NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression
Abstract
:1. Introduction
2. Results
2.1. Hypoxia–Reoxygenation (H-R) Insult Increases the Binding of NF-κB in the miR-210 Proximal Promoter
2.2. H-R Induced NF-κB Transcriptional Activation Increases the Recruitment and Occupancy of Active RNA Polymerase II (RNAPII) at the miR-210 Promoter
2.3. H-R-Induced NF-κB Transcriptional Activation Results in Histone Modification Changes That Are a Signatory of an Active miR-210 Promoter
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Treatments
4.2. Cellular Fractionation to Segregate the Cytosolic and Nuclear Compartments
4.3. Quantitative Measurement of p65 NF-κB, p50 NF-κB, HSP90-β, and histone H3 in the Cytosolic Fraction and the Nuclear Fraction Using Sandwich ELISA
4.4. NF-κB Transcriptional Activity Reporter Assay
4.5. Western Blotting
4.6. miR-210 Promoter Pull-Down Assay Using Reverse Chromatin Immunoprecipitation (R-ChIP) Approach
4.7. Quantitative Determination of miR-210 Promoter Pull-Down Fragment Using ELOHA (Enzyme-Linked Oligonucleotide Hybridization Assay) Approach
4.8. Enzyme-Coupled miR-210 Hybridization Immunoassay
4.9. Chromatin Immunoprecipitation (ChIP) Analysis of p65 NF-κB Binding to the miR-210 Promoter
4.10. Quantitative Measurement of miR-210 Promoter-Bound NF-κB Transcriptional Coactivators, p300 and CBP, as Well as NF-κB Transcriptional Corepressors, SMRT and NCoR1
4.11. RNA Polymerase II (RNAPII) Occupancy Assay Using Chromatin Immunoprecipitation (ChIP)
4.12. Tandem Immunoprecipitation and Western Blotting Based Quantitative Determination of p-Thr SPT5 Expression Levels in the Reverse Crosslinked miR-210 Promoter Pull-Down Fragment
4.13. Histone Modification Analysis Using Chromatin Immunoprecipitation (ChIP)
4.14. Quantitative Measurement of HA-tag da-IκBα and HA-tag dn-IKKα/β Mutants as Well as β-Actin in Native Lysates and Loading Inputs
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greco, S.; Gaetano, C.; Martelli, F. HypoxamiR Regulation and Function in Ischemic Cardiovascular Diseases. Antioxid. Redox Signal. 2013, 21, 1202–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.Y.; Loscalzo, J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle 2010, 9, 1072–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Ding, L.; Bennewith, K.L.; Tong, R.T.; Welford, S.M.; Ang, K.K.; Story, M.; Le, Q.-T.; Giaccia, A.J. Hypoxia-Inducible mir-210 Regulates Normoxic Gene Expression Involved in Tumor Initiation. Mol. Cell 2009, 35, 856–867. [Google Scholar] [CrossRef] [Green Version]
- Mircea, I.; Huang, X. Mir-210: Fine-Tuning the Hypoxic Response. Adv. Exp. Med. Biol. 2014, 772, 205–227. [Google Scholar]
- Bavelloni, A.; Ramazzotti, G.; Poli, A.; Piazzi, M.; Focaccia, E.; Blalock, W.; Faenza, I. MiRNA-210: A Current Overview. Anticancer. Res. 2017, 37, 6511–6521. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.C.; Banerjee, J.; Choi, S.Y.; Sen, C.K. miR-210: The Master Hypoxamir. Microcirculation 2011, 19, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.; Song, X.; Sun, W.; Wang, Y.; Liu, B. Effect of Hypoxia-Induced MicroRNA-210 Expression on Cardiovascular Disease and the Underlying Mechanism. Oxidative Med. Cell. Longev. 2019, 2019, 4727283. [Google Scholar] [CrossRef] [Green Version]
- Carme, C.; Buffa, F.M.; Colella, S.; Moore, J.; Sotiriou, C.; Sheldon, H.; Harris, A.L.; Gleadle, J.M.; Ragoussis, J. Hsa-Mir-210 Is Induced by Hypoxia and Is an Independent Prognostic Factor in Breast Cancer. Clin. Cancer Res. 2008, 14, 1340–1348. [Google Scholar]
- Huang, X.; Zuo, J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim. Biophys. Sin. 2014, 46, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Devlin, C.; Greco, S.; Martelli, F.; Ivan, M. miR-210: More than a silent player in hypoxia. IUBMB Life 2011, 63, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Ivan, M.; Harris, A.L.; Martelli, F.; Kulshreshtha, R. Hypoxia response and microRNAs: No longer two separate worlds. J. Cell. Mol. Med. 2008, 12, 1426–1431. [Google Scholar] [CrossRef]
- Zhong, H.; Lv, Q.; Ye, W.; Wong, C.-K.A.; Cai, G.; Gu, D.; Ji, Y.; Zhao, C.; Wang, J.; Yang, B.B.; et al. Mirna-Directed Regulation of Vegf and Other Angiogenic Factors under Hypoxia. PLoS ONE 2006, 1, e116. [Google Scholar]
- Ritu, K.; Ferracin, M.; Wojcik, S.E.; Garzon, R.; Alder, H.; Agosto-Perez, F.J.; Davuluri, R.; Liu, C.-G.; Croce, C.M.; Negrini, M.; et al. Microrna Signature of Hypoxia. Mol. Cell. Biol. 2007, 27, 1859–1867. [Google Scholar]
- Shriram, N.; Chan, S.Y.; Loscalzo, J. Hypoxia: A Master Regulator of Microrna Biogenesis and Activity. Free. Radic. Biol. Med. 2013, 64, 20–30. [Google Scholar]
- Crosby, M.E.; Kulshreshtha, R.; Ivan, M.; Glazer, P.M. MicroRNA Regulation of DNA Repair Gene Expression in Hypoxic Stress. Cancer Res. 2009, 69, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Marwarha, G.; Røsand, Ø.; Scrimgeour, N.; Slagsvold, K.H.; Høydal, M.A. miR-210 Regulates Apoptotic Cell Death during Cellular Hypoxia and Reoxygenation in a Diametrically Opposite Manner. Biomedicines 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G., Jr. HIFalpha Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science 2001, 292, 464–468. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Zheng, J.Z.; Leung, S.W.; Roe, R.; Semenza, G.L. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 1997, 272, 19253–19260. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Bae, S.-H.; Jeong, J.-W.; Kim, S.-H.; Kim, K.-W. Hypoxia-inducible factor (HIF-1)α: Its protein stability and biological functions. Exp. Mol. Med. 2004, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Jiang, B.-H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, S.G.; Song, S.-Y.; Sung, J.-H. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis. 2013, 4, e588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, W.G.; Shaw, J.A.; Kirshenbaum, L.A. Multiple Facets of Nf-Κb in the Heart. Circ. Res. 2011, 108, 1122–1132. [Google Scholar]
- Guro, V.; Yan, Z.-Q.; Hansson, G.K. Nuclear Factor Kappa-B and the Heart. J. Am. Coll. Cardiol. 2001, 38, 307–314. [Google Scholar]
- Xin, H.; Le, Q.-T.; Giaccia, A.J. Mir-210—Micromanager of the Hypoxia Pathway. Trends Mol. Med. 2010, 16, 230–237. [Google Scholar]
- Zhang, Z.; Sun, H.; Dai, H.; Walsh, R.M.; Imakura, M.; Schelter, J.; Burchard, J.; Dai, X.; Chang, A.N.; Diaz, R.L.; et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 2009, 8, 2756–2768. [Google Scholar] [CrossRef] [Green Version]
- Domènec, F.; Roset, R.; Huerta, M.; Adsuara, J.E.; Roselló, L.; Albà, M.M.; Messeguer, X. Identifi-cation of Patterns in Biological Sequences at the Alggen Server: Promo and Malgen. Nucleic Acids Res. 2003, 31, 3651–3653. [Google Scholar]
- Messeguer, X.; Escudero, R.; Farré, D.; Núñez, O.; Martínez, J.; Albà, M.M. Promo: Detection of Known Transcription Regulatory Elements Using Species-Tailored Searches. Bioinformatics 2002, 18, 333–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, R.C.; van Kessel, J.C. Promoter Pull-Down Assay: A Biochemical Screen for DNA-Binding Proteins. In Stem Cell Renewal and Cell-Cell Communication: Methods and Protocols; Turksen, K., Ed.; Springer: New York, NY, USA, 2021; pp. 165–172. [Google Scholar]
- Chaparian, R.R.; van Kessel, J.C. Promoter Pull-Down Assay: A Biochemical Screen for DNA-Binding Proteins. Methods Mol. Biol. 2021, 2346, 165–172. [Google Scholar]
- Xuejing, W.; Wang, J.; Zhang, D.; Ding, Y.; Ji, X.; Tan, Z.; Wang, Y. Reverse Chromatin Im-munoprecipitation (R-Chip) Enables Investigation of the Upstream Regulators of Plant Genes. Commun. Biol. 2020, 3, 770. [Google Scholar]
- Lorenson, M.Y.; Chen, K.-H.E.; Walker, A.M. Enzyme-linked oligonucleotide hybridization assay for direct oligo measurement in blood. Biol. Methods Protoc. 2019, 4, bpy014. [Google Scholar] [CrossRef]
- Sims, R.J., 3rd; Mandal, S.S.; Reinberg, D. Recent Highlights of Rna-Polymerase-Ii-Mediated Transcription. Curr. Opin. Cell Biol. 2004, 16, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Young, R.A. Rna Polymerase Ii. Annu. Rev. Biochem. 1991, 60, 689–715. [Google Scholar] [CrossRef] [PubMed]
- Ptashne, M.; Gann, A. Transcriptional activation by recruitment. Nature 1997, 386, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Stargell, L.A.; Struhl, K. Mechanisms of transcriptional activation in vivo: Two steps forward. Trends Genet. 1996, 12, 311–315. [Google Scholar] [CrossRef]
- Jonkers, I.; Lis, J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015, 16, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Adelman, K.; Lis, J.T. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 2012, 13, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Corden, J.L. Tails of RNA polymerase II. Trends Biochem. Sci. 1990, 15, 383–387. [Google Scholar] [CrossRef]
- Dahmus, M.E. Phosphorylation of the C-Terminal Domain of Rna Polymerase Ii. Biochim. Biophys. Acta 1995, 1261, 171–182. [Google Scholar] [CrossRef]
- Dahmus, M.E. Reversible Phosphorylation of the C-Terminal Domain of Rna Polymerase Ii. J. Biol. Chem. 1996, 271, 19009–19012. [Google Scholar] [CrossRef] [Green Version]
- Weeks, J.R.; Hardin, S.E.; Shen, J.; Lee, J.M.; Greenleaf, A.L. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: Correlations with gene activity and transcript processing. Genes Dev. 1993, 7, 2329–2344. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, T.; Hardin, S.; Greenleaf, A.; Lis, J.T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 1994, 370, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Hampsey, M. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery. Microbiol. Mol. Biol. Rev. 1998, 62, 465–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Core, L.; Adelman, K. Promoter-proximal pausing of RNA polymerase II: A nexus of gene regulation. Genes Dev. 2019, 33, 960–982. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Takagi, T.; Wada, T.; Yano, K.; Furuya, A.; Sugimoto, S.; Hasegawa, J.; Handa, H. NELF, a Multisubunit Complex Containing RD, Cooperates with DSIF to Repress RNA Polymerase II Elongation. Cell 1999, 97, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, T.; Takagi, T.; Yamaguchi, Y.; Ferdous, A.; Imai, T.; Hirose, S.; Sugimoto, S.; Yano, K.; Hartzog, G.A.; Winston, F.; et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998, 12, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Inukai, N.; Narita, T.; Wada, T.; Handa, H. Evidence that Negative Elongation Factor Represses Transcription Elongation through Binding to a DRB Sensitivity-Inducing Factor/RNA Polymerase II Complex and RNA. Mol. Cell Biol. 2002, 22, 2918–2927. [Google Scholar] [CrossRef] [Green Version]
- Narita, T.; Yamaguchi, Y.; Yano, K.; Sugimoto, S.; Chanarat, S.; Wada, T.; Kim, D.-K.; Hasegawa, J.; Omori, M.; Inukai, N.; et al. Human Transcription Elongation Factor NELF: Identification of Novel Subunits and Reconstitution of the Functionally Active Complex. Mol. Cell Biol. 2003, 23, 1863–1873. [Google Scholar] [CrossRef] [Green Version]
- Decker, T.-M. Mechanisms of Transcription Elongation Factor DSIF (Spt4–Spt5). J. Mol. Biol. 2020, 433, 166657. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Shibata, H.; Handa, H. Transcription elongation factors DSIF and NELF: Promoter-proximal pausing and beyond. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2013, 1829, 98–104. [Google Scholar] [CrossRef]
- Hartzog, G.A.; Fu, J. The Spt4–Spt5 complex: A multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2013, 1829, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Yamaguchi, Y.; Inukai, N.; Okamoto, S.; Mura, T.; Handa, H. P-TEFb-Mediated Phosphorylation of hSpt5 C-Terminal Repeats Is Critical for Processive Transcription Elongation. Mol. Cell 2006, 21, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Allfrey, V.G.; Faulkner, R.; Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc. Natl. Acad. Sci. USA 1964, 51, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Workman, J.L.; Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 1998, 67, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Jaskelioff, M.; Peterson, C.L. Chromatin and transcription: Histones continue to make their marks. Nature 2003, 5, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Gräff, J.; Tsai, L.-H. Histone acetylation: Molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 2013, 14, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.C.; Tse, C.; Wolffe, A.P. Structure and Function of the Core Histone N-Termini: More Than Meets the Eye. Biochemistry 1998, 37, 17637–17641. [Google Scholar] [CrossRef]
- Sharon, Y.R.; Denu, J.M.; Allis, D.C. Histone Acetyltransferases. Annu. Rev. Biochem. 2001, 70, 81–120. [Google Scholar]
- Peterson, C.L.; Laniel, M.-A. Histones and Histone Modifications. Curr. Biol. 2004, 14, R546–R551. [Google Scholar] [CrossRef] [Green Version]
- Eberharter, A.; Becker, P.B. Histone acetylation: A switch between repressive and permissive chromatin. Second in Review Series on Chromatin Dynamics. EMBO Rep. 2002, 3, 224–229. [Google Scholar] [CrossRef]
- Vogelauer, M.; Wu, J.; Suka, N.; Grunstein, M. Global histone acetylation and deacetylation in yeast. Nature 2000, 408, 495–498. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, L.; Huang, X.; Zhao, T.; Wu, L.-Y.; Liu, Z.-H.; Ding, X.; Liu, S.; Wu, Y.; Zhao, Y.; et al. miR-210 suppresses BNIP3 to protect against the apoptosis of neural progenitor cells. Stem Cell Res. 2013, 11, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Zhou, X.-Y.; Cheng, R.; Liu, H.-Y.; Li, Y. Neuroprotective effects of microRNA-210 against oxygen-glucose deprivation through inhibition of apoptosis in PC12 cells. Mol. Med. Rep. 2013, 7, 1955–1959. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Huang, M.; Li, Z.; Jia, F.; Ghosh, Z.; Lijkwan, M.A.; Fasanaro, P.; Sun, N.; Wang, X.; Martelli, F.; et al. MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease. Circulation 2010, 122, A17831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, D.; Ramchandran, R.; Peng, X.; Yao, L.; Kang, K.; Sarkar, J.; Wang, Z.; Zhou, G.; Raj, J.U. miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am. J. Physiol. Cell Mol. Physiol. 2012, 303, L682–L691. [Google Scholar] [CrossRef]
- Kim, H.W.; Haider, H.K.; Jiang, S.; Ashraf, M. Ischemic Preconditioning Augments Survival of Stem Cells via miR-210 Expression by Targeting Caspase-8-associated Protein 2. J. Biol. Chem. 2009, 284, 33161–33168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagscherer, K.E.; Fassl, A.; Sinkovic, T.; Richter, J.; Schecher, S.; Macher-Goeppinger, S.; Roth, W. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Chung-Ching, C.; Lin, J.-W.; Cheng, H.-A.; Chiu, W.-T.; Wang, Y.-H.; Wang, J.-J.; Hsing, C.-H.; Chen, R.-M. Microrna-210 Targets Antiapoptotic Bcl-2 Expression and Mediates Hypoxia-Induced Apoptosis of Neuro-blastoma Cells. Arch. Toxicol. 2013, 87, 459–468. [Google Scholar]
- Sharma, H.S.; Das, D.K. Role of cytokines in myocardial ischemia and reperfusion. Mediat. Inflamm. 1997, 6, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Nian, M.; Lee, P.; Khaper, N.; Liu, P. Inflammatory Cytokines and Postmyocardial Infarction Remodeling. Circ. Res. 2004, 94, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Stefano, T.; Mauro, A.G.; Cutter, Z.; Abbate, A. Inflammasome, Pyroptosis, and Cytokines in Myo-cardial Ischemia-Reperfusion Injury." American journal of physiology. Heart Circ. Physiol. 2018, 315, H1553–H1568. [Google Scholar]
- Sang-Bing, O.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.-Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation Following Acute Myocardial Infarction: Multiple Players, Dynamic Roles, and Novel Therapeutic Opportunities. Pharmacol. Ther. 2018, 186, 73–87. [Google Scholar]
- Eugenia, G.M.; Gores, G.J. Life and Death by Death Receptors. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009, 23, 1625–1637. [Google Scholar]
- Inna, L.; Golks, A.; Krammer, P.H. Death Receptor Signaling. J. Cell Sci. 2005, 118, 265–267. [Google Scholar]
- Kumar, R.; Herbert, P.E.; Warrens, A.N. An introduction to death receptors in apoptosis. Int. J. Surg. 2005, 3, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A.; Dixit, V.M. Death Receptors: Signaling and Modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Eugenia, G.M.; Gores, G.J. The Death Receptor Family and the Extrinsic Pathway. In Essentials of Apoptosis: A Guide for Basic and Clinical Research; Yin, X.-M., Zheng Dong, Z., Eds.; Humana Press: Totowa, NJ, USA, 2003; pp. 67–84. [Google Scholar]
- Wu, R.; Zeng, J.; Yuan, J.; Deng, X.; Huang, Y.; Chen, L.; Zhang, P.; Feng, H.; Liu, Z.; Wang, Z.; et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Investig. 2018, 128, 2551–2568. [Google Scholar] [CrossRef]
- Huang, L.; Ma, Q.; Li, Y.; Li, B.; Zhang, L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp. Neurol. 2017, 300, 41–50. [Google Scholar] [CrossRef]
- Dong, R.; Yang, Q.; Dai, Y.; Guo, W.; Du, H.; Song, L.; Peng, X. Oncogenic Mir-210-3p Promotes Prostate Cancer Cell Emt and Bone Metastasis Via Nf-Κb Signaling Pathway. Mol. Cancer 2017, 16, 117. [Google Scholar]
- Grimes, C.A.; Jope, R.S. The Multifaceted Roles of Glycogen Synthase Kinase 3beta in Cellular Signaling. Prog. Neurobiol. 2001, 65, 391–426. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol. 2006, 79, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.R.; Ahmed, S.O.; Ahmed, M.; Khan, O.; Al AbdulMohsen, S.; Platanias, L.C.; Al-Kuraya, K.S.; Uddin, S. Cross-Talk between NFkB and the PI3-Kinase/AKT Pathway Can Be Targeted in Primary Effusion Lymphoma (PEL) Cell Lines for Efficient Apoptosis. PLoS ONE 2012, 7, e39945. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.F.; Brenner, D.A. Role of Glycogen Synthase Kinase-3 in Tnf-A-Induced Nf-Κb Activation and Apoptosis in Hepatocytes. Am. J. Physiol.-Gastrointest. Liver Physiol. 2002, 283, G204–G211. [Google Scholar] [CrossRef] [PubMed]
- Bastian, H.; Schmid, J.A. The Complexity of Nf-Κb Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. [Google Scholar]
- Geleziunas, R.; Ferrell, S.; Lin, X.; Mu, Y.; Cunningham, E.T., Jr.; Grant, M.; Connelly, M.A.; Hambor, J.E.; Marcu, K.B.; Greene, W.C. Human T-Cell Leukemia Virus Type 1 Tax Induction of Nf-Kappab Involves Activation of the Ikappab Kinase Alpha (Ikkalpha) and Ikkbeta Cellular Kinases. Mol. Cell Biol. 1998, 18, 5157–5165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Elwood, J.; Greene, W.C. Both amino- and carboxyl-terminal sequences within I kappa B alpha regulate its inducible degradation. Mol. Cell. Biol. 1996, 16, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.; Ni, L.; Nessler, R.; Joshi, K.; Suter, M.; Rosenberg, B.; Chang, J.; Brown, W.; Cantarero, L. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J. Immunol. Methods 1992, 150, 77–90. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T.; Irwin, N. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Murarka, P.; Srivastava, P. An improved method for the isolation and identification of unknown proteins that bind to known DNA sequences by affinity capture and mass spectrometry. PLoS ONE 2018, 13, e0202602. [Google Scholar] [CrossRef] [Green Version]
- Schlag, K.; Steinhilber, D.; Karas, M.; Sorg, B.L. Analysis of proximal ALOX5 promoter binding proteins by quantitative proteomics. FEBS J. 2020, 287, 4481–4499. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, E.A.; Frey, B.L.; Smith, L.M.; Auble, D.T. Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes. J. Biol. Chem. 2015, 290, 26404–26411. [Google Scholar] [CrossRef] [Green Version]
- Solomon, M.J.; Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: A probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 1985, 82, 6470–6474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieme, D.; Neubauer, P.; Nies, D.H.; Grass, G. Sandwich Hybridization Assay for Sensitive Detection of Dynamic Changes in mRNA Transcript Levels in Crude Escherichia coli Cell Extracts in Response to Copper Ions. Appl. Environ. Microbiol. 2008, 74, 7463–7470. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.F.; Rhodes, L.L.; Adamson, J.E.; Tyrrell, J.V.; Mountfort, D.O.; Jones, W.J. Application of a Sandwich Hybridisation Assay for Rapid Detection of the Northern Pacific Seastar, Asterias Amurensis. N. Z. J. Mar. Freshw. Res. 2011, 45, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Jari, R.; Barken, K.B.; Lahdenperä, J.; Breitenstein, A.; Molin, S.; Neubauer, P. Sandwich Hy-bridisation Assay for Quantitative Detection of Yeast Rnas in Crude Cell Lysates. Microb. Cell Factories 2003, 2, 4. [Google Scholar]
- Deverre, J.-R.; Boutet, V.; Boquet, D.; Ezan, E.; Grassi, J.; Grognet, J.-M. A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 1997, 25, 3584–3589. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, G.A.; Khalafaghian, G.; Legault, J.; Nielsen, P.; Bartlett, A.J. Dual Ligation Hybridization Assay for the Specific De-termination of Oligonucleotide Therapeutics. Bioanalysis 2011, 3, 499–508. [Google Scholar] [CrossRef]
- Wei, X.; Dai, G.; Marcucci, G.; Liu, Z.; Hoyt, D.; Blum, W.; Chan, K.K. A Specific Picomolar Hybridization-Based ELISA Assay for the Determination of Phosphorothioate Oligonucleotides in Plasma and Cellular Matrices. Pharm. Res. 2006, 23, 1251–1264. [Google Scholar] [CrossRef]
- Coutlee, F.; Rubalcaba, E.A.; Viscidi, R.P.; Gern, J.E.; Murphy, P.A.; Lederman, H.M. Quantitative detection of messenger RNA by solution hybridization and enzyme immunoassay. J. Biol. Chem. 1990, 265, 11601–11604. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Hartman, M.R.; Amardey-Wellington, A.; Walt, D.R. Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Res. 2017, 45, e137. [Google Scholar] [CrossRef]
- Marwarha, G.; Røsand, Ø.; Slagsvold, K.H.; Høydal, M.A. GSK3β Inhibition Is the Molecular Pivot That Underlies the Mir-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. Int. J. Mol. Sci. 2022, 23, 9375. [Google Scholar] [CrossRef] [PubMed]
- Aramburu, J.; Navas-Castillo, J.; Moreno, P.; Cambra, M. Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. J. Virol. Methods 1991, 33, 1–11. [Google Scholar] [CrossRef]
- Geng, T.; Bao, N.; Litt, M.D.; Glaros, T.G.; Li, L.; Lu, C. Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. Lab Chip 2011, 11, 2842–2848. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Alvarez-Venegas, R.; Avramova, Z.V. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat. Protoc. 2008, 3, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Milne, T.A.; Zhao, K.; Hess, J.L. Chromatin Immunoprecipitation (ChIP) for Analysis of Histone Modifications and Chromatin-Associated Proteins. Methods Mol. Biol. 2009, 538, 409–423. [Google Scholar] [CrossRef] [Green Version]
pCMV4-3HA Empty Vector (pCMV4-3HA EV) | pCMV4-3 HA/IκB-Alpha (SS32,36AA) = Denoted da-IκBα | pcDNA3.1 Empty Vector (pcDNA3.1 EV) | pcDNA-Ikkα-HA (K44M) + pcDNA-Ikkβ-FLAG (K44A) = Denoted dn-IKKα/β | |
---|---|---|---|---|
Normoxia, (18 h + 8 h) | n = 4 | n = 4 | n = 4 | n = 4 |
H-R [Hypoxia (18 h) + Reoxygenation (8 h)] | n = 4 | n = 4 | n = 4 | n = 4 |
Antibody | Application | Amount | Host | Manufacturer | Catalogue # |
---|---|---|---|---|---|
β-Actin | WB 1:5000 | 1 µg | Mouse | Santa Cruz Biotechnology, Dallas, TX, USA | sc-47778 |
β-Actin | ELISA capture | 20 ng/well | Mouse | Santa Cruz Biotechnology, Dallas, TX, USA | sc-47778 |
β-Actin | ELISA detection | 20 ng/well | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 4970 |
β-Actin Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Cell Signaling Technology, Danvers, MA, USA | 1025 |
CBP | ELISA capture | 30 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | H00001387-M02 |
CBP | ELISA detection | 30 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP2-38774 |
CBP Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Novus Biologicals, Abingdon, UK | NBP2-38774PEP |
Goat Anti-Mouse IgG (H + L)–HRP Conjugate | 1:5000 | 1 µg | Goat | Bio-Rad, Hercules, CA, USA | 1706516 |
Goat Anti-Mouse IgG–AP Conjugate | 1:5000 | N/A € | Goat | Bio-Rad, Hercules, CA, USA | 1706520 |
Goat Anti-Rabbit IgG (H + L)–HRP Conjugate | 1:5000 | 1 µg | Goat | Bio-Rad, Hercules, CA, USA | 1706515 |
Goat Anti-Rabbit IgG–AP Conjugate | 1:20000 | N/A € | Goat | Sigma Aldrich/Merck Life Science, Darmstadt, Germany | A3687 |
HA tag | WB 1:1000 | 5 µg | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | 26183 |
HA tag | ELISA capture | 30 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | 26183 |
HA tag | ELISA detection | 30 ng/well | Rabbit | Abcam, Cambridge, UK | ab13834 |
HA-Tag Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Abcam, Cambridge, UK | ab13835 |
HSP90-β | ELISA capture | 30 ng/well | Mouse | Novus Biologicals, Abingdon, UK | NBP2-37590 |
HSP90-β | ELISA detection | 40 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP2-68978 |
HSP90-β Antibody-Blocking Peptide | ELISA detection | Novus Biologicals, Abingdon, UK | NBP2-68978PEP | ||
Acetyl–Lys9 Histone H3 (H3K9ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 9649 |
Acetyl–Lys14 Histone H3 (H3K14ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 7627 |
Acetyl–Lys18 Histone H3 (H3K18ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 13998 |
Acetyl–Lys27 Histone H3 (H3K27ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 8173 |
Acetyl–Lys5 Histone H4 (H4K5ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 8647 |
Acetyl–Lys8 Histone H4 (H4K8ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 2594 |
Acetyl–Lys12 Histone H4 (H4K12ac) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 13944 |
trimethyl-Lys4 Histone H3 (H3K4me3) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 9751 |
Trimethyl–Lys9 Histone H3 (H3K9me3) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 13969 |
Trimethyl–Lys27 Histone H3 (H3K27me3) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 9733 |
Trimethyl–Lys36 Histone H3 (H3K36me3) | ChIP | 15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 4909 |
Mouse IgG | ChIP, IP | 5–15 µg | Mouse | Santa Cruz Biotechnology, Dallas, TX, USA | sc-2025 |
NCoR1 | ELISA capture | 30 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | MA5-15447 |
NCoR1 | ELISA detection | 30 ng/well | Rabbit | Thermo Fisher Scientific, Waltham, MA, USA | PA1-844A |
NCoR1 Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Thermo Fisher Scientific, Waltham, MA, USA | PEP-061 |
NELF-A (WHSC2) | WB | 5 µg | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | MA5-17199 |
p50 NF-κB | ELISA capture | 30 ng/well | Mouse | Cell Signaling Technology, Danvers, MA, USA | 13681 |
p50 NF-κB | ELISA detection | 20 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP1-87758 |
p50 NF-κB Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Novus Biologicals, Abingdon, UK | NBP1-87758PEP |
p65 NF-κB | ChIP | 15 µg | Mouse | Cell Signaling Technology, Danvers, MA, USA | 6956 |
p65 NF-κB | ELISA capture | 30 ng/well | Mouse | Cell Signaling Technology, Danvers, MA, USA | 6956 |
p65 NF-κB | ELISA detection | 20 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP2-24541 |
p65 NF-κB Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Novus Biologicals, Abingdon, UK | NBP2-24541PEP |
p300 | ELISA capture | 20 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | H00002033-M02 |
p300 | ELISA detection | 20 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP1-87693 |
p300 Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Novus Biologicals, Abingdon, UK | NBP1-87693PEP |
p-Thr | WB of IP:SPT5 | 5 µg | Mouse | Cell Signaling Technology, Danvers, MA, USA | 9386 |
Rabbit IgG | ChIP, IP | 5–15 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 2729 |
RPB1-RNAPII | ChIP | 10 µg | Mouse | Cell Signaling Technology, Danvers, MA, USA | 2629 |
p-Ser2/Ser5 CTD RPB1-RNAPII | ChIP | 10 µg | Rabbit | Cell Signaling Technology, Danvers, MA, USA | 13546 |
SMRT | ELISA capture | 20 ng/well | Rabbit | Thermo Fisher Scientific, Waltham, MA, USA | BS-1420R |
SMRT | ELISA detection | 20 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | MA1-843 |
SMRT Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Thermo Fisher Scientific, Waltham, MA, USA | PEP-043 |
SPT4 | WB | 5 µg | Rabbit | Thermo Fisher Scientific, Waltham, MA, USA | PA5-103308 |
SPT5 | IP | 5 µg | Rabbit | Thermo Fisher Scientific, Waltham, MA, USA | A300-868A |
SPT5 | WB | 5 µg | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | H00006829-M03 |
TBP | WB | 5 µg | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | 49-1036 |
TBP | ELISA capture | 20 ng/well | Mouse | Thermo Fisher Scientific, Waltham, MA, USA | 49-1036 |
TBP | ELISA detection | 20 ng/well | Rabbit | Novus Biologicals, Abingdon, UK | NBP2-38610 |
TBP Antibody-Blocking Peptide | ELISA detection | N/A | N/A | Novus Biologicals, Abingdon, UK | NBP2-38610PEP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marwarha, G.; Slagsvold, K.H.; Høydal, M.A. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int. J. Mol. Sci. 2023, 24, 6618. https://doi.org/10.3390/ijms24076618
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. International Journal of Molecular Sciences. 2023; 24(7):6618. https://doi.org/10.3390/ijms24076618
Chicago/Turabian StyleMarwarha, Gurdeep, Katrine Hordnes Slagsvold, and Morten Andre Høydal. 2023. "NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression" International Journal of Molecular Sciences 24, no. 7: 6618. https://doi.org/10.3390/ijms24076618
APA StyleMarwarha, G., Slagsvold, K. H., & Høydal, M. A. (2023). NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. International Journal of Molecular Sciences, 24(7), 6618. https://doi.org/10.3390/ijms24076618