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Abstract: Diabetes is a chronic, metabolic disease characterized by high blood sugar levels. Among
the main types of diabetes, type 2 is the most common. Early diagnosis and treatment can prevent
or delay the onset of complications. Previous studies examined the application of machine learning
techniques for prediction of the pathology, and here an artificial neural network shows very promising
results as a possible valuable aid in the management and prevention of diabetes. Additionally, its
superior ability for long-term predictions makes it an ideal choice for this field of study. We utilized
machine learning methods to uncover previously undiscovered associations between an individual’s
health status and the development of type 2 diabetes, with the goal of accurately predicting its
onset or determining the individual’s risk level. Our study employed a binary classifier, trained on
scratch, to identify potential nonlinear relationships between the onset of type 2 diabetes and a set
of parameters obtained from patient measurements. Three datasets were utilized, i.e., the National
Center for Health Statistics’ (NHANES) biennial survey, MIMIC-III and MIMIC-IV. These datasets
were then combined to create a single dataset with the same number of individuals with and without
type 2 diabetes. Since the dataset was balanced, the primary evaluation metric for the model was
accuracy. The outcomes of this study were encouraging, with the model achieving accuracy levels of
up to 86% and a ROC AUC value of 0.934. Further investigation is needed to improve the reliability
of the model by considering multiple measurements from the same patient over time.

Keywords: T2DM; neural network; artificial intelligence

1. Introduction

Diabetes is a chronic, metabolic disorder characterized by high blood sugar levels,
determined by insufficient production or function of insulin, a hormone produced by the
pancreas, which regulates the uptake and metabolism of glucose, the main source of energy
for the body’s cells.

This pathology can be classified into three specific categories: type 1 diabetes (T1DM),
type 2 diabetes (T2DM), and gestational diabetes mellitus (GDM), related to different causes.
In T1DM, also known as juvenile diabetes or insulin-dependent diabetes, an autoimmune
mechanism destroys the insulin-producing cells in the pancreas with a complete lack of
insulin production. In T2DM, the most common form and often associated with obesity
and a sedentary lifestyle, multifactorial causes (such as genetic and environmental factors)
induce resistance to insulin action, and the pancreas is unable to produce enough insulin to
balance this resistance. GDM is often diagnosed in the second/third trimester of pregnancy
in women not affected before gestation. In the last category instead belong patients whose
diabetes is drug- or chemical-induced or resulting from other pathologies such as disease
of exocrine pancreas or monogenetic syndromes (i.e., neonatal diabetes and maturity-onset
diabetes of the young). T1DM and T2DM are heterogeneous diseases, often not easy to
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categorize in patients, which manifests clinically as hyperglycemia. Once hyperglycemia
occurs, people with all forms of diabetes are at risk for developing the same chronic
complications, such as kidney disease, heart disease, stroke, nerve damage, and vision
loss, although rates of progression may differ [1]. Early diagnosis and treatment, including
lifestyle changes and medication, can prevent or delay the onset of complications, in
particular in T2DM.

Diabetes is one of the top ten causes of death worldwide. According to the 10th of the
IDF Diabetes Atlas, the global diabetes prevalence in 20–79 year-olds in 2021 was evaluated
to be 10.5% (536.6 million people), and projections estimate it rising to 12.2% (783.2 million)
in 2045 [2]. Nowadays, the management of diabetes still represents a challenge because,
despite the 11.5% of total global health expenditure spent on diabetes, almost one in two
adults suffering from this pathology remain unaware of their status [3].

Artificial intelligence (AI) applies computer science and technology to problem-solving
based on large data sets. It is a fast-growing field, which found many applications in biology
and medicine research, as demonstrated in a large body of scientific literature [4–7], and
also in studies on diabetes, not only in the therapeutic monitoring but also in the prediction
of new-onset diabetes, and of future complications related to this pathology, and it is
estimated that this methodology will help in bringing down the diabetes global prevalence
of 8.8% [8].

Among AI techniques, machine learning (ML) and deep learning (DL) models are
widely used. In particular, supervised ML is defined as when a system is trained using a
database consisting of decoded reference examples and models (already equipped with
all useful attributes that can help the learning system to catalog and classify the examples
correctly). In this way, the ML algorithms will be able to analyze the data more precisely
and solve problems or tasks automatically, based on previous experience and the provided
examples indicated as ‘appropriate’. A supervised learning algorithm can produce an
inductive hypothesis, i.e., a resolution model for general problems, starting from a set of
particular problems. DL is based on artificial neural networks, constituted by nodes (or
neurons), i.e., the fundamental computational component, organized in layers: an input
layer consists of one input node for each single input feature, and receives the raw input
data; one or more hidden layers perform computations on the input signals received from
the previous layer, applying a weighted sum of its inputs, adds a bias term, with weights
and biases learned during the training process to optimize the network’s performance, and
applies an activation function to produce an output signal that is sent to the next layer of the
network; the latter is the output layer that produces the final output of the network, which
can be in the form of a classification label, a regression value, a probability distribution, or
any other type of output that the network is designed to produce.

These approaches have been employed to create noninvasive diabetes risk forecasting
models by the analysis of morphological features such as tongue [9] or retinal fundus
images [10], or from special patterns of body fat distribution exploiting imaging from
abdominal computed tomography [11] or magnetic resonance [12]. In the last case, models
were trained for insulin sensitivity, glycated hemoglobin A1c (HbA1c), age, sex, Body Mass
Index (BMI), prediabetes, and the occurrence of diabetes, reaching an AUC at 87% for
T2DM discernment and 68% for prediabetes. Several studies demonstrate that ML could be
a promising tool to maximize new-onset diabetes prediction than conventional statistics
models, reporting an accuracy variable from 71% to 94% and exploiting a dataset composed
of a minimum of 3700 patients up to a maximum of 2 million [13]. In particular, Ravault and
colleagues [14] applied an ML approach to routinely collected health administrative data of
over 2 million general population with a DM prevalence of just 1% and examined more than
300 features derived from demographic details, geographic information, chronic conditions,
and health care use history. This method resulted in being able to detect new-onset DM
within 5 years with the performance of AUC 0.8026.

ML and DL applications are also employed for managing T2MD and its evolutions;
for example, a personalized postprandial-targeting diet, relying on an ML algorithm that
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integrates clinical and microbiome features, was used to predict personal postprandial
glucose response, in order to control glycemic and metabolic health in patients with newly
diagnosed T2DM [15]. Again, a stepwise approach, based on the combination of machine
learning methods, probability graph models, classical statistical modeling tools, and in-
house algorithm, was proposed to select drug combinations for compensating carbohydrate
metabolism for T2DM patients [16]. ML-based predictors derived from baseline HbA1c
level, comorbidities, demographic variables, and baseline metformin dosage were exploited
for predicting the achievement and also for maintaining HbA1c < 7.0% after one year of
metformin treatment [17]. Moreover, a device that uses convolutional neural networks
trained to interpret retinal appearance [18] has been authorized by FDA to follow-up
with patients with diabetes for the development of diabetic retinopathy and a mobile app,
trained to interpret images of feet [19], has been developed in order to monitor diabetic
foot pathology.

However, despite the huge advances of AI in T2DM, feature selection and dataset
composition remain a tricky point to deal with. The analysis of diabetes data is complicated
because most of the relevant data are nonlinear, non-normal, and correlation structure,
leading to a paucity of supporting data to build logical and accurate algorithms. Further-
more, for this disease, huge data sets are generated just due to the heterogeneous nature
and chronic course of the pathology [8]. Therefore, to overcome this difficulty, various
ML and DL algorithms have been developed, and it is a common belief that the use of
large amounts of organized data will dramatically improve the predictive accuracy of
disease diagnosis, prevention, and treatment in diabetes [13]. Actually, for almost all the
applications previously cited, prediction models are combined, used in various datasets
for patient condition evaluation, and trained on features of a heterogeneous and large
cohort of patients to enhance the feasibility of prognosticating factors. This underlines
that ML and DL algorithms are promising approaches for controlling blood glucose and
diabetes; however, they should be improved and employed in large datasets to affirm their
applicability [20].

Feature selection, as already mentioned, is not a trivial point; the choice depends on
the typology of the predictor that the expert wants to realize but also on data availability.
There is no agreement on the specific features to create a predictive model for T2DM.
Sometimes taking into account a large number of features may result in greater efficiency
of the predictor, but often the accuracy decreases significantly when the dataset is too large
and complex [21]. Moreover, the larger the amount of data selected, the more difficult
their collection over time. Often, some data arise from expensive and/or invasive analysis
not applicable for follow-up screening of all the patients involved in the dataset, thus
the risk is losing data over time. In other cases, instead, not all the features selected turn
out to be relevant for the accuracy of the predictor, demographic features, and insulin,
for example, did not add any performance improvement for diabetes forecasting [22].
Moreover, diabetes risk factors and their related features are really a lot, and often their
true correlation with T2DM is still debated [23].

In the present study, to create an accurate T2DM predictor model, we decided to
choose a limited set of features that do not require excessive questioning or testing of
patients, are easy to collect also in an extended period, and for which literature studies
that correlated them to the pathology of interest are available. We decided to use, for the
first time, data composed of suitable features collected from three different datasets: the
National Health and Nutrition Examination Survey (NHANES) of the National Center for
Health Statistics biennial survey [24], the MIMIC-III [25], and the MIMIC-IV [26] datasets,
which contain clinical data of patients from the Beth Israel Deaconess Medical Center.
A balanced dataset has been created by using these datasets, and a binary classifier has
been developed.
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2. Results
2.1. Dataset Statistics

Data retrieved from three datasets were merged and preprocessed (see Section 4) to
remove features not of interest and implausible values, and to obtain a balanced dataset
for the analysis. We report in Tables 1 and 2 the statistics of the data, before and after the
preprocessing phase, respectively. The columns identify the number of occurrences (counts)
of non-zero values (i.e., numeric values that are not equal to zero), the mean, the standard
deviation, the minimum value, and the maximum value.

Table 1. Data statistics before the preprocessing.

Feature Count Mean Standard
Deviation

Minimum
Value

Maximum
Value

Gender/Sex a 52,640 1.512 0.499 1.0 2.0
Age (years) 52,640 43.764 24 336 12.0 300.0
Diabetes b 52,640 0.130 0.337 0.0 1.0

HDL-cholesterol (mg/dL) 52,640 52.112 15.535 3.0 226.0
Glucose (mg/dL) 52,640 103.255 36.607 21.0 683.0

Systolic: Blood pres (mm/Hg) 52,640 121.440 18.820 51.0 270.0
Diastolic: Blood pres (mm/Hg) 52,640 68.041 12.938 21.9 676.1

Triglycerides (mg/dL) 52,640 139.093 122.210 9.0 6057.0
Weight (kg) 52,640 78.153 21.506 25.1 371.0

Body Mass Index (kg/m2) 52,640 33.061 948.424 3.24 215.7
a The gender/sex is reported with a value (1 for male, 2 for female). b The pathological status is assigned.

Table 2. Data statistics after the preprocessing.

Feature Count Mean Standard
Deviation

Minimum
Value

Maximum
Value

Gender/Sex a 13,687 1.543 0.498 1.0 2.0
Age (years) 13,687 51.947 21.179 12.0 99.0
Diabetes b 13,687 0.498 0.500 0.0 1.0

HDL-cholesterol (mg/dL) 13,687 49.914 15.607 3.0 158.0
Glucose (mg/dL) 13,687 124.347 56.437 21.0 649.0

Systolic: Blood pres (mm/Hg) 13,687 124.506 19.873 51.0 242.0
Diastolic: Blood pres (mm/Hg) 13,687 67.498 12.430 21.9 202.3

Triglycerides (mg/dL) 13,687 152.276 107.965 12.0 896.0
Weight (kg) 13,687 82.788 22.865 27.8 273.0

Body Mass Index (kg/m2) 13,687 29.456 7.313 3.2 97.4
a The gender/sex is reported with a value (1 for male, 2 for female). b The pathological status is assigned.

After the preprocessing phase, a final data set of 13,687 rows has been obtained,
with a balanced number of non-diabetics and diabetics individuals. Figure 1 shows the
distribution graphs for the population of the final dataset, broken down by age ranges,
gender/sex, and ethnicity.

2.2. Hyperparameters’ Tuning

To determine the optimal number of nodes in the hidden layer, a grid search approach
was employed. The minimum and maximum number of nodes considered were five and
fifteen, respectively. As a result, ten experiments were conducted, one for each number
of nodes considered. For each experiment, a model with the following characteristics
was created:

• Learning rate: 0.001;
• Loss Function: Binary cross-entropy;
• Optimization algorithm: Stochastic Gradient Descent;
• Trigger function for hidden layer: ReLU;
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• Trigger function for the output layer: sigmoids;
• Number of nodes in the hidden layer: x ∈ [5,15].
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The model was trained for a hundred epochs to evaluate the accuracy value attained
with that configuration of nodes on a validation set, which was previously extracted from
the training set, with a size of 20% of the total. All experiments were repeated ten times,
and the average accuracy values were calculated. Table 3 displays the average accuracy
values for each experiment, arranged in descending order (the higher the best).

Table 3. Average accuracy values for each experiment (the higher the best).

Hidden Nodes Accuracy

12 0.838
13 0.838
14 0.837
15 0.837
11 0.837
10 0.836
7 0.835
5 0.835
9 0.835
6 0.834

Experiments were conducted to identify the optimizer that provided the best per-
formance. Four optimization algorithms were considered: Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (ADAM) [27], Root Mean Squared Propagation (RM-
SPROP) [28] and Levenberg–Marquardt (LM) [29].

In this case, k-fold cross-validation was employed as the validation technique, with
k equal to 9. The experiments were repeated multiple times, for a total of 11 repetitions.
Table 4 presents the average accuracy obtained for each optimizer for each fold in each of
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the eleven experiments along with the standard deviation, illustrating that ADAM is the
most efficient algorithm.

Table 4. Average accuracy values for each optimizer (the higher the best).

Optimizer Mean (Accuracy) Standard Deviation
(Accuracy)

ADAM 0.855 0.008
SGD 0.853 0.009

RMSPROP 0.852 0.009
LM 0.835 0.049

2.3. Model Ensemble

For each optimizer, it was decided to utilize an ensemble of the 9× 11 models obtained
in the previous step. A voting scheme was employed, in which all models in the ensemble
returned a result, and the outcome returned by the majority of models was then returned
as the final prediction. The ensemble was initially trained on the training set and then
evaluated for performance on the test set. The results are shown in Table 5.

Table 5. Average accuracy values for each experiment on ensemble models (the higher the best).

Model Accuracy

SGD 0.862
RMSPROP 0.861

ADAM 0.858
LM 0.840

2.4. Feature Reduction

A feature reduction approach was also attempted; one feature was sequentially elim-
inated at each step (the less significant ones on the validation set), and the model was
retrained using the ADAM optimizer on the training set. This procedure was repeated
thirty times, and the average accuracy obtained from each iteration was calculated. The
features removed one at each time were in the order triglycerides, age, Body Mass Index,
and Systolic Blood Pressure. The performance of the models on the test set was finally
evaluated. The graph in Figure 2 illustrates the extent of model performance degradation
as a result of the feature reduction. Feature reduction was based on accuracy. When the
less significant features were eliminated one at a time, the accuracy did not change until six
features remained.
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2.5. Validation

For the validation of the best model obtained (see Section 4.5 for methodology details),
the ROC (Receiver Operating Characteristic) and the corresponding ROC AUC (Area Under
Curve) score were calculated. The graph with the relevant ROC curve is shown in Figure 3.
The calculated ROC AUC value is 0.934.
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2.6. Calibration

It may be preferable when using ML classifiers to have the model estimate probabilities
of data belonging to each potential class rather than simple class labels. Having access to
probabilities is helpful for giving the responses a more nuanced interpretation or identifying
model flaws. If an ML model generates calibrated probabilities, it has been calibrated. In
more detail, probabilities are calibrated so that a class forecast made with confidence p is
accurate 100 *p% of the time. By using calibrated probabilities, we may take the resulting
values and interpret them as representing the model’s confidence. Making a calibration
plot is the most typical method for evaluating the model’s calibration. The calibration plot
for the ensemble has been calculated on the test set, obtaining the plot shown in Figure 4A.
It presents two lines: the dashed one represents a perfectly calibrated ideal model, and the
other one indicates the ensemble to be validated. The closer the latter is to the former, the
more well-calibrated the model is. To not rely just on the visual data when evaluating the
model calibration, the Brier score has also been used; it is essentially the same calculation
made for the mean squared error, but it is applied when comparing probability predictions
with the actual results of specific events that have been observed. The Brier score ranges
from 0 to 1 (the lower the value, the better), with 0 denoting flawless calibration, where the
anticipated probability exactly matches the observed probabilities. The value obtained in
our case is 0.101 for the ensemble, while it is equal to 0.103 in the case of the SGD neural
network (Figure 4B).
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3. Discussion

Many efforts are oriented towards improvements in diabetes prevention, diagnosis,
and care. Applications of AI methods are the most advanced approach based on computa-
tional resources. Data obtained by clinical studies should be opportunely integrated within
AI approaches, as well as information from investigations at the molecular and cellular
levels. As an example, the role of parameters used in our work as features is the object
of studies reported in the literature [30–35], and novel biomarkers for the evaluation of
diabetes and diabetes-related complications could be added in the future, as evidenced by
studies on the role of erythrocytes [36].
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Since the numerousness of the data is a crucial point in representing a given phe-
nomenon, our work has focused on being able to construct a dataset with large, high-quality
data. A well-designed dataset is essential for the success of training and evaluating neural
networks, as the quality and representativeness of the data will significantly impact the
performance of the network. We used three public datasets to extract data, to introduce
heterogeneity into the data. Data extracted were preprocessed to remove data with miss-
ing values for the features of interest, obtaining a final dataset of 13,687 individuals, i.e.,
with a similar number of individuals with and without T2DM. In this way, we obtained
a balanced dataset with suitable numerousness. The features were selected for the evi-
dence of relationships to T2DM and for the ease of obtaining them, being measurements of
common practice.

We decided not to apply any data augmentation techniques, to preserve the quality of
the information, which is fundamental for machine learning algorithms as they search for
correlations within the data; all rows with implausible or missing values for at least one
characteristic were eliminated. The use of a dataset of at least 13,000 samples represents
the first step towards models with performances that increasingly represent their true
capabilities on unknown data.

The use of a neural network as a machine learning model was chosen due to its
ability to approximate any function with a high degree of precision [37]. These models
have been extensively used in the diagnosis of various diseases such as tuberculosis [38],
malignant melanomas [39], and neuroblastomas [40]. Furthermore, neural networks have
shown the potential in enhancing predictive accuracy when the connections between
variables are nonlinear or unknown. Studies have demonstrated that neural networks
exhibit superior long-term predictive capabilities in bariatric surgery patients [41] when
compared to linear [42] and logistic regression models [43].

Our study suggests that the model applied to the dataset generated can predict
the T2DM state with very high performances, based on features chosen by the scientific
literature [30–35].

The most significant features were blood glucose level, HDL level in the blood, diastolic
blood pressure, gender, and weight, while triglycerides, age, BMI, and systolic blood
pressure resulted less significant.

The ROC curve is a commonly used method for evaluating the performance of (bi-
nary) classification models. It uses a combination of the true positive rate (the percent-
age of correctly predicted positive examples, defined as recall) and the false positive
rate (the percentage of incorrectly predicted negative examples) to obtain a snapshot of
classification performance.

By analyzing ROC curves, one assesses the classifier’s ability to discern between,
for example, a healthy and a sick population, by calculating the area under the ROC
curve (Area Under Curve (AUC)). The AUC value, between 0 and 1, is equivalent to the
probability that the result of the classifier applied to an individual randomly drawn from
the sick group is higher than that obtained by applying it to an individual randomly drawn
from the healthy group.

The higher the area under the ROC curve (AUC), the better the classifier. A classifier
with an AUC higher than 0.5 is better than a random classifier. If the AUC is less than 0.5,
then there is something wrong with the model. A perfect model would have an AUC of
1. ROC curves are widely used because they are relatively simple to understand, capture
more than one aspect of classification (taking into account both false positives and false
negatives), and allow for visual and low-effort comparisons of the performance of different
types of models. In our study, the calculated ROC AUC value is 0.934. This value suggests
a high predictive value for the method developed.

To verify that the heterogeneity of ethnicity does not bias the final results, we
performed an analysis for each ethnic group, obtaining very similar results (see
Supplementary Material).
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As can be seen from Figure 4, the best single neural network (SGD) and the ensemble
predictions appear to be calibrated, thus interpretable as probabilities of membership in
one class or the other. This is also confirmed by the Brier score, whose extremely low
values give us confidence about the accuracy of the predictions in probabilistic terms. The
calibration of the models must be checked carefully because faulty calibration might result
in bad decisions, and reporting both is crucial for prediction models [44].

4. Materials and Methods
4.1. Features

A set of features was chosen based on literature evidence [30–35], and it consists of
glucose level in the blood, measured in mg/dL, triglycerides level in the blood, measured
in mg/dL, HDL level in the blood, measured in mg/dL, systolic blood pressure, measured
in mm/Hg, diastolic blood pressure, measured in mm/Hg, gender/sex expressed as a
binary numerical value, age, expressed in years, weight, measured in kg, and Body Mass
Index (BMI), expressed in kg/m2. The values of these features, together with the diabetes
status, were extracted from the datasets described in the next paragraph.

4.2. Datasets

Previous studies have highlighted the availability of datasets from various surveys con-
ducted between 1999 and 2018 by the National Center for Health Statistics (National Health
and Nutrition Examination Survey, NHANES) [24] as well as two datasets containing
clinical data, MIMIC-III [25] and MIMIC-IV [26].

NHANES 1999–2018 datasets provide a nationally representative sample of adult
US citizens, aged 18 years or older, in the range of seven thousand individuals for each
year. MIMIC-III is a publicly accessible database that contains anonymized health-related
information on more than 40,000 patients who received ICU care at Beth Israel Deaconess
Medical Center between 2001 and 2012. MIMIC-IV is an upgrade to MIMIC-III that adds
modern data and enhances many elements of the previous version.

Each entry within the entire NHANES dataset has a key, called SEQN, which serves
as the identifier of the subject to which the data refers.

Since data within the NHANES dataset are distributed over several datasets, the data
collection process required an initial phase of searching for the feature vector data and a
subsequent phase of merging these, for which Python 3.8.11 together with the Pandas 1.2.4
library was used.

Features such as glucose and triglycerides are distributed in different datasets. For
both, the following data retrieval and merging procedure was performed; the different
datasets with the feature of interest were downloaded, and then, based on the values in the
SEQN column, the rows in which this value was identical were merged, and those in which
it was not were merged into a single table. In particular, for the rows that were merged,
those in which all had a value Nan (Not a Number) were eliminated. If, on the other hand,
the set of rows with the same identifier had at least one non-Nan value, the first one in
order of reading was taken.

The remaining features of interest were each located in a single dataset. They were
then extracted and merged into a single table based on the SEQN key. This process was
repeated iteratively for each dataset from the year 1999 to 2018 and then merged into a
single table, based on the SEQN key, for all datasets. At the end of the process, a partial
dataset of 48,067 examples was obtained, of which only 4415 had type 2 diabetes.

Both MIMIC datasets (i.e., III and IV) have a size, in terms of rows corresponding to
distinct patients, of more than 40,000 examples. The data retrieval methods were the same.
Since the information was spread across several tables, the approach taken was to retrieve,
based on a key identifying a particular admission of a given patient, each characteristic
individually and then combine them into a single table. Some features such as age, sex,
HDL, and triglycerides were directly accessible from identification codes. Others, however,
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required some additional steps before being retrieved: BMI was not present in the data and
was therefore calculated from weight (w) and height (h) using the formula: BMI = w/h2.

All patients with forms of diabetes other than type 2 were excluded from the selection.
To have fasting glucose values, the values retrieved corresponded to analyses performed
no later than ten o’clock in the morning, assuming the patient had fasted for at least eight
hours. At the end of this phase, 2997 patients were extracted from MIMIC-III, and only
1576 from MIMIC-IV, as the largest subset of patients containing all the characteristics of
our interest. The possibility of filling in the missing gaps with aggregation functions on the
data present was discarded, since the gaps were very large; in fact, for some features, up to
70% of the rows were missing that particular information.

4.3. Preprocessing

At this stage, the retrieved data were skimmed, appropriately coded, and finally
merged into a single dataset.

Rows that had at least one implausible value for any of the features or had it as null
(i.e., it does not have a value) were removed. Implausible values were considered on the
following criteria: (i) diastolic blood pressure values exceeding 220 mm/Hg; (ii) BMI values
greater than 100 kg/m2; (iii) age values greater than 100; (iv) Triglyceride values greater
than 900 (mg/dL). The rows removed due to implausible values were 95. Outliers were
not eliminated.

At this point, the rows from the three datasets were concatenated and, as the number
of non-diabetics was enormously larger than that of diabetics, an under-sampling of the
first class was carried out, resulting in a table of approximately 13,000 rows, with a balanced
number of non-diabetics and diabetics.

All data underwent a standardization process, as the vector characteristics of interest
have different units.

4.4. Neural Networks: Model’s Architecture

The neural network was designed as a shallow fully connected architecture, featuring
a single hidden layer. This architecture is characterized by the property that each neuron in
each layer receives connections from all neurons in the previous layer, except for the input
layer. In Figure 5, we report a schematic draw of the architecture of the neural network.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 15 
 

 

All patients with forms of diabetes other than type 2 were excluded from the selec-

tion. To have fasting glucose values, the values retrieved corresponded to analyses per-

formed no later than ten o’clock in the morning, assuming the patient had fasted for at 

least eight hours. At the end of this phase, 2997 patients were extracted from MIMIC-III, 

and only 1576 from MIMIC-IV, as the largest subset of patients containing all the charac-

teristics of our interest. The possibility of filling in the missing gaps with aggregation func-

tions on the data present was discarded, since the gaps were very large; in fact, for some 

features, up to 70% of the rows were missing that particular information. 

4.3. Preprocessing 

At this stage, the retrieved data were skimmed, appropriately coded, and finally 

merged into a single dataset. 

Rows that had at least one implausible value for any of the features or had it as null 

(i.e., it does not have a value) were removed. Implausible values were considered on the 

following criteria: (i) diastolic blood pressure values exceeding 220 mm/Hg; (ii) BMI val-

ues greater than 100 kg/m2; (iii) age values greater than 100; (iv) Triglyceride values greater 

than 900 (mg/dL). The rows removed due to implausible values were 95. Outliers were not 

eliminated. 

At this point, the rows from the three datasets were concatenated and, as the number 

of non-diabetics was enormously larger than that of diabetics, an under-sampling of the 

first class was carried out, resulting in a table of approximately 13,000 rows, with a bal-

anced number of non-diabetics and diabetics. 

All data underwent a standardization process, as the vector characteristics of interest 

have different units. 

4.4. Neural Networks: Model’s Architecture 

The neural network was designed as a shallow fully connected architecture, featuring 

a single hidden layer. This architecture is characterized by the property that each neuron 

in each layer receives connections from all neurons in the previous layer, except for the 

input layer. In Figure 5, we report a schematic draw of the architecture of the neural net-

work. 

 

Figure 5. The diagram illustrates the architecture of the neural network. The input layer is repre-

sented by the gray square, with the hidden and output layers depicted in blue. The activation func-

tions used are indicated in red. The number of units per layer is specified within each respective 

square. 

4.5. Validation 

Once the dataset was balanced, it was divided into two subsets: a training set of size 

80% of the total, and a test set with the remaining 20%. The former was initially used for 

the optimal search for the number of nodes in the hidden layer of the neural network. In 

fact, it was further partitioned, according to an 80:20 ratio, into an additional training set 

and a validation set. A grid search was performed on these two in a search space, under-

stood as the number of nodes, equal to the interval [5,15]. For the search of the best opti-

mization algorithm, the first training set was used, on which a k-fold cross-validation with 

k = 9 was applied, with experiments repeated 11 times. The algorithms considered were 

Figure 5. The diagram illustrates the architecture of the neural network. The input layer is represented
by the gray square, with the hidden and output layers depicted in blue. The activation functions used
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4.5. Validation

Once the dataset was balanced, it was divided into two subsets: a training set of size
80% of the total, and a test set with the remaining 20%. The former was initially used for the
optimal search for the number of nodes in the hidden layer of the neural network. In fact,
it was further partitioned, according to an 80:20 ratio, into an additional training set and a
validation set. A grid search was performed on these two in a search space, understood as
the number of nodes, equal to the interval [5,15]. For the search of the best optimization
algorithm, the first training set was used, on which a k-fold cross-validation with k = 9 was
applied, with experiments repeated 11 times. The algorithms considered were Adam, SGD,



Int. J. Mol. Sci. 2023, 24, 6775 12 of 14

RSM-prop, and Levenberg–Marquardt (LM). An ensemble of 99 models was created for
each of the optimizers, the performance of which was evaluated on the test set. The ROC
curve and resulting AUC value were also calculated on the latter.

4.6. Calibration Plots

It is possible for statistical models to produce predictions that are uncalibrated, which
means that the anticipated values lack the nominal coverage probability. The probabilities
of occurrence for popular species in machine learning categorization make this the simplest
to see. Before evaluating or averaging uncalibrated probability predictions in a probabilistic
manner, they should first be calibrated [45]. It is shown that a model’s calibration, or how
closely calculated risks match observed event rates, has an impact on clinical utility [46].

5. Conclusions

The research demonstrates the potential of binary classifiers trained from scratch to
generalize the onset of diabetes in nonlinear relationships with specific patient measure-
ments. The ablation study revealed that an ensemble of binary classifiers with a shallow
architecture optimized using the Adam algorithm attained a satisfactory level of accuracy
(approximately 86% on the test set) and an ROC AUC value of 0.934.

This neural network-based approach may provide accurate information for personal-
ized medicine, making it a valuable resource for decision making.

Further studies incorporating multiple information of the same patient over time
could lead to the development of an advanced model for disease prevention. This would be
possible by identifying patterns, such as context patterns in the trends of the measurements,
using advanced neural networks such as Long-Short-Term-Memory models.
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38. Elveren, E.; Yumuşak, N. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med.
Syst. 2011, 35, 329–332. [CrossRef] [PubMed]

39. Ercal, F.; Chawla, A.; Stoecker, W.V.; Lee, H.C.; Moss, R.H. Neural network diagnosis of malignant melanoma from color images.
IEEE Trans. Biomed. Eng. 1994, 41, 837–845. [CrossRef] [PubMed]

40. Cangelosi, D.; Pelassa, S.; Morini, M.; Conte, M.; Bosco, M.C.; Eva, A.; Sementa, A.R.; Varesio, L. Artificial neural network
classifier predicts neuroblastoma patients’ outcome. BMC Bioinform. 2016, 17 (Suppl. S12), 347. [CrossRef]

41. Cao, Y.; Raoof, M.; Montgomery, S.; Ottosson, J.; Näslund, I. Predicting Long-Term Health-Related Quality of Life after Bariatric
Surgery Using a Conventional Neural Network: A Study Based on the Scandinavian Obesity Surgery Registry. J. Clin. Med. 2019,
8, 2149. [CrossRef] [PubMed]

42. Courcoulas, A.P.; Christian, N.J.; O’Rourke, R.W.; Dakin, G.; Patchen Dellinger, E.; Flum, D.R.; Melissa Kalarchian, P.D.; Mitchell,
J.E.; Patterson, E.; Pomp, A.; et al. Preoperative factors and 3-year weight change in the Longitudinal Assessment of Bariatric
Surgery (LABS) consortium. Surg. Obes. Relat. Dis. 2015, 11, 1109–1118. [CrossRef] [PubMed]

43. Hatoum, I.J.; Blackstone, R.; Hunter, T.D.; Francis, D.M.; Steinbuch, M.; Harris, J.L.; Kaplan, L.M. Clinical Factors Associated With
Remission of Obesity-Related Comorbidities After Bariatric Surgery. JAMA Surg. 2016, 151, 130–137. [CrossRef]

44. Wang, W.; Kiik, M.; Peek, N.; Curcin, V.; Marshall, I.J.; Rudd, A.G.; Wang, Y.; Douiri, A.; Wolfe, C.D.; Bray, B. A systematic review
of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE 2020, 15, e0234722. [CrossRef]

45. Dormann, C.F. Calibration of probability predictions from machine-learning and statistical models. Glob. Ecol Biogeogr. 2020,
29, 760–765. [CrossRef]

46. Van Calster, B.; Vickers, A.J. Calibration of Risk Prediction Models: Impact on Decision-Analytic Performance. Med. Decis. Mak.
2015, 35, 162–169. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/pedi.12787
http://doi.org/10.14423/SMJ.0000000000000214
http://doi.org/10.1210/er.2015-1137
http://doi.org/10.1155/2021/6656062
http://www.ncbi.nlm.nih.gov/pubmed/33728350
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1007/s10916-009-9369-3
http://www.ncbi.nlm.nih.gov/pubmed/20703557
http://doi.org/10.1109/10.312091
http://www.ncbi.nlm.nih.gov/pubmed/7959811
http://doi.org/10.1186/s12859-016-1194-3
http://doi.org/10.3390/jcm8122149
http://www.ncbi.nlm.nih.gov/pubmed/31817385
http://doi.org/10.1016/j.soard.2015.01.011
http://www.ncbi.nlm.nih.gov/pubmed/25824474
http://doi.org/10.1001/jamasurg.2015.3231
http://doi.org/10.1371/journal.pone.0234722
http://doi.org/10.1111/geb.13070
http://doi.org/10.1177/0272989X14547233

	Introduction 
	Results 
	Dataset Statistics 
	Hyperparameters’ Tuning 
	Model Ensemble 
	Feature Reduction 
	Validation 
	Calibration 

	Discussion 
	Materials and Methods 
	Features 
	Datasets 
	Preprocessing 
	Neural Networks: Model’s Architecture 
	Validation 
	Calibration Plots 

	Conclusions 
	References

