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Abstract: Senescent cells accumulate in aging skin, causing age-related changes and a decline in
functional efficiency. Therefore, senolysis, a treatment that specifically removes senescent cells
and rejuvenates the skin, should be explored. We targeted apolipoprotein D (ApoD), a previously
identified marker expressed on senescent dermal fibroblasts, and investigated a novel senolysis
approach using a monoclonal antibody against this antigen and a secondary antibody conjugated
with the cytotoxic drug pyrrolobenzodiazepine. Observations using fluorescently labeled antibodies
revealed that ApoD functions as a surface marker of senescent cells and that the antibody is taken
up and internalized only by such cells. The concurrent administration of the antibody with the
PBD-conjugated secondary antibody specifically eliminated only senescent cells without harming
young cells. The antibody–drug conjugate treatment of aging mice combined with the administration
of antibodies reduced the number of senescent cells in the dermis of mice and improved the senes-
cent skin phenotype. These results provide a proof-of-principle evaluation of a novel approach to
specifically eliminate senescent cells using antibody–drug conjugates against senescent cell marker
proteins. This approach is a potential candidate for clinical applications to treat pathological skin
aging and related diseases via the removal of senescent cells.
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1. Introduction

The accumulation of senescent cells in tissues causes a number of age-related medical
conditions [1]. In recent years, pharmacological research aimed at eliminating senescent
cells or senolysis has attracted attention towards combatting such problems. A number
of clinical trials are currently underway to investigate innovative pharmacological treat-
ment methods. For example, the therapeutic potential of senescent cell removal has been
demonstrated in mouse models of diverse diseases and disorders, including pulmonary
fibrosis [2,3], atherosclerosis [4,5], diabetes [6,7], and neurodegeneration [8,9]. In the skin,
the senescent phenotype is attributed to senescent cells accumulated in the epidermal
and dermal cells and subcutaneous adipose tissue depots, and the development of new
senolytic agents is expected [10].

One approach for senescent cell elimination focuses on the fact that senescent cells
differ significantly from proliferating cells in the pattern of expressed proteins, including
those on the cell surface, which can serve as markers and therapeutic targets. This strategy
of using senescent cell-specific markers to target senescent cells is similar to that used to
selectively eliminate cancer cells [11]. Senolysis-mimicking anti-cancer therapies targeting
specific markers of senescent cells, such as antibody-dependent cellular cytotoxicity [12]
and T-cell therapy [13], have been reported. In a previous study, we found that ApoD is
specifically expressed in senescent fibroblasts in the dermis [14]. Here, we aimed to develop
a senolysis method by combining the targeting of this marker with the existing idea of
anti-cancer therapies.
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Recently, one of the therapeutic approaches used to target only specific cells is the use
of antibody–drug conjugates (ADCs). The therapeutic concept of ADCs is to selectively
target tumor cells with small-molecule cytotoxic drugs to maximize cell-killing efficacy
and minimize toxicity [15]. ADCs typically consist of antibodies that chemically target
proteins on the surface of the target cells. The antibodies bind to the target protein and
are generally internalized by the cell. Cytotoxic agents are released into endosomal or
lysosomal compartments, and by diffusion or transport, these cytotoxic agents can exert
cell-killing effects. Currently, specific ADCs have been developed and are FDA-approved
for the treatment of breast cancer, lymphoma, multiple myeloma, and gastric cancer [16,17].

We aimed to analyze whether the specific elimination of senescent fibroblasts occurs
when a secondary antibody conjugated with pyrrolobenzodiazepine (PBD), a candidate
ADC that inhibits DNA synthesis, is administered using a monoclonal antibody against
ApoD, a senescent fibroblast specific marker. This approach could potentially aid in the
development of a new method of senolysis.

2. Results
2.1. ApoD Antibodies Are Specifically Internalized within Aging Dermal Fibroblasts

To determine whether ApoD monoclonal antibodies are specifically internalized within
aging dermal fibroblasts, fluorescently labeled ApoD antibodies were administered to cells,
as well as fluorescently labeled non-specific IgG and fluorescent dye as controls. Cells
induced to senescence by replicative senescence and ionizing radiation showed an increase
in SA-β-gal-positive cells (Figure 1A) and a significant decrease in BrdU uptake, indicating
reduced mitotic activity (Figure 1B). In addition, the membrane protein marker CAV1
was found to be expressed at similar levels in all cell models, while ApoD was found to
be significantly more highly expressed in the cell membrane of the senescent cell model
compared to younger cells (Figure 1C).
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in proliferating and senescent cells. *: p < 0.05. (C): Quantitative comparison of ApoD protein on the 
plasma membrane in each cell model. *: p < 0.05. (D): Internalization of fluorescently labeled ApoD 
antibody in senescent cells. Green fluorescence indicates ApoD internalization, red indicates plasma 
membrane; Bar = 10 µm; ReS: replicative senescence, RaS: radiation-induced senescence. 
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served when young cells were treated with ApoD antibodies. The results indicate that the 
ApoD antibody is specifically taken up and internalized by senescent cells (Figure 1D). 
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and secondary antibodies significantly reduced viability (Figure 2A). To optimize the con-
centration, we administered multiple concentrations of the PBD-conjugated secondary an-
tibody and found a significant difference in survival between young and senescent cells 
at 100 µM, which is the concentration used in the assay (Figure 2B). Thus, it was shown 
that senescent fibroblasts are specifically killed by ADC with the ApoD antibody and the 
PBD conjugated secondary antibody. Furthermore, when the relationship between the 
time after the start of the antibody treatment and cell viability was investigated, the via-
bility of senescent cells decreased significantly after 72 h, and the extent of the decrease 
was the same after 96 h; hence, the treatment time was determined to be 72 h (Figure 2C). 

Figure 1. Internalization of ApoD monoclonal antibody in senescent fibroblasts. (A): SA-β-gal
staining. A large number of positive cells are observed in senescent cells. Bar = 50 µm. (B): BrdU
uptake in proliferating and senescent cells. *: p < 0.05. (C): Quantitative comparison of ApoD protein
on the plasma membrane in each cell model. *: p < 0.05. (D): Internalization of fluorescently labeled
ApoD antibody in senescent cells. Green fluorescence indicates ApoD internalization, red indicates
plasma membrane; Bar = 10 µm; ReS: replicative senescence, RaS: radiation-induced senescence.

When fluorescently labeled antibodies were administered to these cells, fluorescence
was observed in the cytoplasm only when the senescent cells were treated with fluorescently
labeled ApoD antibodies. This did not occur with the usage of fluorescent dye alone or of
a non-specific antibody. Furthermore, no internalization of antibody sites was observed
when young cells were treated with ApoD antibodies. The results indicate that the ApoD
antibody is specifically taken up and internalized by senescent cells (Figure 1D).

2.2. Combination of ApoD Antibody and a Secondary Antibody Conjugated with PBD Specifically
Eliminates Human Skin Fibroblasts

Since the ApoD antibody was found to be specifically taken up and internalized by
senescent cells, we investigated whether cell-specific killing occurred when a secondary
antibody conjugated with cytotoxic PBD was administered with the ApoD antibody. As
controls, we administered PBS (control), a primary antibody only, and a PBD-conjugated
secondary antibody only. In young cells, there was no difference in cell viability with
either intervention. However, in the two senescent cell models, the combination of primary
and secondary antibodies significantly reduced viability (Figure 2A). To optimize the
concentration, we administered multiple concentrations of the PBD-conjugated secondary
antibody and found a significant difference in survival between young and senescent cells
at 100 µM, which is the concentration used in the assay (Figure 2B). Thus, it was shown
that senescent fibroblasts are specifically killed by ADC with the ApoD antibody and the
PBD conjugated secondary antibody. Furthermore, when the relationship between the time
after the start of the antibody treatment and cell viability was investigated, the viability
of senescent cells decreased significantly after 72 h, and the extent of the decrease was the
same after 96 h; hence, the treatment time was determined to be 72 h (Figure 2C).
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Figure 2. Specific killing of senescent fibroblasts by combination of ApoD antibody and PBD conjugate
secondary antibody. (A) Cell viability in each cell model with ADC treatment. (B): Relationship
between concentration of PBD-conjugated secondary antibody and cell viability. (C): Relationship
between time after ADC treatment and cell viability. (D): ELISA assay of the effect of ADC treatment
on SASP. ReS: replicative senescence. RaS: radiation-induced senescence. *: p < 0.05.

In addition, the concentrations of inflammatory cytokines, such as IL6 and IL8, as well
as MMP3 and MMP9 proteins involved in dermal senescence, in the medium were reduced
after these treatments, indicating that the senescent cell secretory phenotype (SASP) was
suppressed (Figure 2D).

2.3. Combination of ApoD Antibody and Secondary Antibody Conjugated with PBD Rejuvenates
Skin of Aging Mice

To determine the effect of treatment using a combination of a anti-ApoD primary
antibody and a PBD-binding secondary antibody on the skin of animals, young and old
mice were administered a single dose of vehicle and the primary and secondary antibody
combination intravenously, respectively. The results showed no histological changes in the
skin of the young mice, but a significant increase in the thickness of the subcutaneous fat of
the old mice was observed. The thickness of collagen fibers in the dermis was also increased
by the ADC treatment (Figure 3A). The number of senescent cells (p16ink4a-positive cells)
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in the dermis was also significantly reduced (Figure 3B). No apparent adverse events, such
as death or the appearance of skin ulcers in the mice, were observed during the observation.
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Figure 3. Effects of ApoD-targeted ADC treatment in the skin of young or aging mice. (A): Histo-
logical changes resulting from treatment of young or aged mice. The image of collagen fibers in the
dermis is in the lower right panel. The thickness of the subcutaneous fat in ADC-treated aged mice is
significantly increased. Bar = 100 µm. (B): Immunofluorescence staining for p16 in tissue sections of
mouse skin treated with control vehicle or ADC. Red: p16; blue; DAPI (nucleus). p16-positive dermal
cells at a depth of 100 µm from the basement membrane were counted using DAPI. All results are
expressed as mean ± SEM. *: p < 0.05; bar = 100 µm.

3. Discussion

Our results show that a monoclonal antibody against ApoD, a marker of aging dermal
fibroblasts, was specifically taken up and internalized into the cytoplasm. Furthermore,
when a complex of a secondary antibody was conjugated to this monoclonal antibody and
a cytotoxic PBD was administered in combination, senescent cell-specific elimination was
observed. Senescent cells have been reported to secrete a variety of cytokines (SASP) that
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affect the microenvironment of the tissue and disrupt its structure and function through
a paracrine effect [18,19]. Additionally, treatment with ADCs inhibited the secretion of
inflammatory cytokines associated with skin aging, and MMP secretion was inhibited. In
an in vivo study, the administration of ADCs in combination with antibodies to aging mice
reduced the number of senescent cells in the dermis and thickened collagen fibers without
significant adverse events. In addition, the thickness of subcutaneous fat was significantly
increased. The decreased collagen fiber thickness and subcutaneous fat thickness was
consistent with the aging phenotype, and treatment resulted in improvements in these
phenotypes [10]. Overall, our findings support the idea that treatment with a combination
of anti-ApoD antibodies and PBD-conjugated secondary antibodies may play a partial role
as a novel mechanism of senolysis in aging skin.

Previous studies have indicated that ApoD expression may be induced by stress
conditions, such as oxidative and inflammatory stress or UV treatment [20]. The nuclear
factor PARP-1 (Poly ADP-ribose polymerase-1), which is upregulated in growth-arrested
cells under special circumstances that induce senescence, such as oxidative stress, induces
ApoD expression [21,22]. Thus, it is consistent that DNA damage caused by replication
or ionizing radiation induces ApoD expression, and serves as an internalizing marker of
senescence, as shown in the present study.

The main cellular source of ApoD-inducing reactive oxygen species (ROS) is the
mitochondria, and in a vicious cycle, ROS damage mitochondrial enzymes and mitochon-
drial DNA, and more ROS are produced due to defects in oxidative phosphorylation
reactions [23]. Dysfunction of this intracellular pathway can lead to aging-related diseases,
and an approach for ApoD induced by ROS may exert an anti-aging therapeutic effect by
interfering with mitochondrial biosynthesis-related pathways [24].

Treatments that selectively destroy senescent cells include ABT263 [25] and ABT737 [26],
which inhibit the anti-apoptotic protein Bcl family, as well as dasatinib and quercetin [27]
as senolytic drugs that have been reported, but these have been associated with serious side
effects. Therefore, attention is needed in finding markers with high specificity for tumor
cells in the treatment of melanoma and other cancers to reduce side effects [28]. There is a
need for senolysis as a highly specific therapy to kill senescent cells; antibody-dependent
cell-mediated cellular cytotoxicity targeting DPP4 [12], antibody–drug conjugates targeting
B2M [29], and CAR T therapy targeting the urokinase plasminogen activator receptor
(uPAR) [13] were discovered using antigens with high specificity for senescent cells.

ADCs are based on the recognition by antibodies of extracellular epitopes, which
are then internalized, and the drug attached to them is released by the cleavage of linker
molecules in lysosomes [30].

Our experiments showed that combination treatment with ApoD monoclonal antibody
and PBD-conjugated secondary antibody selectively induced senescent cell death and
decreased the expression of senescence-associated SASP without significantly affecting the
survival of control proliferating cells. Furthermore, ApoD-negative young cells did not
respond to ADC, and isotype control antibodies had no effect on senescent cell survival.
This indicates that drug delivery indeed occurs via the specific binding of the antibody to
ApoD and does not affect the cells themselves. This information suggests that ADCs can
be generated for different targets and can be made specific to cell types or tissues to more
selectively eliminate replication or stress-induced senescence, depending on clinical needs.

The ApoD-targeted ADC therapy used herein may be a solid alternative to existing
methods as it specifically eliminates senescent cells without affecting younger cells and
improves the phenotype of aging skin without apparent side effects.

These proof-of-principle data indicate that ADCs can be effectively used to eliminate
senescent cells. However, our study has several limitations, and further experiments are
needed to fully understand the relevant mechanisms. Our data strongly suggest that the
specific removal of cells can be achieved by the internalization of ADCs. The effects of
linker cleavage and the involvement of alternative pathways need to be explored in the
future. In addition, no conclusions can be drawn on the aging of other types of cells in
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the skin, such as keratinocytes and macrophages, the fibroblasts of other tissues, or on
side effects. In the present study, no apparent adverse events were observed after in vivo
administration to mice. However, the major adverse effects of PBD in patients include
vascular leak syndrome, elevated liver enzymes, myelosuppression, gastrointestinal effects
(nausea, vomiting, diarrhea, and mucositis/stomatitis), metabolic effects (hyponatremia,
hypophosphatemia, etc.), musculoskeletal effects (muscle weakness and myalgia), neuropa-
thy, pain, dyspnea, fatigue, and renal impairment (hyperuricemia and proteinuria) [27].
Therefore, patients will need to be carefully monitored for the appearance of these symp-
toms with prolonged administration or changes in dosage. However, if necessary, cytotoxic
stimuli that require the presence of multiple targets on the cell surface can be designed,
which would greatly reduce potential toxic side effects, increase specificity, and increase
the feasibility of the approach [31,32].

Our results indicate that specific antibodies may be an efficient system for introducing
toxic drugs into human-aged dermal fibroblast cells, following the success of similar
approaches in cancer therapy. Further studies are needed to determine the best targets, as
well as the safety and efficacy of the therapy, but these data are a potential contribution to
the development of new skin rejuvenation therapies.

4. Materials and Methods
4.1. Cell Culture

Normal human dermal fibroblasts (NHDF) were obtained from Takara Bio (Shiga,
Japan). NHDFs were grown in a low-glucose Dulbecco’s modified Eagle medium (Wako
Pure Chemical Industries, Osaka, Japan) supplemented with 1% penicillin/streptomycin
(Thermo Fisher Scientific, Waltham, MA, USA) and 10% fetal bovine serum (Thermo
Fisher Scientific).

Replicative senescence was defined as a cell population doubling level greater than
50 and no proliferation for more than 2 weeks. Ionizing radiation-induced senescence
was induced in the same manner as previously reported [14]. Cells were irradiated with
10 Gy of X-rays by AB-160 X-Ray Irradiation System (AcroBio, Tokyo, Japan) and analyzed
10 days later. Control (young; proliferating) cells were mock-irradiated by removal from the
incubator, transport to the irradiator, and maintenance outside the irradiator for the same
period as the irradiated cells. Intracellular SA-β-gal activity was assessed by staining cells
using Senescence β-Galactosidase Staining Kit from Cell Signaling (Danvers, MA, USA).

4.2. Evaluation of Proliferative Capacity by Measuring BrdU Uptake

BrdU uptake was assessed using Frontier BrdU Cell Proliferation Assay (Exalpha
Biologicals Inc, Shirley, MA, USA) according to the manufacturer’s protocol. SpectraMax
i3x (Molecular Devices, San Jose, CA, USA) was used for analysis at 450/550 nm.

4.3. Membrane Protein Quantification (Western Blotting)

To extract membrane proteins from cells, cell lysates were prepared according to
the manufacturer’s protocol using the Mem-PER™ plus membrane protein extraction kit
(Thermo Fisher Scientific, Waltham, MA, USA) and processed.

Each sample (40 µg) was electrophoresed on 10% polyacrylamide gels (Mini-PROTEAN
TGX precast gels; Bio-Rad Laboratories, Inc.) and transferred to polyvinylidene chloride
membranes (Millipore, Bedford, MA, USA). After blocking with 3% nonfat milk for 1 h at
25 ◦C, the membranes were incubated overnight at 4 ◦C with primary antibodies against
apolipoprotein D/APOD (1:100, 347-MSM4-P1; ThermoFisher Scientific), CAV1 (1:1200,
sc-53564; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and GAPDH (1:2000; Santa
Cruz Biotechnology) in a blocking solution. The next day, the samples were incubated with
goat anti-mouse IgG H & L (Horseradish peroxidase) (ab205719; abcam, Cambridge, UK)
at 1:1000 dilution for 2 h at 37 ◦C. After washing, immunoreactive protein bands were visu-
alized using an electrochemiluminescence detection kit (Pierce Biotechnology, Rockford, IL,
USA). Images of the bands were acquired using a chemiluminescence imager (ImageQuant
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LAS4000mini; GE Healthcare, Chicago, IL, USA). Image analysis was performed using
ImageJ (ver. 1.53p, National Institutes of Health, Bethesda, MD, USA). Each experiment
was repeated three times.

4.4. Fluorescence-Labeled ApoD Monoclonal Antibody Uptake Assay

To confirm the endocytosis of mouse anti-human apolipoprotein D/APOD monoclonal
antibody (ThermoFisher Scientific) into the cells, Alexa Fluor™ 488 Antibody Labeling
Kit (ThermoFisher Scientific) was used to fluorescently label the antibody according to the
manufacturer’s protocol. As a control, an anti-human IgG antibody (ab200699, abcam) was
prepared with a similarly labeled antibody and Alexa Fluor 488 dye (ThermoFisher Scien-
tific). Aged or normal human skin fibroblasts were plated in 96-well plates (5 × 103 cells
per well, n = 4) and maintained in 100 µL of a medium. After 24 h, fluorescently labeled
the anti-ApoD antibody (final concentration: 10 µM), anti-human IgG (final concentration;
10 µM), and fluorescent dye (final concentration: 10 µM) were added to respective wells.
After 24 h, the cells were collected, labeled with CellMask™ Deep Red Plasma Membrane
Stain (ThermoFisher Scientific), and observed with the confocal laser scanning microscope
FLUO-VIEW FV3000 (Olympus, Co., Ltd. Tokyo, Japan).

4.5. Antibody–Drug Conjugate Assay

Aged or normal human skin fibroblasts were plated in 96-well plates (5 × 103 cells/well,
n = 4) and maintained in 100 µL of a serum-free medium; after 24 h, the anti-ApoD antibody
(final concentration: 10 µM) or PBS (control) was added, and the cells were incubated for
another 24 h. Anti-mouse IgG (Fc Specific) or PBD-conjugated IgGs with a cleavable linker
(Moradec LLC, San Diego, CA, USA) was added at 100 µM, and the cells were incubated
for another 72 h. In addition, PBD-conjugated IgG was administered at the concentrations
of 0, 1, 5, 10, 50, 100, and 200 µM to optimize the concentration of secondary ADCs. To
optimize the reaction time, viability was measured at 4, 12, 24, 48, 72, and 96 h after the
administration of PBD-conjugated IgG. Cell viability was analyzed using CellTiter-Glo®

2.0 Cell Viability Assay (Promega, Madison, WI, USA) according to the manufacturer’s
protocol. Relative viability was normalized against the PBS control, and quantification
experiments were performed in triplicate.

4.6. ELISA

After the preparation of the young and senescent cell model as described above and
treatment with ADC and controls, the culture media were collected and subjected to ELISA
[Human IL-6 Quantikine ELISA Kit (D6050), Human IL-8 Quantikine ELISA Kit (D 8000C),
Human MMP-9 Quantikine ELISA Kit (DMP900) (R & D Systems, Inc., Minneapolis, MS,
USA), and Human MMP3 ELISA Kit (ab100607, abcam)] for quantifying IL-6, IL-8, MMP9,
and MMP3 concentration.

4.7. In Vivo Efficacy Study

Male Bl6 mice (Sankyo Laboratories, Inc., Tokyo, Japan), at 9 weeks old (young) or
80 weeks old (old), were intravenously treated with the vehicle alone or with anti-ApoD
antibody and PBD-conjugated IgG with a cleavable linker (Moradec LLC, San Diego, CA,
USA), each at a concentration of 0.3 mg/kg and 3 mg/kg in a single dose. Each group
contained five mice. The mice were kept with free access to food and water; after 1 month,
the mice were euthanized, and tissue samples were collected. The frozen specimens were
sliced into 7 µm thick sections, mounted on glass slides, and fixed in acetone for 10 min
at room temperature. To block nonspecific binding sites, the slides were incubated with
3% goat serum in PBS for 30 min at room temperature. The slides were then incubated
overnight at 4 ◦C with the primary antibody p16 (ab108349, abcam, 1:200). After washing
three times with PBS, the slides were incubated with a Alexa Fluor 488-conjugated goat
anti-rabbit antibody (ThermoFisher Scientific) diluted at a ratio of 1:1000 in PBS for 1 h at
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room temperature. Nuclear contrast staining was performed using ProLongGold with the
DAPI anti-fading sealant (ThermoFisher Scientific).

4.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (version 5.0; San Diego,
CA, USA) or SPSS 22.0 (Chicago, IL, USA). A one-way ANOVA and Tukey’s post hoc tests
were used to compare the differences between three or more groups. Statistical significance
was set at p < 0.05.
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