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Abstract: Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory
cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent
the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17
pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes
multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence
highlights the immunomodulatory roles of adipokines, which may contribute to the progression or
suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked
with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to
present the pathogenesis of psoriasis and the roles of adipokines in this process.
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1. Introduction

Psoriasis is a chronic, immune-mediated skin condition that affects around 2% of the pop-
ulation globally [1]. One of the most challenging aspects of psoriasis is its diverse presentation.
Symptoms can vary from patient to patient, leading to difficulty in correctly diagnosing the
condition. Furthermore, although diagnostic criteria are available to support a diagnosis, they
do not always provide the best indication of severity or treatment. This means that some forms
of psoriasis may be missed or mismanaged due to misdiagnosis. Age, gender, geography,
and ethnicity contribute to the variability in psoriasis prevalence, probably due to genetic and
environmental factors. In some African and Asian communities, it is less common, whereas it
can reach up to 11% in Scandinavian populations [2]. Psoriasis is uncommon in some ethnic
groups, such as the Japanese [3], and may not exist among Australian aborigines [4]. The
disease often coexists with other conditions such as cardiovascular diseases, depressive illness,
and psoriatic arthritis. Although the exact causes of psoriasis are poorly understood, there are
several risk factors that have been identified, including familial history and environmental
risk factors such as smoking and obesity [5].

Psoriasis is generally classified into several types, including plaque, guttate, inverse,
and pustular. Plaque psoriasis is the most common type, accounting for approximately 80%
of cases. It is characterized by raised, red patches on the skin covered with white or silver
scales. Guttate psoriasis is the second most common type. It is characterized by small,
water-drop-shaped lesions on the skin. Inverse psoriasis appears as red lesions in body
folds such as the armpits or groin. Pustular psoriasis appears as white blisters filled with
pus surrounded by red skin. Finally, psoriasis can be a psychologically and emotionally
taxing condition to manage, with mood swings, stigma, and other mental health issues
contributing to its overall negative impact on quality of life [6]. Costs are significant for
both the healthcare systems and the patients [7]. Heart disease, depression, and psoriatic
arthritis are all linked to psoriasis [8].
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1.1. Pathogenesis of Psoriasis

The pathogenesis of psoriasis is incompletely understood, but it is believed to involve
a combination of genetic and environmental factors. Pathologically, psoriasis is associated
with an increase in the production of pro-inflammatory cytokines, such as tumor necrosis
factor-alpha (TNF-α), interleukins (IL-1 and IL-17), and interferon-γ (IFN-γ), that drive
the development of the disease. They cause epidermal keratinocyte hyperproliferation,
differentiation defects, and the excessive production of pro-inflammatory mediators. Fur-
thermore, psoriatic lesions are associated with an increased amount of dendritic cells and T
cells [9]. Comorbidities of psoriasis, including metabolic syndrome, obesity, diabetes, and
cardiovascular disease, have been attributed to the systemic inflammation caused by these
cytokines. Other emerging implications of psoriasis pathogenesis involve impaired extra-
cellular matrix deposition, altered Toll-like receptor expression, and aberrant antimicrobial
activity. As we gain a more comprehensive understanding of the underlying inflammatory
processes, clearer roles emerge for the potential therapeutic targets currently available to
physicians treating individuals with chronic psoriasis [8,10].

Card14 mutations are important genetic risk factors for psoriasis. These mutations lead
to the overexpression of pro-inflammatory cytokines, which causes chronic inflammation
and leads to the development of psoriasis lesions. Stress has also been shown to trigger
or worsen psoriasis flares, although the exact mechanism by which it does so is not fully
understood. Various infections have also been linked to the development or exacerba-
tion of psoriasis, including streptococcal throat infections [11,12], HIV infections [13], and
hepatitis C infections [14]. Finally, exposure to certain irritants such as smoke is also asso-
ciated with psoriasis development [15]. Therefore, psoriasis is a genetically predisposed,
chronic inflammatory skin condition characterized by anomalies in the immune system,
increased keratinocyte proliferation, poor epidermal cell differentiation, and increased
angiogenesis [16].

1.2. Problems in the Diagnosis and Management of Psoriasis

As a disease that predominantly occurs in developed countries, psoriasis still poses a
therapeutic and treatment challenge. Although recent advances in the understanding of
the pathophysiology have shed light on this condition, some crucial problems in psoriasis
diagnosis and management need to be addressed. One of the primary challenges of
psoriasis diagnosis is reliably distinguishing it from other skin conditions that manifest
similar symptoms, such as atopic dermatitis, seborrheic dermatitis, lichen planus, and
eczematous contact dermatitis [10]. In usual circumstances, the morphology of the skin
lesions and their distinctive locations are used to diagnose psoriasis (scalp, proximal
surfaces of the elbows and knees, sacral region, nails). Taking a skin biopsy from the lesion
and histologically verifying the diagnosis is advised if there is any uncertainty regarding
the accuracy of the clinical diagnosis. In some circumstances, dermoscopy can be beneficial,
particularly when treating nails and scalp psoriasis [17,18].

Once properly diagnosed, effective management requires individualized care based on
their symptoms, lifestyle, and overall health. The available treatment options are numerous,
from topical agents and phototherapy to biological therapies and systemic treatments. As
there is no “one-size-fits-all” approach to managing psoriasis, choosing the best option
for each patient can be difficult. Additionally, regular determination of the severity of
the disease is very important to be able to choose the right treatment at the right time.
The Psoriasis Area and Severity Index (PASI) and body surface area (BSA) are used to
assess the severity of the disease and the extent of psoriasis, respectively. The degree and
severity of erythema, thickness, and scaling within psoriatic lesions are evaluated by the
PASI score. With a scale from 0 to 100, the BSA index shows what proportion of the body’s
surface area is taken up by psoriatic lesions. The rule of nines, initially used to estimate
burn area, is used for determining the BSA value [19]. The aim of treatment is to control
symptoms and induce complete remission of skin changes. This objective is not always
achievable, especially in patients with advanced illness. Therefore, if the PASI is reduced
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by at least 90% after treatment, it can be deemed successful (PASI-90) [20]. The treatment
may also be considered successful if it lowers the DLQI (Dermatology Life Quality Index)
to 5 points with the PASI reduced by at least 75%. A failure to see sufficient progress during
treatment (PASI < 50 or PASI ≥ 50 and <75, with DLQI > 5 points) should be an indication
for treatment modification [18,21].

1.3. Adipokines

Physiologically active proteins known as adipokines (or adipocytokines) are largely
produced by adipocytes, whereas many of their components are also expressed and se-
creted by other cells [22]. Adipokines represent a functional category of various proteins
and peptides involved in cell signaling, as opposed to protein families, which have a shared
domain structure and a homologous, conserved amino acid sequence. In recent years,
adipokines have gained increasing attention, particularly for their role in autoimmune
processes. Adipokines such as leptin, adiponectin, and resistin are proteins that are released
into the circulation by adipocytes and have been found to have profound immunomodula-
tory effects. These adipokines have been implicated in the regulation of both innate and
adaptive immunity, making them essential components of healthy physiological function.
Furthermore, their expression has been linked to several pathological states, including
inflammatory and autoimmune diseases, obesity, and metabolic disease [23]. Overall, the
human body has several hundred adipokines with a variety of biological characteristics.
The most common classification separates pro- and anti-inflammatory adipokines and cen-
ters on their inflammatory qualities. A persistent, low-grade inflammatory state is created
by the upregulation of pro-inflammatory adipokines, which also contributes to metabolic
dysfunction. On the other hand, several anti-inflammatory adipokines are also secreted by
adipose tissue, and their function in these processes is actively being researched [24]. Thus,
understanding and harnessing the power of adipokines holds great potential in developing
therapeutic strategies to treat these conditions.

Adipokines are known to play a role in inflammation and immune responses, both
of which are involved in psoriasis. There are numerous studies examining the connection
between psoriasis and the plasma or tissue expression levels of various adipokines, but
precise mechanisms still need to be investigated. This may be due to methodological vari-
ations or incomparable study populations regarding the severity of the psoriasis and/or
comorbidities [25]. For example, levels of leptin and resistin are elevated in obese individu-
als with psoriasis compared to those without the condition. Skin biopsy samples examined
by immunohistochemistry for leptin and leptin receptor expression revealed an elevated
expression in patients with severe psoriasis. Moreover, a significant association between
the duration of the disease and serum leptin levels, tissue leptin, and tissue leptin receptor
expression was demonstrated. Leptin could be used to measure the severity and recurrence
of psoriasis [26,27]. According to another study, psoriasis patients who are obese have
lower amounts of circulating adiponectin. For obese psoriasis patients, a strong negative
connection to adiponectin was observed when compared to the pro-inflammatory cytokine
IL-6 [28]. To fully comprehend the role of adipokines in psoriasis and other autoimmune
diseases, more studies are required. Yet, these latest investigations imply that adipokines
might be crucial in the emergence and advancement of these disorders. Adipokines may
help the growth of psoriasis, although the precise method by which they do so is unclear. It
is evident that they contribute significantly to the development of this illness, nevertheless.

2. Adiponectin
2.1. Structure, Signaling Pathways, and Physiological Role of Adiponectin

Adiponectin was first described by Scherer and colleagues in 1995. The freshly dis-
covered protein was referred to as the adipocyte complement-related protein of 30 kDa
(Acrp30) [29]. It was also termed AdipoQ [30], apM1 [31], and GBP28 [32]. Only a few years
later, the first studies started to reveal the role of adiponectin in regulating blood glucose
levels [33], which further confirmed that adipose tissue is an endocrine organ [34]. After
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years of research, it is now clear that adiponectin has a strong impact on glucose and lipid
metabolism. Furthermore, it modulates inflammatory responses and has anti-atherogenic
and anti-diabetic properties [35,36].

Human adiponectin protein contains 244 amino acids. It is composed of four regions,
including a signal sequence at the N-terminus, a variable region, a collagenous domain,
and a complement 1q-like globular domain at the C-terminus [37]. Adiponectin protein
undergoes multimerization into trimers (low molecular weight, LMW), hexamers (medium
molecular weight, MMW), and multimers (high molecular weight, HMW) (Figure 1) [38].
These isoforms differently regulate metabolism. HMW is considered a major isoform
involved in glucose metabolism. Accordingly, adiponectin mutations responsible for dia-
betes and hypoadiponectinemia are associated with impaired multimerization [39,40]. The
levels of HMW complexes are reduced in obese, insulin-resistant, as well as atherosclerotic
patients [41,42]. A proper multimerization process requires a disulfide bond between
the cysteine residues [40]. Furthermore, the modification of lysine in the collagenous
domain [43] and the mutation of a conserved tryptophan residue in the N-terminus also
disrupt HMW assembly [44]. In addition, testosterone and TNF-α reduce the level of
HMW adiponectin [45,46]. Globular adiponectin represents another variant of the protein,
which is generated through the proteolytic cleavage of the full-length adiponectin. Glob-
ular adiponectin is biologically active and promotes the accumulation of triglycerides in
adipocytes [47,48].
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volves an intracellular N-terminal region, seven transmembrane domains, and an extra-
cellular C-terminal region. Therefore, the topology of these receptors differs from the G-
protein coupled receptors [52]. The downstream signaling of adiponectin receptors in-
cludes AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated re-
ceptor (PPAR)-α [53]. AMPK belongs to a major signaling pathway involved in insulin 
sensitivity by promoting glucose uptake (GLUT4 translocation) and glycolysis [54]. More-
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that this process can be AMPK-dependent and -independent [55–59]. The stimulation of 
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Figure 1. Schematic representation of the adiponectin isoforms and signaling. AdipoR1—adiponectin
receptor 1; AdipoR2—adiponectin receptor 2; APPL—adaptor protein containing PH domain, PTB
domain, and leucine zipper motif-1; AMPK—AMP-activated protein kinase; MAPK—mitogen-
activated protein kinase; PPAR—peroxisome proliferator-activated receptor.
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Adiponectin binds to AdipoR1, AdipoR2, and T-cadherin. Furthermore, it has also
been demonstrated that it can bind to calreticulin. However, the binding affinity depends
on the isoform of the adiponectin protein [49–51]. The structure of AdipoR1/AdipoR2
involves an intracellular N-terminal region, seven transmembrane domains, and an ex-
tracellular C-terminal region. Therefore, the topology of these receptors differs from the
G-protein coupled receptors [52]. The downstream signaling of adiponectin receptors
includes AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated
receptor (PPAR)-α [53]. AMPK belongs to a major signaling pathway involved in insulin
sensitivity by promoting glucose uptake (GLUT4 translocation) and glycolysis [54]. More-
over, it is considered that AMPK may also inhibit gluconeogenesis, but studies have found
that this process can be AMPK-dependent and -independent [55–59]. The stimulation of
PPAR-α is associated with an atheroprotective plasma lipid profile. It increases the levels
of HDL and decreases the plasma levels of triglycerides. Furthermore, PPAR-α inhibits
pro-inflammatory signaling pathways [60,61]. Additionally, the adiponectin receptor di-
rectly interacts with APPL1 (adaptor protein containing PH domain, PTB domain, and
leucine zipper motif-1) [62]. In rat cardiomyocytes, APPL1 interacts with both receptors,
but adiponectin elevated the interaction only with AdipoR1 [63]. APPL1 is thought to
mediate the activation of AMPK through the cytosolic translocation of LKB1, an AMPK
kinase [63–65]. In C2C12 myocytes, APPL1 was found to stimulate another major sig-
naling pathway, the p38 mitogen-activated protein kinase (MAPK) pathway [49,66]. An
interaction between APPL1 and AKT has also been identified [67,68]. However, this in-
teraction has been associated with the insulin-signaling pathway, as adiponectin alone
might not trigger the activation of Akt [62,69]. Therefore, APPL1 is involved in major
cellular functions. Wen and colleagues demonstrated that APPL1 knockdown in 3T3-L1
preadipocytes disrupted differentiation into mature cells and inhibited autophagy [70].
APPL2, an isoform of APPL1, negatively impacts adiponectin signaling and competes with
APPL1 in the interaction with AdipoR1 [71]. Adiponectin signaling is enhanced with the
overexpression of heat shock protein 60, which stabilizes the adiponectin receptor [72]. The
binding of adiponectin to T-cadherin has been correlated with protective effects in tubular
renal injury [73], atherosclerosis [74], and heart [75], among others.

The role of adiponectin signaling has been extensively investigated in the func-
tion of immune cells. In human macrophages stimulated with lipopolysaccharide (LPS),
adiponectin inhibits the expression of pro-inflammatory TNF-α and IL-6. The authors also
showed that adiponectin induces the expression of genes encoding anti-inflammatory pro-
teins, such as A20, SOCS3, and BCL3, among others [76]. In addition, Ohashi and colleagues
demonstrated that adiponectin promotes the expression of anti-inflammatory phenotype
(M2) markers such as CD163, IL-10, and mannose receptor in human monocyte-derived
macrophages [77]. In contrast, a subsequent study revealed that the role of adiponectin in
macrophage function is much more complex. Cheng and colleagues demonstrated that
adiponectin induces the expression of genes encoding both M1 and M2 phenotype proteins,
favoring the M1 pro-inflammatory phenotype. The authors suggest that the induction of
pro-inflammatory pathways makes macrophages resistant to further inflammatory stim-
uli [78]. Interestingly, the M1 phenotype might be associated with reduced expression
of AdipoR1 and AdipoR2 compared to the M2 subtype. Additionally, adiponectin en-
hances pro-inflammatory cytokine secretion in the M1 macrophage population (TNF-α,
IL-6), whereas it induces anti-inflammatory secretion in M2 cells (IL-10) [79]. Therefore,
adiponectin may promote both pro- and anti-inflammatory signaling, which may depend
on the variant of macrophages. A study by Jin and Wang demonstrated that the treatment
of mouse Raw 264.7 cells for 3 h with globular adiponectin promoted the expression of
pro-inflammatory cytokines, such as TNF-α, IL-6, and monocyte chemoattractant pro-
tein (MCP-1). These effects are thought to occur through the translocation of NF-κB to
the nucleus. However, these results might not be dependent on AdipoR1 or AdipoR2.
In contrast, full-length adiponectin promoted macrophage migration but did not affect
pro-inflammatory cytokine production [80]. Intriguingly, Haugen et al. showed that im-
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munomodulatory effects may result from the adiponectin isoform. The authors found that
HMW and globular variants promoted NF-κB activity [81].

Despite macrophages, adiponectin plays a role in the functioning of other immune
cells, such as T cells. It has been found that T cells express most adiponectin receptors
intracellularly. The stimulation of T cells with antigens promotes the expression of AdipoRs
on the cell surface. Adiponectin decreases the number of antigen-specific T cells and
suppresses the production of IFN-γ, IL-2, and TNF-α [82]. Furthermore, Surendar and
colleagues found that the stimulation of naïve CD4+ cells with adiponectin leads to a
reduced number of IFN-γ+ T cells [83]. Similarly, a separate study showed that adiponectin
suppresses the ox-LDL-induced differentiation of Th1 and Th17 cells [84]. Additionally, in
line with previous studies, Zhang et al. found that adiponectin suppressed the Th1 and
Th17 cytokines IFN-γ and IL-6, respectively [85]. Nevertheless, the role of adiponectin on
T cells might depend on cellular context (e.g., the effect of various patterns of antigens or
cytokines), as some reports showed that adiponectin may promote IFN-γ T cells [78,86].

2.2. Impact of Adiponectin on Skin and Joints

Adiponectin protein is a significant regulator of metabolism and has a range of im-
munomodulatory properties. However, recent evidence also points to important mod-
ulatory roles of adiponectin signaling on the skin and joint tissues. To begin with, Sun
and colleagues evaluated whether AdipoRon, an agonist of AdipoRs, may impact skin
inflammation. The authors found that AdipoRon dose-dependently reduced the expres-
sion of IL-1β, IL-6, and TNF-α in mouse skin samples. Furthermore, adiponectin agonist
suppressed apoptosis [87]. Moreover, Tu et al. demonstrated that peritoneal adiponectin
injections in rats with skin flaps resulted in higher survival areas, higher levels of vascular
endothelial growth factor, denser microcirculation, and increased activity of superoxide
dismutase [88]. Recent studies highlight the important role of adiponectin in regulating
skin fibrosis, as adiponectin-knockdown mice develop more fibrosis after exposure to
pro-fibrotic conditions compared with wild-type models [89]. Furthermore, a negative cor-
relation between mRNA adiponectin expression and modified Rodnan skin score (MRSS),
which measures skin thickness, was demonstrated in patients with systemic sclerosis [90].
On the other hand, a study by Masui et al. showed a positive correlation between serum
adiponectin and total skin thickness score. Nevertheless, diffuse cutaneous systemic scle-
rosis was associated with a lower serum adiponectin level compared with the limited
subtype of the disease. Additionally, the authors found a positive correlation between
the serum adiponectin level and the duration of the disease. Therefore, a reduction in the
serum protein level may contribute to the early development of the disease and the initia-
tion of skin fibrosis but is unrelated to disease progression [91]. In addition, adiponectin
protein reduces collagen expression in fibroblasts with and without pre-treatment with
lipopolysaccharide [92]. Therefore, these studies point to the important role of adiponectin
in preserving inflammation quiescence and preventing fibrosis.

In addition, adiponectin modulates the function of another important skin cell pop-
ulation, keratinocytes. To begin with, human keratinocytes express adiponectin recep-
tors [93]. Secondly, it can reduce the elevated expression of human beta-defensin 2 (hBD2)
in UV-treated keratinocytes. The overexpression of hBD2 has been previously correlated
with elevated keratinocyte proliferation [94]. Furthermore, adiponectin reduces hBD2
levels stimulated by H2O2, but cells stimulated with this adipokine alone also show ele-
vated production of antimicrobial peptides [95]. Kawai and colleagues demonstrated that
adiponectin has a pro-apoptotic effect on keratinocytes [96]. Furthermore, through MAPK
signaling, activator protein 1, and silent mating-type information regulation 2 homolog
(SIRT1), adiponectin promotes the expression of filaggrin in keratinocytes, which is a key
element in preserving skin barrier function [97,98].

Adiponectin has also been found to impact joint tissues and may take part in the
pathogenesis of osteoarthritis (OA) and rheumatic arthritis (RA). However, taking its anti-
inflammatory roles described previously, its contribution to joint diseases is thought to be
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controversial. For instance, the expression of AdipoR seems to be more abundant in lesional
areas of OA cartilage. Furthermore, the protein induces the expression of pro-inflammatory
cytokines, such as IL-6 and MCP-1, together with metalloproteinases involved in the degra-
dation of cartilage [99,100]. The production of MMP-3 by human chondrocytes is thought
to be mediated by AdipoR1, AMPK, p38, and NF-kB [101]. Furthermore, a positive as-
sociation has been identified between serum adiponectin levels and radiographic knee
OA severity [102]. Moreover, the synovial fluid concentration of adiponectin positively
correlates with markers of aggrecan degradation [103]. In RA synoviocytes, stimulation
with adiponectin promotes the production of IL-8, IL-6, MMP-13, MMP-1, and VEGF [104].
Accordingly, Wang et al. demonstrated that the inhibition of AdipoR1 decreases RANKL
expression and prevents joint tissue damage in collagen-induced arthritic mice [105]. In-
terestingly, these observations might result from the local adiponectin effects. Ebina and
colleagues demonstrated that systemic adiponectin prevents joint chemokine deposition
and decreases tissue degradation [106]. Therefore, these studies suggest that adiponectin
acts locally on joint tissues, which results in a pro-inflammatory environment and the
promotion of joint diseases.

2.3. The Role of Adiponectin in Psoriasis

Psoriasis, a chronic inflammatory skin disease, is associated with dysfunctional dif-
ferentiation and hyperproliferation of keratinocytes. Skin lesions are characterized by the
infiltration of immune cells, together with neovascularization. Separate variants of the
disease are characterized by different inflammatory patterns, such as TNF-α, IL-23, and
Th17 or IL-36α, IL-36γ, and IL-1β [16]. Van der Fits et al. proved that IL-23 and IL-17 are
key cytokines involved in the pathogenesis of psoriasis, as IL-23p19- and IL-17RA-deficient
mice demonstrated suppressed psoriatic lesions compared to wild-type models [107]. IL-23
is mainly secreted by dermal dendritic cells and macrophages. It promotes the production
of further cytokines by Th17 cells, such as IL-17, and IL-22 [108,109]. In contrast, IL-17 is
largely produced by T cells in psoriatic lesions, whereas keratinocytes are considered as
the main target cells. Subsequently, IL-17 promotes chemokine secretion and the produc-
tion of other cytokines responsible for the promotion of skin inflammation and psoriatic
changes [110]. IL-23-stimulated γδ-T cells are another source of IL-17 in psoriasis [111].
The elevation of γδ-T cells is observed in psoriatic and recurrent lesions [112]. Additionally,
IL-22 is largely produced by Th22 cells, which are elevated in psoriatic patients [113–115].
IL-6 and IL-23 facilitate the development of Th22 cells [116] (Figure 2). T cells expressing
CD4 and Forkhead box protein 3 (Foxp3) are referred to as regulatory T cells (Tregs). The
dysregulation of Tregs has been identified in the pathogenesis of autoimmune diseases and
cancer. These cells are capable of secreting anti-inflammatory cytokines, such as IL-10 [117].
The dysregulation of the Th17/Treg balance has been identified in psoriasis. To begin
with, etanercept (anti-TNF-α agent) has been found to alleviate psoriasis in a mice model
and inhibit pro-inflammatory cytokines. Psoriasis was associated with elevated Th17 and
reduced Tregs, and etanercept has been found to normalize these cell populations [118].
Secondly, Shi et al. showed that the expression of IL-21 and IL-21R in CD4+ cells is elevated
in psoriatic skin lesions. Moreover, the authors demonstrated that IL-21 promotes Th17
and disrupts Treg differentiation [119]. Therefore, several T cell subtypes play roles in the
pathogenesis of psoriasis [120]. Interestingly, IL-23 was also found to stimulate the polar-
ization of macrophages into different variants than M1 or M2. IL-23-treated macrophages
were found to produce IL-17, IFN-γ, and IL-22 [121].
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Figure 2. (A): Schematic representation of the pathogenesis of psoriasis and the roles of chemerin
and adiponectin; (B): Impact of leptin on T cell variants; (C): Visfatin and TNF-α promote production
of chemokines and antimicrobial peptides.

Recent evidence highlights the important and potentially beneficial role of adiponectin
in psoriasis. To begin with, patients with psoriasis have a significantly decreased level of
adiponectin compared to healthy controls [122,123]. Secondly, the treatment of psoriasis leads
to an elevation of the serum adiponectin level [124]. In addition, the expression of adipoQ
is reduced in psoriatic skin lesions when compared to healthy skin [125]. Adiponectin may
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be correlated with IL-23 and IL-17. Kochumon and colleagues found negative correlations
between IL-23 gene expression and the level of adiponectin in patients with high levels of
LDL cholesterol [126]. Furthermore, Shibata et al. used an adiponectin knockdown and
wild-type mice to evaluate the expression of psoriasis cytokines. The authors found that
a deficiency of adiponectin further promotes the expression of IL-23p19 and IL-17 in skin
treated with imiquimod. Interestingly, intraperitoneal injection with adiponectin resulted
in the inhibition of IL-17 production in adiponectin-deficient mice. Moreover, in an in vitro
analysis, adiponectin suppressed the production of IL-17 from IL-23-stimulated dermal γδ-T
cells [127]. In addition, an adiponectin-derived peptide, P5, which acts through the AdipoR1
receptor, was found to inhibit IL-17A mRNA expression in γδ-T cells and alleviate imiquimod-
induced psoriasis in mice [128,129]. Furthermore, the previously mentioned hBD2 is one of
the specific markers of psoriasis, which is also involved in a broad range of psoriasis-specific
inflammatory pathways. It has been previously suggested to monitor hBD2 throughout the
treatment process [130]. HBD2 expression is correlated with several cytokines, including
IL-23. Kanda et al. demonstrated that IL-23 potentiated the IL-1β-induced production of
hBD2 in keratinocytes [131]. Therefore, adiponectin might serve a protective role in psoriasis
through a negative correlation with IL-23 and hBD2. Moreover, adiponectin might impact
the Tregs population. Co-culture of CD4+ T cells with dendritic cells conditioned with
adiponectin leads to the elevated ratio of Treg cells [132]. Furthermore, Ramos-Ramirez and
colleagues revealed that globular adiponectin and AdipoRon can promote the expression of
Foxp3 and promote the secretion of IL-10 [133].

Adiponectin acts through the AMPK signaling pathway. Interestingly, the activity
of AMPK has been correlated with the modulation of psoriasis, which might indirectly
suggest the effects of adiponectin. The expression of AMPK and its phosphorylated form
are decreased in the skin of patients with psoriasis [134]. Shen et al. used a mouse model
of psoriasis to evaluate the role of the AMPK signaling agonist in the development of
psoriasis. The authors found that the use of a signaling agonist was associated with
decreased skin thickness, whereas the AMPK inhibitor promoted disease severity [135]. In
line with these findings, Garcin and colleagues demonstrated that AMPK inhibitor leads
to hyperkeratosis and the promotion of IL-20 [136]. However, conflicting data exist about
AMPK phosphorylation by adiponectin in keratinocytes [93,95]. Moreover, it is worth
mentioning the sirtuin 1 (SIRT1) pathway, which is activated by AMPK and is suppressed
in imiquimod-stimulated mouse skin [137–139]. Hong and colleagues demonstrated that
treating keratinocytes with adiponectin promotes SIRT1 expression [140]. Furthermore,
SIRT1 negatively regulates the signal transducer and activator of transcription 3 (STAT3),
which is a mediator of IL-22 signaling and a member of the leptin signaling pathway [141].

3. Leptin
3.1. Leptin in Physiology and Pathology

Leptin is one of the most relevant protein hormones, produced mainly by adipocytes in
our white adipose tissue [142]. Its paramount function is a reduction in the sense of hunger by
acting on the leptin receptors in the hypothalamus. Leptin concentration in blood is positively
correlated with the amount of adipose tissue, hence increased leptin levels are encountered
in people with obesity [143]. The presence of a leptin receptor was also identified in the
basal layer and the hair follicle papilla cells in the epidermis. Stimulating them, leptin can
activate JAK2 kinase which induces the tyrosine phosphorylation of the STAT3, SHP2, and
PI3K proteins. Activated and dimerized STAT3 migrates to the nucleus, where it causes the
expression of genes such as the suppressor of cytokine signaling 3 (SOCS3) [144,145]. All these
pathways lead to mitochondrial metabolic activation and the efficiency of energy utilization.
As a consequence, cellular proliferation and differentiation, as well as the modulation of
angiogenesis, are stimulated in the epidermis layer [146]. Thus, the malfunction of any of
the aforementioned signaling pathways can be associated with impaired wound healing
or pathogenesis of skin diseases. Suppressing STAT3 is associated with the alleviation of
keratinocyte inflammation [147]. Moreover, leptin is described as a hormone with pleiotropic
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effects due to its impact on hematopoiesis, thermogenesis, bone metabolism, the regulation of
sexual reproduction, as well as immune homeostasis [148] (Figure 3).
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Leptin’s influence on the immune system seems to be a significant factor in the
pathogenesis of autoimmune disorders. During systemic inflammation, cytokines such as
TNF-α, IL-6, and IL-1β can trigger adipocytes to upregulate leptin synthesis and expres-
sion with potentially disastrous effects. For instance, glomerulosclerosis may develop by
renal glomerular endothelial cells over proliferation and upregulation of TGF-β expres-
sion, which triggers the deposition of extracellular matrix material in the glomerulus and
subsequently can lead to proteinuria [149]. Leptin overproduction can also stimulate the
recruitment and migration of monocytes to the intima of blood vessels and consequently
increase the secretion of atherogenic cytokines, resulting in atherosclerosis [150]. In a state
of chronically increased leptin blood concentration among people with obesity, certain
tissues may develop leptin resistance, which can contribute to fat accumulation in the
liver. The upregulated synthesis of free fatty acids may induce liver inflammation and
fibrosis, mainly by the peroxidation of accumulated lipids, as well as the overproduction
of reactive oxygen species (ROS) [151]. Liver tissue fibrosis is then promoted by hepatic
stellate cells (HSCs) activated by procollagen I, TGF-B1, and smooth muscle actin produced
in the aforementioned pathways. Furthermore, leptin appears to be a probable mitogen
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for HSCs and, at the same time, an inhibitor of HSCs’ apoptosis process by affecting the
Akt-dependent pathway and extracellular signal-regulated kinase (ERK) [152].

3.2. The Role of Leptin in Psoriasis

According to the data available in the current literature, leptin might contribute to
the development of psoriasis. Firstly, serum leptin and the expression of its receptor are
elevated in severe psoriasis compared to mild disease and controls [26]. This finding
was also confirmed in the meta-analysis by Zhu et al. when comparing patients with
controls [153]. It enhances the secretion of various cytokines such as IL-1, IL-6, TNF-α,
and CXCL8. Consequently, these mediators stimulate Th1/Th17 to overproduce IL-17
and IL-23 that are highly implicated in the pathogenesis of psoriatic arthritis [122,146].
Furthermore, several studies demonstrated that leptin promotes the differentiation of
Th17 cells [154,155]. Yu et al. reported that leptin-deficient splenocytes stimulated with
recombinant leptin resulted in an elevation of IL-17+ cells. Furthermore, the authors found
that leptin increases the expression of the retinoic acid receptor-related orphan nuclear
hormone receptor family (RORγt), which is associated with Th17 differentiation [156].
Leptin can also enhance granulocytes’ chemokinesis to the psoriatic skin and delay their
apoptosis at this location. Activated neutrophiles might be another source of IL-17 excess.
As a result of cytokine storm, psoriatic-related genes are overexpressed and cornified
cell maturation is impaired [157]. Human keratinocytes treated with IL-17A and leptin
demonstrate elevated gene expression of chemokines (CXCL8, CXCL1, CCL20) [158]. Leptin
also potentiates hBD2 secretion in IL-1β-treated keratinocytes through the MAPK and JAK2
pathways [159]. In addition, leptin is associated with an impaired Tregs population. De
Rosa and colleagues demonstrated that neutralizing leptin monoclonal antibodies enhances
the proliferation of Tregs [160]. Furthermore, leptin decreases IL-10 production from
CD4+ T cells from patients with asthma [161]. In line with previous findings, Wang et al.
showed that leptin receptor antagonist promotes Foxp3 and inhibits IL-17 in the thyroid
gland of a mouse model with experimental autoimmune thyroiditis [162]. Interestingly,
Tregs from psoriasis patients are prone to differentiate into IL-17-secreting cells [163].
Moreover, the PASI score seems to be proportionate to the actual leptin concentration in
serum [26]. However, this finding was not observed in another study regarding leptin
plasma levels [122].

4. Other Adipokines and Their Role in Psoriasis
4.1. Visfatin

Visfatin is an adipokine identified in 2004 [164] and named after the suggestion that it is
produced and excreted primarily in visceral fat. Visfatin is highly conserved throughout ani-
mal evolution. It has a molecular weight of 52 kDa and its gene encodes 491 amino acids. It is
identical to pre-B cell colony-enhancing factor (PBEF), described in 1994 as a cytokine produced
by lymphocytes, acting on lymphocyte maturation and inflammatory regulation. Visfatin is
produced not only in human leukocytes and adipose tissue but also in human and animal liver
and muscle cells [165], animal adipocytes, and kidney and heart [166]. Visfatin was found
to be released primarily by macrophages rather than adipocytes in visceral adipose tissue.
In this regard, there is ample evidence to suggest that visfatin is expressed by macrophages
infiltrating adipose tissue and produced in response to inflammatory signals [167]. Visfatin
has pleiotropic effects on various cells. For instance, it can promote the production of VEGF
and MMP and interact with MAPK and phosphatidylinositol 3-kinase/protein kinase B (PI3K)
signaling pathways, which leads to increased angiogenesis [168]. In addition, visfatin plays
a regulatory role in cell proliferation and apoptosis [169]. A study by Zou and colleagues
determined the associations between serum visfatin levels and psoriasis [170]. This meta-
analysis showed that patients with psoriasis had significantly higher levels of visfatin than
controls. Furthermore, correlations showed that visfatin levels in patients were positively
correlated with the PASI score. Interestingly, visfatin was found to stimulate TNF-α-induced
chemokine secretion in human keratinocytes. As a result, this adipokine may contribute to
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the pathogenesis or exacerbation of psoriasis [171]. Additionally, Hau and colleagues, in an
in vitro study, demonstrated that visfatin enhances the secretion of antimicrobial peptides in
TNF-α-stimulated human keratinocytes [172].

4.2. Resistin

Resistin (resistance to insulin) is a hormone secreted by the adipose tissue. It was
discovered in 2001 in murine adipocytes [173]. Resistin is an 11 kDa cysteine-rich polypeptide,
which contains five intramolecular disulfide bonds and multiple β-turns [174]. The family of
resistin-like molecules (RELM) consists of two RELM proteins in humans (RELMβ and resistin)
and four RELM proteins in mice (RELMα/FIZZ1, RELMβ/FIZZ2, RELMγ, resistin) [175].
Mouse Resistin is involved in type 2 diabetes and is expressed mostly in white adipose tissue.
On the contrary, the human variant is predominantly expressed in lymphatic tissue and
bone marrow-derived cells, mostly in leukocytes and monocytes, and is upregulated during
differentiation into macrophages [176]. The lung and heart are minor sources of resistin, and
it might be involved in the remodeling of these organs after injury [177]. Resistin acts through
autocrine, paracrine, and endocrine mechanisms and affects a wide variety of cell and tissue
types [178]. Circulatory resistin is associated with pro-inflammatory cytokines, such as TNF-α
and IL-6. The signaling activity of this protein has been found in various cell types, including
macrophages, vascular cells, and peripheral blood mononuclear cells (PBMCs), among others.
Nevertheless, PBMCs are believed to have the greatest influence on serum resistin levels.
It is worth noting that recent studies revealed that human resistin can be also expressed in
sebaceous glands and keratinocytes [179].

Moreover, resistin expression can be increased by pro-inflammatory mediators, such
as TNF-α, LPS, IL-1β, and IL-6 in PBMCs [180–182]. Human resistin in monocytes or
macrophages induces the expression of IL-12, TNF-α, and IL-6 through the NF-κB-mediated
pathway [183,184]. Furthermore, resistin also induces MCP-1 secretion [185]. The overex-
pression of resistin can be inhibited by anti-inflammatory regiments, such as rosiglitazone
or aspirin, which antagonize NF-κB [180]. In contrast, Fasshauer et al. reported that resistin
mRNA expression was suppressed by TNF-α in 3T3-L1 adipocytes [186]. According to the
current evidence, resistin signals through various receptors, including G-protein-coupled
receptors (GPCRs), Toll-like receptor 4 (TLR4), receptor tyrosine kinase-like orphan receptor
1 (ROR1), and CAP1, an isoform of decorin (DDCN) [179].

Additionally, resistin has an immunomodulatory role. It may act as a pro-inflammatory
cytokine, increase the expression of pro-inflammatory cytokines, or activate immune cells.
Resistin is associated with several inflammatory, infectious, autoimmune, and neoplastic
diseases [185]. Bokarewa et al. revealed that resistin introduced intraarticularly into healthy
mouse joints caused arthritis and appeared in 80% of joints with injected resistin. Moreover,
the authors demonstrated that patients with RA present an accumulation of resistin in
synovial fluid, which is associated with the intensity of inflammation [187].

Interestingly, recent studies have started to investigate the role of resistin in the
pathogenesis of psoriasis. To begin with, Johnston et al. reported that resistin is positively
correlated with the severity of psoriasis [188]. Secondly, patients with psoriasis present
increased levels of plasma resistin [122]. A study by Gisondi et al. confirmed that infliximab
treatment reduced the serum level of resistin [189]. This finding was further confirmed
by Corbetta and colleagues, who showed that treatment with the oral retinoid acitretin
also caused a reduction in the resistin level [190]. Boehncke et al. noticed a statistically
significant correlation between resistin serum levels and PASI score [191]. Interestingly,
resistin may lead to the expansion of Tregs populations when CD4+ cells are co-cultured
with dendritic cells. Moreover, resistin might inhibit the expression of IL-6, IL-12p40, and
IL-23p19 through the modulation of IRF-1 in dendritic cells [192]. Since the inhibition of
these cytokines might alleviate the development of psoriasis, the precise role of resistin in
psoriasis is yet to be discovered.
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4.3. Chemerin

Chemerin is an adipocyte-secreted adipokine and chemoattractant protein for den-
dritic cells and macrophages. Chemerin works in autocrine, paracrine, and even endocrine
models of action [193]. Chemerin has a broad range of functions and takes part in adipoge-
nesis, glucose homeostasis, and inflammation [194]. Furthermore, chemerin is believed to
be a significant marker in tumorigenesis. Chemerin expression is increased in a number of
inflammatory and metabolic diseases, such as metabolic syndrome, diabetes, obesity, and
psoriasis [193]. The RARRES2 gene was identified in 1997 as a new retinoid-responsive
gene, upregulated in psoriatic skin after the application of tazarotene. The encoded protein
of the RARRES2 gene was identified six years later. It is also known as tazarotene-induced
gene 2 (TIG2) or retinoic acid receptor responder 2 (RARRES2) [194,195].

The highest concentration of chemerin is found in the white adipose tissue, liver,
and placenta. Chemerin is produced to a lesser extent by the kidneys, lungs, heart, pan-
creas, skeletal muscle, and brown adipose tissue. It is synthesized as preprochemerin and
processed by various members of the fibrinolytic, coagulation, and inflammatory path-
ways. Chemerin binds to several receptors, including chemokine-like receptor 1 (CMKLR1),
known as Chemerin receptor 1, G-protein coupled receptor 1 (GPR1) also named chemerin
receptor 2, and C-C chemokine receptor-like 2 (CCRL2) [196]. Various signaling pathways
are considered to be stimulated, such as the AMPK, MAPK, and Akt pathways [197]. For
instance, Wittamer et al. observed that CMKLR1 activation results in the promotion of
p42–p44 MAP kinases and suppressed cAMP accumulation [198]. In contrast, CCRL2
downstream has not yet been evaluated [199].

Recent studies suggest that chemerin plays a role in metabolic disorders. Liang et al.
suggested that chemerin levels in adipose tissue and peripheral blood were elevated in
women with gestational diabetes [200]. Moreover observed that patients with type 2 dia-
betes present higher chemerin plasma levels compared to control groups [201], whereas
Bobbert et al. reported that chemerin might be a predictor of the disease [202]. In this con-
text, it is interesting to note that Bozaoglu et al. observed that chemerin positively correlates
with waist-to-hip ratio, body mass index, glucose levels, blood pressure, and circulating
triglycerides [203]. Furthermore, chemerin levels were found to be positively correlated
with markers of inflammation, such as CRP, IL-6, and TNF-α [204]. Interestingly, chemerin
was reported to play a role in regulating adipocyte differentiation and local/autocrine
actions through the CMKLR1 receptor in adipocytes [205]. Chemerin also remains an
important protein in cardiovascular diseases. Kaur et al. reported that angiogenesis in
human endothelial cells was induced by chemerin. Moreover, significant angiogenic path-
ways, MAPKs and PI3K/Akt, were activated by chemerin [206]. Xiaotao and colleagues
noticed that elevated chemerin levels might indicate the severity of atherosclerosis [207]. In
addition, serum chemerin levels are higher in patients with atrial fibrillation [208].

A few studies have investigated the role of chemerin in psoriasis. To begin with,
a meta-analysis by Bai and colleagues revealed that serum chemerin was elevated in
patients with psoriasis [209]. Secondly, the elevated level was found to decrease after the
treatment with infliximab [189]. Interestingly, chemerin might have a pivotal role in the
pathogenesis of psoriasis. Skrzeczyńska-Moncznik et al. demonstrated that CMKLR1+ cells
migrate towards psoriatic skin [210]. This finding was supported by a separate study by
Albanesi et al. [211]. Plasmacytoid dendritic cells (pDC) express CMKLR1 receptor [212],
which indicates that chemerin is involved in the early stages of the disease, as it promotes
the migration of cells that actively take part in the development of psoriasis. Furthermore,
chemerin was found to activate NF-κB and stimulate the expression of the pro-inflammatory
cytokines IL-8, IL-6, and TNF-α, which are crucial in psoriasis pathogenesis. In addition, it
promoted the expression of keratin 16, of which elevated expression is observed in psoriasis
and has been associated with keratinocyte proliferation [213,214]. Chemerin levels are
elevated in psoriatic skin compared to healthy tissue and atopic dermatitis. Plasmacytoid
dendritic cells abundantly infiltrate psoriatic skin [211], which play a significant role in the
initiation of the inflammatory reactions correlated with psoriasis.
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4.4. Irisin

Irisin is a recently discovered peptide secreted by muscle and adipose tissues [215–217].
Irisin promotes the browning of white adipose tissue and might impact glucose metabolism
by regulating GLUT4 expression and glycolysis [218]. Furthermore, Dong and colleagues
demonstrated that irisin might have anti-inflammatory properties by downregulating a marker
of M1 polarization (CD86) and promoting the expression of CD206 and CD163, which belong
to the M2 variant [219]. In line with this finding, Mazur-Bialy and colleagues showed that the
pre-treatment of LPS-induced macrophages with irisin decreased pro-inflammatory cytokines
(MCP-1, IL-6, TNFα, IL-1β) [220]. Very few studies investigated the role of irisin in psoriasis.
Ambrogio et al. showed that the difference in serum irisin levels between psoriatic patients
and healthy controls was marginal. The authors also found a negative correlation between
irisin levels and the PASI score, but it was subsequently lost in the multivariate analysis [221].
Moreover, in a study by Baran et al., the authors found that irisin serum level was elevated
compared to healthy patients, but the result was not significant. Additionally, the level of
irisin did not change significantly after the psoriasis treatment. Nevertheless, the authors
found positive correlations between irisin and inflammatory markers. Therefore, irisin may
be a marker of inflammation in psoriasis [222].

4.5. C1q/tumor Necrosis Factor-Related Protein 3

C1q/tumor necrosis factor-related protein 3 (CTRP3) was first described in 2001
and named CORS26, which stands for collagenous repeat-containing sequence 26 kDa
protein [223]. Subsequently, in 2004, Wong and colleagues renamed CORS26 to CTRP3 and
classified it as a member of a family of adiponectin paralogs [224]. It lowers blood glucose
levels, and a reduced concentration of CTRP3 is found in patients with diabetes [225,226].
Interestingly, CTRP3 was found to promote the secretion of leptin, adiponectin, and visfatin
in 3T3-L1 adipocytes [227]. Furthermore, several studies on different cell types and with
animal models demonstrated that CTRP3 may promote AMPK phosphorylation and SIRT1
enhancement [228–232]. To date, little is known about the role of CTRP3 in the development
of psoriasis. AdipoR2 has been recently identified as one of the receptors for CTRP3 in the
chondrocyte cell line [233]. CTRP3–AdipoR2 interaction was subsequently found to inhibit
Th17 cell differentiation [234]. Xue et al. showed that CTRP3 levels were lower in psoriasis
patients compared with healthy controls. In addition, the authors showed that CTRP3 can
suppress keratinocyte inflammation through the inhibition of STAT3 phosphorylation [235],
which indicates that CTRP3 might have a protective effect on the development of psoriasis.
A summary of selected adipokines and relevant mechanisms in the pathogenesis of psoriasis
is presented in Table 1.

Table 1. Summary of selected adipokines and mechanisms related to the pathogenesis of psoriasis.

Adipokine Expression in Psoriasis Psoriasis-Related Immunomodulatory Effects Reference

Adiponectin Decreased

Negative correlation between adiponectin and IL-23 gene
expression in patients with high LDL

Adiponectin deficiency promotes IL-23p19 and IL-17
Adiponectin suppresses IL-17 production in

IL-23-stimulated dermal γδ-T cells
Intraperitoneal injection of adiponectin resulted in

inhibition of IL-17 production in adiponectin-deficient mice

[122,123,126,127]

Leptin Elevated Leptin Promotes Th17 differentiation
Leptin neutralization promotes Treg proliferation [26,153,155,160]

Visfatin Elevated Visfatin enhances inflammatory responses
in keratinocytes induced by TNF-α [170–172]

Resistin Elevated Resistin may suppress IL-23p19 in dendritic cells [122,188,192]

Chemerin Elevated

Chemerin might promote migration of dendritic cells,
which actively take part in psoriasis pathogenesis
Chemerin promotes secretion of pro-inflammatory

cytokines in keratinocytes

[209,210,212,213]
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5. Conclusions

Psoriasis is a widespread disease caused by numerous factors, such as stress, infections,
or smoking. A genetic component may also contribute to the development of the disease.
Within psoriasis, several processes with multiple mediators are activated, and adipokines
might play a significant role. These hormones have different effects on immune responses in
the skin. Adiponectin levels are reduced in psoriasis patients, and this is thought to affect the
production of IL-23 and IL-17. Leptin is associated with the promotion of pro-inflammatory
cytokines and psoriasis-related cells, such as Th17. Resistin and visfatin also exhibit pro-
inflammatory actions and are elevated in psoriasis patients. Chemerin might be associated
with the early stages of psoriasis. Further research is required to evaluate the role of irisin
in inflammatory disorders. In summary, adipokines may have pro- and anti-inflammatory
functions. In addition, many novel adipokines have been recently identified, such as follistatin-
like 1 (FSTL1), wingless-type inducible signaling pathway protein 1 (WISP1), or Asprosin,
among others. Recent evidence suggests they play a role in the development of metabolic
diseases [236], but further studies need to investigate their immunomodulatory properties
and impact on psoriasis. The increasing number of discovered adipokines determines the
development of an interesting research field.

Author Contributions: Conceptualization, A.P.; writing—original draft preparation, K.K., E.B., P.O.,
B.P., E.G., K.G., P.D. and A.M.; supervision, A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Christophers, E. Psoriasis-epidemiology and clinical spectrum. Clin. Exp. Dermatol. 2001, 26, 314–320. [CrossRef] [PubMed]
2. Danielsen, K.; Olsen, A.O.; Wilsgaard, T.; Furberg, A.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a

population-based cohort. Br. J. Dermatol. 2013, 168, 1303–1310. [CrossRef]
3. Kubota, K.; Kamijima, Y.; Sato, T.; Ooba, N.; Koide, D.; Iizuka, H.; Nakagawa, H. Epidemiology of psoriasis and palmoplantar

pustulosis: A nationwide study using the Japanese national claims database. BMJ Open 2015, 5, e006450. [CrossRef] [PubMed]
4. Green, A.C. Australian Aborigines and psoriasis. Australas. J. Dermatol. 1984, 25, 18–24. [CrossRef] [PubMed]
5. Huerta, C.; Rivero, E.; Rodríguez, L.A. Incidence and risk factors for psoriasis in the general population. Arch. Dermatol. 2007,

143, 1559–1565. [CrossRef]
6. Rapp, S.R.; Feldman, S.R.; Exum, M.L.; Fleischer, A.B.; Reboussin, D.M. Psoriasis causes as much disability as other major medical

diseases. J. Am. Acad. Dermatol. 1999, 41, 401–407. [CrossRef] [PubMed]
7. Javitz, H.S.; Ward, M.M.; Farber, E.; Nail, L.; Vallow, S.G. The direct cost of care for psoriasis and psoriatic arthritis in the United

States. J. Am. Acad. Dermatol. 2002, 46, 850–860. [CrossRef]
8. Griffiths, C.E.; Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007, 370, 263–271. [CrossRef]
9. Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509. [CrossRef]
10. Napolitano, M.; Caso, F.; Scarpa, R.; Megna, M.; Patrì, A.; Balato, N.; Costa, L. Psoriatic arthritis and psoriasis: Differential

diagnosis. Clin. Rheumatol. 2016, 35, 1893–1901. [CrossRef]
11. Weisenseel, P.; Laumbacher, B.; Besgen, P.; Ludolph-Hauser, D.; Herzinger, T.; Roecken, M.; Wank, R.; Prinz, J.C. Streptococcal

infection distinguishes different types of psoriasis. J. Med. Genet. 2002, 39, 767–768. [CrossRef] [PubMed]
12. Gudjonsson, J.E.; Thorarinsson, A.M.; Sigurgeirsson, B.; Kristinsson, K.G.; Valdimarsson, H. Streptococcal throat infections and

exacerbation of chronic plaque psoriasis: A prospective study. Br. J. Dermatol. 2003, 149, 530–534. [CrossRef] [PubMed]
13. Morar, N.; Willis-Owen, S.A.; Maurer, T.; Bunker, C.B. HIV-associated psoriasis: Pathogenesis, clinical features, and management.

Lancet Infect. Dis. 2010, 10, 470–478. [CrossRef] [PubMed]
14. Chun, K.; Afshar, M.; Audish, D.; Kabigting, F.; Paik, A.; Gallo, R.; Hata, T. Hepatitis C may enhance key amplifiers of psoriasis.

J. Eur. Acad. Dermatol. Venereol. 2017, 31, 672–678. [CrossRef]
15. Zhou, H.; Wu, R.; Kong, Y.; Zhao, M.; Su, Y. Impact of smoking on psoriasis risk and treatment efficacy: A meta-analysis. J. Int.

Med. Res. 2020, 48, 300060520964024. [CrossRef]

http://doi.org/10.1046/j.1365-2230.2001.00832.x
http://www.ncbi.nlm.nih.gov/pubmed/11422182
http://doi.org/10.1111/bjd.12230
http://doi.org/10.1136/bmjopen-2014-006450
http://www.ncbi.nlm.nih.gov/pubmed/25588781
http://doi.org/10.1111/j.1440-0960.1984.tb00618.x
http://www.ncbi.nlm.nih.gov/pubmed/6466238
http://doi.org/10.1001/archderm.143.12.1559
http://doi.org/10.1016/S0190-9622(99)70112-X
http://www.ncbi.nlm.nih.gov/pubmed/10459113
http://doi.org/10.1067/mjd.2002.119669
http://doi.org/10.1016/S0140-6736(07)61128-3
http://doi.org/10.1056/NEJMra0804595
http://doi.org/10.1007/s10067-016-3295-9
http://doi.org/10.1136/jmg.39.10.767
http://www.ncbi.nlm.nih.gov/pubmed/12362037
http://doi.org/10.1046/j.1365-2133.2003.05552.x
http://www.ncbi.nlm.nih.gov/pubmed/14510985
http://doi.org/10.1016/S1473-3099(10)70101-8
http://www.ncbi.nlm.nih.gov/pubmed/20610329
http://doi.org/10.1111/jdv.13578
http://doi.org/10.1177/0300060520964024


Int. J. Mol. Sci. 2023, 24, 6390 16 of 24

16. Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [CrossRef]
17. Lebwohl, M. Psoriasis. Ann. Intern. Med. 2018, 168, ITC49–ITC64. [CrossRef]
18. Amatore, F.; Villani, A.P.; Tauber, M.; Guillot, B.; Viguier, M.; Psoriasis Research Group of the French Society of Dermatology.

French guidelines on the use of systemic treatments for moderate-to-severe psoriasis in adults. Ann. Dermatol. Venereol. 2019, 146,
429–439. [CrossRef]
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220. Mazur-Bialy, A.I.; Pocheć, E.; Zarawski, M. Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected
with TLR4/MyD88 Signaling Pathway Activation. Int. J. Mol. Sci. 2017, 18, 701. [CrossRef]

221. Ambrogio, F.; Sanesi, L.; Oranger, A.; Barlusconi, C.; Dicarlo, M.; Pignataro, P.; Zerlotin, R.; Romita, P.; Favoino, E.;
Cazzato, G.; et al. Circulating Irisin Levels in Patients with Chronic Plaque Psoriasis. Biomolecules 2022, 12, 1096. [CrossRef]
[PubMed]
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