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Abstract: The investigation of the reactivity of an α-amido sulfone derived from 2-formyl benzoate
under organocatalytic conditions in the presence of acetylacetone allowed the synthesis of a new hete-
rocyclic hybrid isoindolinone-pyrazole with high enantiomeric excess. Dibenzylamine was also used
as a nucleophile to afford an isoindolinone with aminal substituent in 3-position in suitable selectivity.
The use of Takemoto’s bifunctional organocatalyst not only led to observed enantioselectivity but
was also important in accomplishing the cyclization step in both cases. Notably, this catalytic system
proved to be particularly effective in comparison to widely used phase transfer catalysts.
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1. Introduction

The value of some classes of compounds is often associated with the structural diver-
sity and the presence of different functionalities and moieties. This feature is relevant in
classes of heterocycles such as isoindolinones [1–9] and pyrazoles [10–12], whose biolog-
ical activities are tuned by the linking of additional nitrogen-containing substituents or
heterocyclic groups such as piperazines, piperidines, and so on (Figure 1).
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Figure 1. Relevant bioactive isoindolinone (first row) and pyrazole (second row) hybrids. 
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Therefore, the development of new synthetic methods to furnish new hybrid molecules
is of paramount importance, even though additional difficulties can be encountered, espe-
cially when new stereocenters are formed [13]. In fact, asymmetric construction of the isoin-
dolinone ring is a challenging research field, and many groups are involved [13]. It is worth
noting that enantiopure isoindolinones have been reported to show enhanced biological
properties, but often inefficient resolution of racemic mixtures or the use of chiral auxiliaries
have been utilized to achieve this goal [13]. In this context, our group dedicated many
efforts to the asymmetric synthesis of 3-substituted [14–16] and 3,3-disubstituted isoin-
dolinones, [17,18] developing new cascade-type reactions often employing organocatalytic
systems and producing several new enantioenriched products. Some of the obtained isoin-
dolinones were also used in the total synthesis of biologically relevant compounds [5,15,18].
The reasons for the success of the developed methods also rely on the rational design
and synthesis of suitable starting materials. Recently, readily available α-amido sulfones
derived from 2-formyl benzoates revealed effective starting materials in the asymmetric
synthesis of 3-nitromethyl isoindolinones, reaching enantioselectivities up to 98% ee and
suitable yields in the process of asymmetric aza-Mannich/lactamization reaction [16]. Take-
moto’s neutral bifunctional organocatalyst [19] was not only essential to achieving high
enantioselectivity but was also crucial for catalyzing the cyclization step of the process [13].

The easy access and high stability of these N-carbamoyl-α-amidosulfones gives several
practical advantages avoiding, first of all, the use of the respective preformed imines, which
were difficult to isolate, while the formation of the imines from α-amidosulfones can be eas-
ily carried out in situ in the presence of an inorganic base [20,21]. This approach is explored
in asymmetric catalysis for the synthesis of functionalized chiral amines in nitro-Mannich
reactions [16,20,21], while different nucleophiles [22,23] as dicarbonyl compounds [22] or
amines are less investigated or not investigated at all. In these asymmetric transformations,
chiral ammonium salts, employed as phase transfer catalysts, play a fundamental role in
attaining high enantioselectivity [20,21,23], while neutral chiral organocatalysts have been
less investigated [16,22]. The presence of easily removable N-Boc or N-Cbz groups is a
further synthetic advantage of these methods [16,20,21].

Given the efficiency of the method in the synthesis of 3-nitromethyl isoindolinones [16]
and the utility of the target compounds, the application of this methodology to different
classes of nucleophiles is of paramount importance to attain new, differently decorated
derivatives.

Therefore, in the present investigation, we describe the asymmetric synthesis of a new
heterocyclic hybrid molecule as a consequence of the use of acetylacetone as a nucleophile in
an asymmetric reaction with N-carbamoyl-α-amidosulfone derived from 2-formylbenzoate
in the presence of Takemoto’s bifunctional organocatalyst. The investigation of the reaction
mechanism led to the development of a new synthetic route leading to the obtaining of a
new hybrid isoindolinone-pyrazole in high enantioselectivity. The use of dibenzylamine as
a nucleophile was also investigated for comparison. In both cases, Takemoto’s bifunctional
organocatalyst was more effective than benchmark chiral phase transfer catalysts.

2. Results and Discussion
2.1. Investigation of the Reactivity of the α-Amido Sulfone 1 under Asymmetric and
Achiral Conditions

In the first set of experiments, α-amido sulfone 1 was reacted with acetylacetone
in the presence of chiral neutral bifunctional organocatalysts and an ammonium salt in
combination with an inorganic base (Figure 2 and Table 1).
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Entry Cat
(20 mol%) Solvent

Time (h)
Step

1/Step 2

T (◦C)
Step

1/Step 2

2 or 3,
Yield (%) 1

2 or 3,
ee (%) 2

1 I DCM 72 rt 2, 56 2, 40
2 I toluene 24/72 −40/rt 2, 59 2, 69
3 I DCM 24/72 −40/rt 2, 56 2, 88
4 I DCM 24/0 −40 2, 80 2, 88
5 II DCM 50/0 −40 2, 82 2, 77
6 III DCM 21/0 −40 2, 35 2, 40
7 IV DCM 24/0 −40 2, 56 2, 56
8 I DCE/DCM 24/0 −40 2, 80 2, 89
9 I DCE/DCM 24/48 −40/60 3, 80 3, 0

1 Isolated yield. 2 Determined by HPLC on chiral column.

We soon realized that the additional step is rapid, even below ambient temperature,
while the cyclization is slow at room temperature, probably because of the less nucleophilic-
ity of a NH belonging to a carbamate group. In the presence of Takemoto’s catalyst I, even
after 72 h of stirring at room temperature, we recovered acyclic product 2 with moderate
enantioselectivity in DCM (Table 1, Entry 1). Enantiomeric excess improved by decreasing
the temperature to −40 ◦C, although the moderate yield was obtained probably due to
some decomposition of 2 after long stirring at rt. (Entries 2 and 3). Therefore, we repeated
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the experiment performing the purification at the end of the addition step at −40 ◦C, con-
firming the high enantioselectivity but with improved yield (Entry 4). Focusing only on the
addition step, other catalytic systems were also tested for comparison as the PTC chiral
ammonium salt II derived from quinine (Entry 5), cinchonine III (Entry 6), or epi-quinine
bifunctional organocatalyst IV (Entry 7). Good enantioselectivity was also obtained with
chiral ammonium salt II (Entry 5), but Takemoto’s catalyst was the best performing one
affording 2 with 88% ee.

At this point, we thought that the increase in the temperature after the addition step
could favor lactamization. To achieve this goal, we had to use a higher boiling solvent as 1,2-
DCE in a mixture with DCM since 1,2-DCE has an unsuitable melting point of −35 ◦C, and
DCM has an unsuitable boiling point of 40 ◦C. We first repeated the asymmetric addition
step, confirming the goodness of the used mixture of solvents leading to similar results
in terms of yield and enantioselectivity (Entry 8). Then, in a second experiment, we first
performed the addition step at −40 ◦C until the reaction was complete, as checked by TLC,
and then the reaction mixture was warmed up to 60 ◦C. This experiment was successful
since the target cyclic isoindolinone was obtained in suitable yield but, unfortunately, as a
racemate (Entry 9).

The reaction was also investigated under achiral conditions in the presence of K2CO3
only (Table 2). In all the experiments, we recovered the acyclic product 2, even after
prolonged heating at 60 ◦C and in different solvents such as toluene, DCM, or acetonitrile,
confirming the importance of using Takemoto’s catalyst I for the cyclization process. On the
other hand, the addition process appears to be slow at −40 ◦C (Entries 1 and 2), explaining
the high enantioselectivity (see Table 1) because of the lack of the background achiral
reaction at low temperature.

Table 2. Control experiments under achiral conditions.
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Entry Solvent T (◦C) Time (h) Yield (%) 1

1 Toluene −40 30 -
2 DCM −40 30 -
3 Toluene rt 30 77
4 Toluene rt 24 79
5 CH3CN rt 24 35
6 CH3CN rt 69 69
7 DCE 60 20 70
8 toluene 60 20 72

1 Isolated yield.

2.2. Investigation of the Cyclization of Intermediate 2

Cyclization was investigated directly on the purified enantioenriched acyclic product
2. Several cyclization conditions were tested (Table 3). Reaction performed at 60 ◦C in the
presence of K2CO3 only provided decomposition products, confirming the hypothesis that
Takemoto’s catalyst is important for promoting lactamization (Entries 1 and 2), probably
with a mechanism as described in Figure 3. When a combination of K2CO3 and Takemoto’s
catalyst was used, we were able to obtain the cyclic product, but unfortunately, as a
racemate (Entries 3–7). The use of a catalytic amount of both Takemoto’s catalyst and
K2CO3 at 40 ◦C was effective as well, but again racemization was observed (Entry 6). This
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experiment was repeated and stopped at about 50% conversion (Entry 7). Again, the cyclic
product was racemic, while the unreacted acyclic intermediate maintained 88% ee.

Table 3. Investigation of the cyclization process.
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All these experiments point out that racemization may occur on the cyclic product,
probably via a retro aza-Michael reaction under basic conditions, as depicted in Scheme 1.
Removing the acidic proton of acetylacetone moiety should prevent racemization.
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2.3. Asymmetric Synthesis of Isoindolinone-Pyrazole Hybrid

In order to confirm this hypothesis and overcome the racemization issue, our atten-
tion focused on the use of hydrazine, which should react selectively with acetylacetone
to provide pyrazole ring, [24] a moiety also found in a very large number of bioactive
compounds, [10–12] often combined with other heterocycles [12]. Therefore, the enan-
tioenriched acyclic product 2 was treated with hydrazine under the conditions shown in
Scheme 2, leading nicely to the pyrazole derivative 4 in a very high yield. Then, it was
subjected to cyclization, under the conditions of Table 3, Entry 6, nicely furnishing the
N-Boc protected isoindolinone 5. This derivative was, then, deprotected in the presence of
TFA, without any decrease in enantiopurity as determined by HPLC on chiral stationary
phase leading to NH-free hybrid isoindolinone-pyrazole 6 with unchanged enantiopurity
of 89% ee. Absolute configuration (AC) of (+)-6 was found to be (R) by X-ray analysis
performed on a suitable single crystal (Figure 4 and Figure S1 and Scheme 2). This finding
also allowed us to assign the AC of all the previous intermediates and, therefore, of (+)-2,
which was obtained with catalyst (R,R)-I. The sequence of reactions was also performed
by readily available (S,S)-I, leading to similar results in terms of yields and enantiomeric
purity for the opposite enantiomer (S)-2, demonstrating the goodness of our hypothesis
and feasibility of the adopted strategy to prevent racemization.
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The racemic hybrid compound was alternatively obtained by reaction of 3-acetylacetone
isoindolinone [25] 7 with hydrazine (Scheme 3, see Supplementary Materials for further
experimental details). On the other hand, when both 2 and 7 were treated with phenylhy-
drazine, we recovered the starting materials unreacted.
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2.4. Reaction with Dibenzylamine (DBA)

The reactivity of 1 was next investigated in the presence of the secondary amine
DBA with the aim of producing a 3-substituted isoindolinone with an aminal functionality.
Several catalytic systems were tested as well (Table 4 and Figure 2).

Table 4. Investigation of asymmetric reaction of 1 with dibenzylamine.
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Entry Cat
(20 mol%) Solvent

Time (h)
Step

1/Step 2

T (◦C)
Step

1/Step 2

9, Yield
(%) 1 9, ee (%) 2

1 3 (S,S)-I Toluene 20 RT - -
2 (R,R)-I Toluene 90 RT 83 -36
3 (S,S)-I DCM 144 RT 96 20
4 II Toluene 140 RT 75 rac
5 III Toluene 160 RT 92 rac
6 IV Toluene 72 RT 89 rac
7 (S,S)-I Toluene 7/69 −20/RT 88 63
8 II Toluene 8/60 −20/RT 78 −20
9 (R,R)-I m-Xylene 7/45 −20/RT 88 −54

103 (R,R)-I Toluene 7/69 −20/RT 35 −12
11 (R,R)-I Toluene 8/115 −40/RT 94 −60

1 Isolated yield. 2 Determined by HPLC on chiral column. 3 Rection performed without K2CO3 and with 2 eqv of
DBA.

As noted from the data reported in Table 4, the best results were obtained again in
the presence of Takemoto’s catalyst I at −20 ◦C in toluene (Entry 7), while other catalytic
systems such as the PTC II (Entry 4), cinchonine III (Entry 5) and the thiourea-epi-quinine
IV (Entry 6) were less effective both in the preliminary screening at RT as well as at −20 ◦C
(Entry 8). In this investigation, both (R,R)-I and (S,S)-I were used, leading the opposite
enantiomers of 9 as analyzed by HPLC on chiral stationary phase. Interestingly, control ex-
periments performed in the absence of K2CO3 and with 2 eqv of DBA highlighted that the in-
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organic base is essential to obtain satisfactory yield and enantioselectivity (Entries 1 and 10).
Other conditions were also investigated as different solvents (Entries 3 and 9), lower tem-
perature (Entry 11), and other catalytic systems such as Maruoka’s catalyst, a squaramide
bifunctional organocatalyst and a PTC derived from (1R,2R)-diaminocyclohexane. All these
catalysts were ineffective as well (for brevity, these data were reported in the Supplementary
Materials, Table S1).

Also, in the presence of this nucleophile, the cyclization proved to be slow below RT
but faster than previously observed with intermediate 2. In fact, further stirring the reaction
mixture at RT was enough to obtain the expected cyclic product, usually in very suitable
yields.

3. Materials and Methods
General Information

Unless otherwise noted, all chemicals, reagents, and solvents for the performed reac-
tions are commercially available. α-Amidosulfone 1 was prepared according to a literature
procedure [16]. All the reactions were monitored by thin layer chromatography (TLC) on
precoated silica gel plates (0.25 mm) and visualized by fluorescence quenching at 254 nm.
Flash chromatography was carried out using silica gel 60 (70–230 mesh, Merck, Darmstadt,
Germany). Yields are given for isolated products showing one spot on a TLC plate, and
no impurities were detectable in the NMR spectrum. The NMR spectra were recorded on
Bruker DRX 600, 400, and 300 MHz spectrometers (600 MHz, 1H, 150 MHz, 13C; 400 MHz,
1H, 100.6 MHz; 13C, 300 MHz, 1H, 75.5 MHz, 13C, 250 MHz, 1H, 62.5 MHz, 13C). Internal
reference was set to the residual solvent signals (δH 7.26 ppm, δC 77.16 ppm for CDCl3).
The 13C NMR spectra were recorded under broad-band proton decoupling. Spectra are
reported only for unknown compounds. The following abbreviations are used to indi-
cate the multiplicity in NMR spectra: s-singlet, d-doublet, t-triplet, q-quartet, dd-doublet
of doublets, m-multiplet, brs-broad signal. Coupling constants (J) are quoted in Hertz.
High-resolution mass spectra (HRMS) were acquired using a Bruker SolariX XR Fourier
transform ion cyclotron resonance mass spectrometer (Bruker Daltonik GmbH, Bremen,
Germany) equipped with a 7T refrigerated actively shielded superconducting magnet.
For ionization of the samples, electrospray ionization (ESI) or MALDI was applied. IR
spectra were recorded on an IR Bruker Vertex 70 v spectrometer. Polarimeter Jasco P-2000
(Tokyo, Japan). The crystal was measured on a Bruker D8 QUEST diffractometer equipped
with a PHOTON detector using Cu-Kα radiation (λ= 1.54178 Å). Data indexing (Table S2),
reduction and absorption correction were performed using APEX3 software suite, version
2015.5-2 [26–28]. The structure was solved using SHELXS [29] and refined by means of full
matrix least-squares based on F2 using the program SHELXL [30] and OLEX2 [31] as a GUI.
The Flack parameter was defined accordingly to ref [32].

Benzyl 2-(2-acetyl-1-((tert-butoxycarbonyl)amino)-3-oxobutyl)benzoate (R)-2. In an
ACE tube, 1 (120 mg, 0.24 mmol, eqv.), K2CO3 (66 mg, 2 eqv.), acetylacetone (66 µL,
2 eqv.), (R,R)-Takemoto catalyst I (20 mol%) were stirred at −40 ◦C in dichoroethane
(1.2 mL)/dichloromethane (800 µL) until the starting material was completely consumed
(24 h). The inorganic salt was filtered off, and the mixture was directly purified by flash
chromatography on silica gel (hexane/ethyl acetate from 9/1 to 8/2), recovering a pale
oil. Yield: 80% (84 mg). Spectroscopic data were found in agreement with the racemate.
HRMS (MALDI): m/z calcd for [C25H29NO6 + K]+: 478.16265; found: 478.16545. [α]D

20:
+80.9 (c 1, CHCl3). Enantiomeric excess was determined on chiral HPLC Chiral column
IE-3 Hexane/Isopropanol 80/20 0.6 mL/min, λ 220 and 254 nm. Ee: 89%, t1: 24.3 min and
t2: 27.4 min.

tert-butyl 1-(2,4-dioxopentan-3-yl)-3-oxoisoindoline-2-carboxylate 3. From the open
intermediate, no reaction occurs, warming the mixture to 50 ◦C for 2 days (DCE/DCM
0.1 M), using only potassium carbonate (2 eqv.). The addition of racemic Takemoto catalyst
(20 mol%) let us recover the product in almost quantitative yield.
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Benzyl 2-(((tert-butoxycarbonyl)amino)(3,5-dimethyl-1H-pyrazol-4-yl)methyl)ben-
zoate (R)-4. To a solution of enantioenriched intermediate (+)-2 (40 mg, 0.12 mmol, 1 eqv.)
in THF (600 µL) hydrazine hydrate 80% was added (8 µL, 1.1 eqv.) and the mixture was
stirred for 1 h. The solvent was removed under reduced pressure, and the crude was
purified by flash chromatography on silica gel (Hexane/Ethyl acetate from 6/4 to 3/7),
recovering a pale oil. Yield: 92% (48 mg). 1HNMR (CDCl3, 400 MHz) δ 7.78 (d, J = 7.7
Hz, 1H), 7.59 (app dd, J1 = 7.7 Hz, J2 = 1.3 Hz, 1H), 7.49 (dt, J = 6.5 Hz, 1H), 7.41–7.23 (m,
7H), 6.63 (d, J = 7.7 Hz, 1H), 6.16 (br s, 1H), 5.10 (s, 2H), 1.87 (s, 6H), 1.44 (s, 9H). 13CNMR
(CDCl3, 100 MHz) δ 167.4, 155.0, 142.9, 142.4, 135.9, 131.6, 130.8, 130.1, 128.7, 128.2, 128.1,
127.4, 127.2, 115.8, 79.8, 66.8, 48.4, 28.5, 11.5. IR (neat): 3200, 2940, 2880, 1689, 1672,1656
cm−1. HRMS (MALDI): m/z calcd for [C25H29N3O4 + K]+: 474.17896; found: 474.17335.
[α]D

20: +12.6 (c 0.6, CHCl3). Enantiomeric excess was determined after cyclization.
tert-butyl 1-(3,5-dimethyl-1H-pyrazol-4-yl)-3-oxoisoindoline-2-carboxylate (R)-5. A

solution of compound (+)-4 (50 mg, 0.11 mmol, 1 eqv.) in toluene (1.1 mL), potassium
carbonate (4 mg, 20 mol%), and (R,R)-Takemoto catalyst I (20 mol%) was warmed to 40 ◦C
for 48 h, until starting material was consumed. The crude was purified by flash chromatog-
raphy on silica gel (hexane/ethyl acetate from 6/4 to 3/7), recovering an amorphous solid.
Yield: 97% (35 mg). 1HNMR (CDCl3, 300 MHz) δ 7.93 (d, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5
Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 5.98 (s, 1H), 5.13 (br s, 1H), 1.45
(s, 15H). 13CNMR (CDCl3, 100 MHz) δ 166.9, 150.1, 145.1, 143.0, 134.1, 130.4, 128.9, 124.7,
123.4, 112.3, 83.1, 55.9, 28.1, 11.1. IR (KBr disc): 3200, 2940, 2880, 1670, 1656 cm−1. HRMS
(MALDI): m/z calcd for [C18H21N3O3 + H]+: 328.16557; found: 328.16678. [α]D

20: +35.7
(c 1, CHCl3). Enantiomeric excess was determined by chiral HPLC. Chiral colunm OD
Hexane/Isopropanol 80/20 0.6 mL/min, λ 220 and 254 nm. Ee: 89%, t1: 9.1 min and t2:
10.9 min.

3-(3,5-dimethyl-1H-pyrazol-4-yl)isoindolin-1-one (R)-6. At 0 ◦C, to a chilled solution
of compound (+)-5 (30 mg, 0.09 mmol, 1 equiv.) in dichoromethane (800 µL) was added
trifluoroacetic acid (TFA, 130 µL) and the mixture was stirred for 3 h. The suspension was
diluted with dichoromethane, basified with NaOH 1N, and washed with brine. The crude
obtained after evaporation of the solvent was purified by flash chromatography on silica
gel (ethyl acetate/methanol 95/5), recovering an amorphous solid. Yield: 98% (11 mg).
1HNMR (MeOD, 400 MHz) δ 7.83 (d, J = 7.4 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4
Hz, 1H), 7.31 (d, J = 7.04 Hz, 1H), 5.76 (s, 1H), 1.96 (s, 6H). 13CNMR (MeOD, 100 MHz) δ
171.4, 147.8, 132.2, 131.7, 127.9, 123.1, 122.7, 110.6, 52.1, 9.1. IR (KBr disc): 3200, 2940, 2880,
1656 cm−1. HRMS (MALDI): m/z calcd for [C13H13NO + H]+: 228.11314; found: 228.11156.
[α]D

20: +19.4 (c 0.3, CHCl3). Enantiomeric excess was determined by chiral HPLC. Chiral
column OD 60/40 0.6 mL/min, λ 220 and 254 nm. Ee: 89%, t1: 5.4 min and t2: 7.6 min.

tert-butyl 1-(dibenzylamino)-3-oxoisoindoline-2-carboxylate 9. To a solution of α-
amido sulfone 1 (40 mg, 0.08 mmol, 1.0 equiv.) in toluene (1.6 mL), dibenzylamine
(1.5 equiv., 0.12 mmol), K2CO3 (55 mg, 0.4 mmol, 5 equiv.) and (S, S) -Takemoto cata-
lyst (20 mol%) were added, and the reaction mixture was stirred at -20 ◦C, until the starting
material completely disappear. Then the reaction was allowed to stir at room temperature
until the intermediate was fully converted into the cyclic product. Purification on silica
gel (Hexane/ Ethyl acetate, 5:1) afforded the resulting cyclic product as an oil. Yield: 88%
(30 mg.).1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 7.28 Hz, 1H), 7.60–7.55 (m, 2H), 7.47–7.20
(m, 12H), 6.13 (s, 1H), 3.84 (d, J = 12.5 Hz, 2H), 3.66 (d, J = 12.5 Hz, 2H), 1.65 (s, 9H).
13CNMR (100 MHz, CDCl3) δ 166.3, 151.9, 143.6, 139.2, 133.9, 131.2, 129.7, 129.3, 129.2, 128.7,
128.6, 128.5, 128.4, 127.3, 124.4, 124.2, 83.3, 76.4, 53.2, 28.3. HRMS (MALDI): m/z calcd for
[C27H28N2O3 + H]+: 429.2173; found: 429.2190. [α]D

18: = +88 (c = 0.8, CHCl3). Enantiomeric
excess was determined by chiral HPLC. Chiral column OD-H, hexane/isopropanol, 95:5,
0.6 mL/min, λ 220 and 254 nm. Ee: 63%, t1: 9.1 min and t2: 10.0 min.
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4. Conclusions

In this work, we have investigated the Mannich reaction of an α-amido sulfone derived
from 2-formyl benzoate under organocatalytic conditions in the presence of acetylacetone
and dibenzylamine as nucleophiles. The investigation of the reactivity of acetylacetone
derivative allowed to synthesize a new heterocyclic hybrid molecule formed by an isoin-
dolinone substituted in 3-position with a pyrazole ring in high enantioselectivity of 89%
ee and an overall yield of about 70% in 4 synthetic steps. Moderate enantioselectivity was
observed using dibenzylamine as a nucleophile leading to a 3-substituted isoindolinone
with an aminal functionality. In both cases, Takemoto’s bifunctional organocatalyst proved
to be more effective than other catalytic systems as phase transfer catalysts (PTC). In this
investigation, the bifunctional nature of the used catalyst also favored lactamization, as
confirmed by a series of control experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065783/s1.
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