and are composed of 150 amino acids. Their substrate spectrum
is limited to commonly used biocides, i.e., chlorohexidine, acriflavine, benzalkonium, or
proflavine [222,225,226].

MATE-type pumps, acting as antiporters, derive the energy necessary for their ac-
tivity from the hydrogen or sodium ion gradient. The MATE proteins contribute to the
reduced efficacy of fluoroquinolone and some aminoglycoside antibiotics [227]. Among the
representatives of this transporter family are: NorM pumps, which are found in Neisseria
gonorrhoeae [228], and MepA, identified in Staphylococcus aureus.

Another family of multidrug efflux pumps is the ATP-binding cassette (ABC) family,
which operates through energy derived from the hydrolysis of ATP molecules [229].

ABC pumps, for example, MacB found in Escherichia coli, allow bacteria to actively
transport antibiotics such as tetracyclines and macrolides outside the cell [230].
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Among the different types of efflux pumps, the resistance nodulation division (RND)
superfamily is considered the main drug efflux pumps family, as it confers drug resistance
to various species of Gram-negative bacteria.

RND pumps, as well as some ABC, MATE, and MFS pumps, form three-membered
protein structures that are located within the entire bacterial cell membrane. The transport
proteins of these systems are embedded in the inner membrane (cytoplasmic) and interact
with the proteins acting as channels in the outer membrane, as well as acting as the fusion
proteins of the periplasmic space (connecting the two membranes), removing antibiotic
molecules directly to the external environment. This mechanism of action makes it difficult
for the antibiotic to return to the bacterial cell. On the contrary, most MSF and SMR pumps
consist of a single protein transporter located in the cytoplasmic membrane, which pumps
antibiotic molecules only into the periplasmic space, thus allowing them to easily return to
the cytosol. RND pumps, which serve as substrate/H+ ion antiport, are characterized by a
broad spectrum of transported substrates [231]. The aforementioned pump systems can
contribute to multidrug resistance, especially to tetracyclines, chloramphenicol, β-lactams,
aminoglycosides, quinolones, sulfonamides, or trimethoprim [232]. Among the RND pump
systems identified so far, which, nota bene, are observed only in Gram-negative bacteria,
the best known are two ternary complexes: MexAB-OprM in Pseudomonas aeruginosa [233]
and AcrAB-TolC, which occur in many species of the Enterobacteriaceae family, including
Escherichia coli, Salmonella enterica serovar Typhimurium, or Klebsiella pneumoniae [179].

The transport of substances through the efflux system is effectively controlled by
local regulatory proteins (e.g., BmrR found in Bacillus subtilis), as well as global cellular
regulatory proteins (e.g., MarR in Escherichia coli) [234]. The overexpression of efflux
pumps causes an above-average increase in the efficiency of antibiotic elimination from the
bacterial cell and usually results from mutations (deletions, insertions) within the genes
encoding these regulatory proteins.

3.4. Enzymatic Inactivation

The enzymatic inactivation of antibiotics can be executed by hydrolysis, group trans-
fer, or redox process [235]. In the case of β-lactam antibiotics, resistance is mediated by
β-lactamases with hydrolytic enzyme activity, encoded by chromosomal or plasmid genes,
which are referred to as abbreviated “bla”. They are often a part of mobile genetic ele-
ments such as transposons or integrons and, therefore, can be easily transferred between
bacteria [236]. These genes can be expressed constitutively or in an inducible β-lactam-
dependent way. To date, more than 2000 β-lactamases have been identified. There are two
main classifications of these large enzyme groups [237]. Classification according to Ambler,
which is based on amino acid sequence homology, divides β-lactamases into four classes,
named as A, B, C, and D. On the contrary, an updated version of the Busch–Jakoby func-
tional division distinguishes three (originally four) groups of β-lactam enzymes, which are
numbered 1 to 3, depending on their substrate preference and inhibitor action profile [238].
Representatives of classes A, C, and D (Ambler classification) as well as members of groups
1 and 3 (Busch–Jakoby classification) are serine-containing enzymes in the active center;
therefore, they are called serine-β-lactamases (SBLs). In turn, class B (Ambler classification)
and group 3 (Busch–Jakoby classification) include metallo-β-lactamases (MBLs) with a
single Zn2+ ion or a pair of Zn2+ ions bound to His/Cys/Asp residues in the active center.
The hydrolysis reaction of β-lactams catalyzed by SBL proceeds in two steps. After binding
to the antibiotic molecule, the serine within the catalytic center attacks the carbonyl group
on the β-lactam ring. This results in the hydrolysis of the amide bond of the β-lactam
ring and acylation of the enzyme. Then, with the participation of a water molecule, the
enzyme is deacylated and the inactive antibiotic with an open B-lactam ring is released. A
different mechanism is observed for MBL. These enzymes use a zinc cation-coordinated hy-
droxyl group of the water molecule to inactivate the antibiotic [236,237]. Class A enzymes
(subgroups 2a, 2b, 2be, 2br, 2ber, 2c, 2e, and 2f) are the most common of all β-lactamases.
Enzymes of this class include PC1 penicillinases encoded by the blaZ gene, showing a nar-
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row spectrum of activity against penicillins, TEM and SHV type β-lactamases hydrolyzing
penicillins and early cephalosporins, Klebsiella pneumoniae carbapenemases (KPC) that inac-
tivate carbapenems, as well as extended-spectrum β-lactamases (ESBL), the vast majority
of which arise from point mutations altering the hydrolytic preferences of primary TEM
(TEM-1, TEM-2) and SHV (SHV-1) [239]. Without counting the enzymes TEM and SHV
ESBL, CTX-M, PER, VER, GES, SFO-1, FEC-1, BES-1, BEL-1, TLA-1, and TLA-2 are also
found among ESBL [240]. These enzymes have the ability to hydrolyze third-generation
cephalosporins known as oxyimino-β-cephalosporins, such as cefotaxime, ceftriaxone, and
ceftazidime. Furthermore, they inactivate first- and second-generation cephalosporins and
aztreonam, although cephamycins and carbapenems are not their targets. The activity
of most representatives of class A β-lactamases, except KPC, is inhibited by clavulanic
acid, tazobactam and, to a lesser extent, sulbactam. The class B enzymes (group 3), to
which MBLs belong, determine a high level of resistance to penicillins, cephalosporins,
and carbapenems, excluding monobactams and aztreonam. Their activity is not inhibited
by the previously mentioned β-lactamase inhibitors (clavulanic acid, tazobactam, and
sulbactam). However, they are subjected to inhibition by chelating agents such as EDTA,
which have a divalent metal ion-binding effect [241]. The substrate spectrum of members
of class C (group 1) includes mainly cephalosporins, (except for cefepime, which belongs
to the fourth generation cephalosporins), as well as penicillins and monobactams. Like
MBLs, β-lactamases of this class do not hydrolyze carbapenems and atreonam (aztreonam).
Although they are resistant to β-lactam inhibitors, they can be inhibited by cloxacillin,
oxacillin, and aztreonam [242]. Finally, the enzymes of class D (subgroups 2d, 2d, and 2df),
to which OXA-type ESBL belong, are characterized by great diversity with regard to their
functional properties. As their name suggests, they hydrolyze not only oxacillin but also
cloxacillin, carbapenems, penicillins, and to a limited extent, cephalosporins. However,
taking into account their inhibitor profile, in most cases their enzymatic activity is not
affected by β-lactamase inhibitors [239,243].

Among the novel β-lactamase inhibitors is a relabactam (a diazabicyclooctane beta-
lactamase inhibitor), which specifically targets classes A and C of β-lactamases. It was
approved by the FDA in 2019 in combination with imipenem (a carbapenem) and cilastatin
(a renal dehydropeptidase-I inhibitor) for the treatment of complicated urinary tract infec-
tions (UTIs), pyelonephritis, and complicated intra-abdominal infections in adults. The
imipenem/cilastatin/relebactam (Recarbrio™) combination exhibits a synergistic effect:
(i) imipenem inactivates PBBs and inhibits the cross-linking of peptidoglycan during cell
wall synthesis, and its action is protected by (ii) cilastatin, which reduces imipenem renal
metabolism, and iii) relebactam, which protects the imipenem from degradation by Ambler
classes A and C β-lactamases and Pseudomonas-derived cephalosporinas [244].

Similarly, microbial resistance to macrolides can result from enzymatic inactivation
of the antibiotic molecule, which is driven by esterases, such as EreA, EreA2, EreB, EreC,
and EreD. These enzymes hydrolyze the macrolide lactone ring. Ere esterases are capable
of inactivating macrolides with a 14- and 15-member lactone ring, but not those with a
16-member lactone ring. In addition to EreD, which is chromosomally encoded, all other
esterases of the Ere family are encoded by genes located in mobile genetic elements. The
occurrence of EreA and EreA2 has been described in many pathogenic clinical strains,
including non-typhoidal Salmonella enterica, Pseudomonas spp., Vibrio cholera, and Klebsiella
spp. EreB, which is distantly related to these esterases, is the most prevalent isolate among
all environmental isolates. In the case of EreC, the ereC gene has been identified in the
Enterobacteriaceae genome [245,246]. In contrast, the presence of the ereD gene, which was
found in Riemerella anatipestifer isolates from ducks, has not yet been found in other bacterial
species [247] (Figure 10(1)).
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The inhibition of the antibacterial activity of macrolides with 14-, 15- and 16-membered
lactone rings may also be a consequence of their structure modification, involving phos-
phorylation of the hydroxyl group located in carbon atom C5 of the antibiotic deosamine
moiety. So far, 15 macrolide phosphotransferases have been described: MphA, MphB,
MphC, MphD, MphE, MphF, MphG, MphH MphI, MPhJ, MphK, MphL, MphM, MphN,
MphO. All of them are encoded by genes located on the chromosome or mobile genetic
elements. Their occurrence has been confirmed in many bacterial species, both Gram-
positive, e.g., Staphylococcus, and Gram-negative, e.g., Escherichia coli [245].

In addition, the resistance to aminoglycosides depends on phosphotransferase [APH],
nucleotidyltransferase [ANT], and acetyltransferase [ACC] activities. The genes encoding
these enzymes are located mainly in plasmids, integrons, transposons, or gene cassettes,
which together promote their spread throughout bacterial populations [248–252]. Amino-
glycoside O-phosphotransferases (APH), which are mainly found among staphylococci and
enterococci, catalyze the transfer of a phosphate group from donor ATP (or, in some cases,
GTP) to the hydroxyl residue of the aminoglycoside molecule. The APHs are divided into
APH(2′), APH(3′), APH(3”), APH(4), APH(6), APH(7”), and APH(9) classes, the most com-
mon of which is APH (3′), conferring resistance to kanamycin, neomycin, paromomycin,
and others [248,251]. The adenylation of aminoglycosides is another mechanism involved
in their inactivation. This, in turn, involves the ATP-dependent transfer of the AMP group
to the hydroxyl residue in the aminoglycoside molecule.

The aminoglycoside O-nucleotidyltransferases (ANT) that catalyze this reaction are
classified as ANT(2′′), ANT(3′′), ANT(4′), ANT(6), and ANT(9), the most common of which
is ANT(3′′), whose substrate spectrum is limited to streptomycin and spectrinomycin as well
as their derivatives. The genes encoding these enzymes have been detected in many Gram-
negative bacterial species, including Escherichia coli, Salmonella spp., Pseudomonas aeruginosa,
and Klebsiella pneumoniae [248,249]. Aminoglycoside N-acetyltransferases (AACs) are the
last group of enzymes that confer resistance to aminoglycosides by acetylation of one of the
four amino groups (-NH2) in the antibiotic molecule, using acetyl-coenzyme A as a source
of acetyl residues. Enzymes of this type include AAC(1), AAC(2), AAC(3′), and AAC(6′)
subclasses. These enzymes determine high levels of resistance to gentamicin in several
of both Gram-positive and Gram-negative bacterial species [248,249,253], by promoting
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changes in the aminoglycoside molecule structure and inhibiting its binding to the target
site of action, i.e., 16S rRNA of the 30S ribosome subunit (Figure 10(2)).

The above-mentioned mechanisms of antibiotic inactivation through the redox pro-
cess underlie the resistance of bacteria, e.g., Sphinogbacterium spp., to tetracyclines. This
inactivation involves a flavin monooxygenase that requires molecular oxygen and NADPH
for its activity. This enzyme, encoded by the tet(X) gene, catalyzes the hydroxylation of the
tetracycline molecule at the position C-11a. The newly formed lla-hydroxytetracycline has
a lower magnesium ion coordination capacity than tetracycline and, therefore, does not
inhibit protein translation [254,255] (Figure 10(3)).

4. At the Dawn of the Post-Antibiotic Era?

It is undisputable that we are facing increasing antibiotic resistance. This is accompa-
nied by a lack of newly discovered and/or developed antibiotics as well as decreases in
the effectiveness of the already existing ones [256]. It raises a question: have we already
reached the post-antibiotic era? To answer this question, it is necessary to make a brief
overview of the alternatives to antibiotics that are currently under development and/or
being gradually implemented into clinical practice to combat antimicrobial resistance.
Generally, these modern interventions can be divided into strategies, that use naturally
occurring phenomena and those that are based on current nanomedicine achievements.

4.1. Natural Born Killers Contra Natural Born Protectors

Bacteriophages (phages) are among nature’s solutions that can specifically target and
eliminate bacteria. They act as natural killers, infecting specific bacterial hosts by recog-
nizing one or more receptor-binding proteins (RBPs) on the cell surface [257]. Moreover,
increasing scientific evidence suggests that phage synergistic interactions with conventional
antibiotics have a high therapeutic potential. This bacteriophage–antibiotic synergy (PAS)
is defined as a phenomenon in which sublethal concentrations of certain antibiotics can
stimulate the replication cycle of lytic phages by the host bacterium [258] (Figure 11(1)). The
term was first introduced by Comeau et al. based on a uropathogenic strain of E. coli (MFP)
and a lytic sifovirus jointly isolated from a patient with a urinary tract infection. This lytic
phage (ΦMFP) was found to benefit from sublethal doses of beta-lactams, leading to a larger
burst size, and thus, an increase in plaques on agar plates [259,260]. Such combination
therapies have been successfully used in the eradication of Klebsiella pneumoniae B5055
biofilms or to study the mechanism of PAS in Escherichia coli, where the addition of low-dose
cefotaxime and cephalosporins led to cell filamentation, and, simultaneously, blocked cell
division. This resulted in faster phage assembly during infection, most likely by making
larger or altered precursor pools available and/or repairing certain rate-limiting steps in
viral replication. Recently, research has emerged on the use of bacteriophages as carriers for
the targeted delivery of antibiotics. Targeted drug-carrying phages, first described in 2006,
are a powerful tool for the selective elimination of pathogenic bacteria [261,262]. There
is currently evidence supporting the utilization of filamentous coliphage f1 molecules in
chloramphenicol prodrug conjugation via a hydrophilic linker [262]. It seems that future
work will focus on improving targeting, which is crucial for the potency and selectivity of a
conjugated drug with a bacteriophage as a carrier.

On the other hand, there are “natural protectors”, such as human microbiota, whose
activity can lead to counteracting the detrimental effects of antimicrobial resistance. A
highly intriguing idea is to employ gut microbiota—defined as microorganisms (including
bacteria, archaea, viruses, and unicellular eukaryotes) residing in the human gastrointensti-
nal tract—in order to protect human hosts against antibiotic-resistant pathogens [263–265].
In general, this microbiota-mediated protection is executed via the production of antimicro-
bials against pathogens [266] and/or due to the competitive exclusion of pathogens from
their niches [263,265,266]. The approaches aiming to utilize microbiota as a tool against
antimicrobial resistance encompass strategies that are based on gut microbiota modulation.
Among them are diet and dietary supplements, prebiotics and probiotics, antimicrobial
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agents, the prophylactic use of antibiotics to decrease the gut occupation by multidrug-
resistant organisms, as well as fecal microbiota transplantation [265]. Although these
approaches seem to be promising solutions, there is a lack of strong and sufficient evidence
in humans so far; in particular, there is a lack of large randomized clinical trials [265]. There
are also some other disadvantages; among them there are problems with standardization,
as well as putative viral and bacterial infections caused by transplanted pathogens into
the host [263,265]. On the one hand, the human gut microbiota serves as a reservoir of
resistance genes for at least 50 of 68 classes of antibiotics [267], which is referred to as the
gut resistome [265,267,268]. On the other hand, the protective effect of microbiota can be
used to predict and minimize the risk of the resistance-gaining recurrence at the individual
patient level [269]. Recently, it has been revealed that antibiotic-resistant recurrent and
chronic infections are mainly caused by rapid reinfection with the patient’s own bacteria
strain/strains, which are resistant to the specific antibiotic. Therefore, the mechanism
underlying such types of infections is driven by an unintentional selection for resistant
pathogens, rather than de novo acquired resistance. In light of these data, the authors
postulate that relying on the individual patient’s past medical history and with the use of
the machine learning algorithms, it may be possible to predict and implement personalized
antibiotic recommendation. Consequently, it might minimalize the treatment-induced
emergence and spread of antibiotic-resistant pathogens [269]. The protective effect of micro-
biota was also reported by Zipperer et al. (2016), who postulated that a human microbiota
should be recognized as a source of new antibiotics. The authors discovered a lugdunin, a
novel thiazolidine-containing cyclic peptide antibiotic, which is produced by the human
nasal Staphylococcus lugdunensis strains. By doing so, S. lugdunensis impairs the colonization
of pathogenic S. aureus and, thus, prevents staphylococcal infections [270] (Figure 11(4)).
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4.2. Nanotechnology in the Service of the Antibiotic R&D

Several promising nanotechnology-based approaches aim to enhance the efficacy of
the already available antibiotics as well as identify new ones—overall, with an emphasis
on strategies against antimicrobial resistance [256,271,272].

Biorender.com
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One of the current groups of strategies is based on “fine-tuning” the old antibiotics by
modifying their chemical structure. Such approaches have been successfully implemented
for, e.g., cephalosporin [273], tetracycline [274], vancomycin [275–278], and others [253].
Other approaches encompass strategies that enhance the efficacy of antibiotics through
modulation of the bacterial metabolism or improving antibiotics delivery systems [256].
For example, it has been reported that adenine limitation increases the killing effect of
antibiotics against E. coli by stimulating purine biosynthesis and increasing ATP demand.
Together, these increase central carbon metabolism activity and oxygen consumption,
leading to enhanced antibiotic lethality [279] (Figure 11(2)).

Due to the achievements of nanomedicine, the efficacy of antibiotics can be enhanced
by using so-called “antibiotic nanocarriers”. The role of these nanoparticle carriers—which
can be divided into inorganic/organic, carbon-based, and hybrid structures [272]—is to
deliver antibiotics directly to their final destinations [256,271] (Figure 11(3)). One of the
classes of such nanocarriers is liposomes, which resemble nanocapsules and act as lipid-
based surface-functionalized delivery systems protecting antibiotics from degradation.
Such a strategy has been employed for the preparation of Arikayce (amikacin liposome
inhalation suspension, ALIS), which is an antibiotic–liposome drug approved by the U.S.
Food and Drug Administration (FDA). Further evidence for its efficacy was provided by
the first real-world study [280]. Arikayce is recommended for the treatment of lung disease
caused by a group of bacteria, Mycobacterium avium complex (MAC), in patients who do
not respond to conventional medical interventions [281].

Liposomal encapsulations have also been used by Aradigm Corporation to produce
two ciprofloxacin formulations, that is, Lipoquin(®) and Pulmaquin(®). These inhaled
liposomal formulations of ciprofloxacin are dedicated to treating lung infections in cystic
fibrosis [282].

An attractive alternative to liposomes (which are artificial vesicles) is naive outer
membrane vesicles (OMVs). OMVs are composed of natural bacterial surface-exposed
proteins in the correct conformation. Antibiotic-loaded OMVs are also used as a delivery
system, providing new possibilities for antibiotic development [272,283]. For example,
Acinetobacter baumannii-derived OMVs loaded with fluoroquinolone antibiotics exhibite
good biocompatibility and the ability to kill multidrug-resistant Pseudomonas aeruginosa,
Klebsiella pneumoniae, and enterotoxigenic Escherichia coli (ETEC) [284].

The efficacy of antibiotics can also be improved by combining them with nanoparticles
(NPs). In general, NPs can interact with bacterial cells, regulate cell membrane penetration,
interfere with molecular pathways, as well as enhance the inhibitory effects of antibiotics.
For instance, such a synergistic antibacterial effect of NPs with antibiotics has been re-
ported for AgNPs and antibiotics against Stapylococcus aureus, Pseudomonas aeruginosa, and
Acinetobacter baumannii [285].

With regard to nanomolecules, it is an interesting idea to employ light-activated
molecular nanomachines (MNMs). MNMs are synthetic organic nanomolecules possessing
a light-induced rotor component. After activation upon light, MNMs drill through the
bacterial cell wall as well as disrupt the lipid bilayers of cell membranes with their rapid ro-
tational movement. MNMs also exhibit a synergistic effect when combined with antibiotics.
For example, light-activated MNM 1 causes cell wall inner and outer membrane disrup-
tions as well as increased sensitivity of extensively drug-resistant Klebsiella pneumoniae to
meropenem [286].

Another promising idea, which is based on the synergistic effect of nanomaterial-based
strategies with antibiotics, is provided by antibacterial photodynamic therapy (aPDT). In
general, PDT induces reactive oxygen species (ROS) by using a light-activated photo-
sensitizer [287]. Recently, it was reported that the photosensitizer, that is, 5, 10, 15, 20-
Tetrakis(3-hydroxyphenyl)chlorin (temoporfin), suppressed the expression of the antibiotic
resistance gene mecA (encoding PBP2a) and considerably reduced MRSA drug resistance.
The combination of temoporfin with ampicillin or chlorhexidine significantly enhanced the
bactericidal effect on MRSA [288].
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Moreover, innovative strategies have been developed in order to identify new an-
tibiotics; among them is the in silico screening of a small-molecule library. This strat-
egy was successful, for example, in the identification of two PBP2a inhibitors against
methicillin-resistant Staphylococcus aureus (MRSA). The PBP2a protein is a modified PBP
protein produced by MRSA, which determines resistance to β-lactam antibiotic [256]. The
newly identified PBP2a inhibitors against MRSA, such as (E)-3-(3-carboxyphenyl)-2-(4-
cyanostyryl)quinazolin-4(3H)-one [289] and quinazolinones [290], could help to overcome
this problem.

5. Conclusions

Antibiotics are characterized by a wide range of mechanisms of action in bacterial cells.
Unfortunately, it is widely known that bacteria have been constantly and relatively quickly
acquiring novel resistance mechanisms in response to the newly introduced antibiotics into
clinical practice, which is an inevitable process of directed evolution [291]. Furthermore,
because a wide range of different strategies has been employed by bacteria, such as hor-
izontal gene transfer, conjugation, transduction processes, and many others, the genetic
factors underlying resistance mechanisms can be transferred between different bacterial
species, even between those phylogenetically unrelated. It is also widely accepted that the
adaptive nature of biological processes will favor the best-fit individuals and promote—in
this particular case—the widespread development of antibiotic-resistant strains in the
environment. Humans also contribute significantly to such a phenomenon. The increasing
consumption of antibiotics, their abuse and/or misuse, as well as human tourist traffic, are
among the main factors responsible for the increase in the number of bacterial species with
multidrug resistance [292].

Taking into account this worldwide problem and in the light of the current achieve-
ments in nanomedicine, the following question should be raised: is there still a place for
antibiotics in the post-antibiotic world? Moreover, one might consider whether it is still
worth debating traditional antibiotics, rather than just their modern substitutes. In fact, the
number of new antibiotics reaching the market has considerably decreased in the last 30
years. A lack of diversity and novelty in antibiotic R&D has also been reported throughout
the last few decades [293–295]. However, this has resulted from economic rather than
scientific problems, since for big pharmaceutical companies, other drugs, such as cancer
drugs, are much more profitable than antibiotics [295]. At the same time, the need for the
development of new antibiotics is still widely discussed and recognized as a problem that
should be addressed. Such situations have forced completely novel and unprecedented
approaches [293–295].

After the rather unsuccessful attempts of replacing Big Pharma by small and medium-
sized (SME) companies (since many SME companies have failed due to financial problems
or bankruptcy), several new initiatives have appeared. One such solution is the AMR
Action Fund, a form of collaboration between pharmaceutical industry and the World
Health Organisation (WHO), The European Investment Bank (EIB), and the Wellcome Trust.
They intend to invest around USD 1B, as well as to deliver two to four new antibiotics to
patients by 2030 [295,296].

The story of antibiotics by no means ends here, since old antibiotics are "fine-tuned”
by different chemical modifications, while new ones are being searched for in a wide
range of sources, including invertebrates, algae, insects, microbiomes, and others [256,272].
Moreover, innovative strategies are being implemented in order to, e.g., deliver antibiotics
to their final destinations more precisely, effectively, and safely.

In conclusion, knowledge of the mechanisms of action of antibiotics is crucial for
developing innovative strategies, as it enables the prediction of putative bacterial defense
mechanisms; therefore, each particular antimicrobial strategy can be made more effective
and precise.
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Abbreviations

AAC aminoglycoside acetyltransferases
ALIS amikacin liposome inhalation suspension
ANT nucleotidyltransferases
aPDT antibacterial photodynamic therapy
APH aminoglycoside O-phosphotransferase
aPTD antibacterial photodynamic therapy
DHFR dihydrofolate reductase
DHPPP 6- hydroxymethyl-7,8-dihydropterin-pyrophosphate
DHPS dihydropteroate synthase
ESBLs extended-spectrum β-lactamases
ETEC enterotoxigenic Escherichia coli
LPS lipopolysaccharide
MAC Mycobacterium avium complex
MBLs metallo-β-lactamases
MLSB group macrolides, lincosamides, and streptogramines
MNMs molecular nanomachines
MRSA methicillin-resistant Staphylococcus aureus
NAG N-acetylglucosamine
NAM N-acetylmuramic acid
NPET nascent polypeptide exit tunnel in the large subunit ribosome
NPs nanoparticles
OMVs outer membrane vesicles
PABA para-aminobenzoic acid
PAS bacteriophage-antibiotic synergy
PBPs penicillin-binding proteins
RBPs receptor-binding proteins
RNAP DNA-dependent multisubunit RNA polymerase
SBLs serine β-lactamases

References
1. Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.;

Salamat, M.K.F.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Cross-
Ref] [PubMed]

2. Gajdács, M.; Albericio, F. Antibiotic Resistance: From the Bench to Patients. Antibiotics 2019, 8, 129. [CrossRef] [PubMed]
3. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzer-

land, 2014; Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 19 December 2021).
4. Lack of New Antibiotics Threatens Global Efforts to Contain Drug-Resistant Infections. Available online: https://www.who.int/

news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections (accessed on 19
December 2021).

5. CDC’s Antibiotic Resistance Threats in the United States (2019 AR Threats Report). 2019. Available online: https://www.cdc.
gov/drugresistance/biggest-threats.html (accessed on 19 December 2021).

http://doi.org/10.2147/IDR.S173867
http://doi.org/10.2147/IDR.S173867
http://www.ncbi.nlm.nih.gov/pubmed/30349322
http://doi.org/10.3390/antibiotics8030129
http://www.ncbi.nlm.nih.gov/pubmed/31461842
https://apps.who.int/iris/handle/10665/112642
https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections
https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections
https://www.cdc.gov/drugresistance/biggest-threats.html
https://www.cdc.gov/drugresistance/biggest-threats.html


Int. J. Mol. Sci. 2023, 24, 5777 25 of 34

6. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations/the Review on Antimicrobial Resistance chaired
by Jim O’Neill. | Wellcome Collection. Available online: https://wellcomecollection.org/works/rdpck35v (accessed on 19
December 2021).

7. Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments
and Future Perspectives. Molecules 2021, 26, 2671. [CrossRef] [PubMed]

8. Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An Update on Eight “New” Antibiotics against Multidrug-Resistant
Gram-Negative Bacteria. J. Clin. Med. 2021, 10, 1068. [CrossRef]

9. Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018-2019. Discoveries 2019, 7, 15. [CrossRef] [PubMed]
10. Clardy, J.; Fischbach, M.A.; Currie, C.R. The natural history of antibiotics. Curr. Biol. 2009, 19, R437–R441. [CrossRef]
11. Leisner, J.J. The Diverse Search for Synthetic, Semisynthetic and Natural Product Antibiotics From the 1940s and Up to 1960

Exemplified by a Small Pharmaceutical Player. Front. Microbiol. 2020, 11, 976. [CrossRef]
12. Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review

on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and
Perspectives. Front. Microbiol. 2021, 12, 717809. [CrossRef]

13. Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide
antibiotics. MedChemComm 2017, 8, 516–533. [CrossRef]

14. Levine, D.P. Vancomycin: A History. Clin. Infect. Dis. 2006, 42, S5–S12. [CrossRef]
15. Binda, E.; Marinelli, F.; Marcone, G.L. Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics 2014, 3, 572–594.

[CrossRef] [PubMed]
16. Kahne, D.; Leimkuhler, C.; Lu, A.W.; Walsh, C. Glycopeptide and Lipoglycopeptide Antibiotics. Chem. Rev. 2005, 105, 425–448.

[CrossRef] [PubMed]
17. Marschall, E.; Cryle, M.J.; Tailhades, J. Biological, chemical, and biochemical strategies for modifying glycopeptide antibiotics.

J. Biol. Chem. 2019, 294, 18769–18783. [CrossRef] [PubMed]
18. James, R.C.; Pierce, J.G.; Okano, A.; Xie, J.; Boger, D.L. Redesign of Glycopeptide Antibiotics: Back to the Future. ACS Chem. Biol.

2012, 7, 797–804. [CrossRef] [PubMed]
19. Scheffers, D.-J.; Pinho, M.G. Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiol. Mol. Biol. Rev. 2005,

69, 585–607. [CrossRef]
20. Abraham, E.P. An Enzyme from Bacteria able to Destroy Penicillin. Nature 1940, 146, 837. [CrossRef]
21. Wise, E.M.; Park, J.T. Penicillin: Its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide

synthesis. Proc. Natl. Acad. Sci. USA 1965, 54, 75–81. [CrossRef]
22. Tipper, D.J.; Strominger, J.L. Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-D-alanyl-

D-alanine. Proc. Natl. Acad. Sci. USA 1965, 54, 1133–1141. [CrossRef]
23. Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan

biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [CrossRef]
24. Frère, J.-M.; Duez, C.; Ghuysen, J.-M.; Vandekerkhove, J. Occurrence of a serine residue in the penicillin-binding site of the

exocellular DD-carboxy-peptidase-transpeptidase fromStreptomycesR61. FEBS Lett. 1976, 70, 257–260. [CrossRef]
25. Massova, I.; Mobashery, S. Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases. Antimicrob.

Agents Chemother. 1998, 42, 1–17. [CrossRef]
26. Edoo, Z.; Arthur, M.; Hugonnet, J.-E. Reversible inactivation of a peptidoglycan transpeptidase by a β-lactam antibiotic mediated

by β-lactam-ring recyclization in the enzyme active site. Sci. Rep. 2017, 7, 9136. [CrossRef]
27. Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [CrossRef]
28. Krajewska, J.; Laudy, A. Nowości w lekach przeciwbakteryjnych zarejestrowanych przez europejską agencję leków—odpowiedź
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