The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Selection and Genotyping of Markers
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Bevan, S.; Traylor, M.; Adib-Samii, P.; Malik, R.; Paul, N.L.M.; Jackson, C.; Farrall, M.; Rothwell, P.M.; Sudlow, C.; Dichgans, M.; et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 2012, 43, 3161–3167. [Google Scholar] [CrossRef]
- Mishra, A.; Malik, R.; Hachiya, T.; Jürgenson, T.; Namba, S.; Posner, D.C.; Kamanu, F.K.; Koido, M.; Le Grand, Q.; Shi, M.; et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 2022, 611, 115–123. [Google Scholar] [CrossRef]
- Lindgren, A.; Maguire, J. Stroke Recovery Genetics. Stroke 2016, 47, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Zhao, J.; Feng, W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav. Brain Res. 2018, 340, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Söderholm, M.; Pedersen, A.; Lorentzen, E.; Stanne, T.M.; Bevan, S.; Olsson, M.; Cole, J.W.; Fernandez-Cadenas, I.; Hankey, G.J.; Jimenez-Conde, J.; et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology 2019, 92, e1271–e1283. [Google Scholar] [CrossRef] [Green Version]
- Mola-Caminal, M.; Carrera, C.; Soriano-Tárraga, C.; Giralt-Steinhauer, E.; Díaz-Navarro, R.M.; Tur, S.; Jiménez, C.; Medina-Dols, A.; Cullell, N.; Torres-Aguila, N.P.; et al. PATJ Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome. Circ. Res. 2019, 124, 114–120. [Google Scholar] [CrossRef]
- Ibanez, L.; Heitsch, L.; Carrera, C.; Farias, F.H.G.; Del Aguila, J.L.; Dhar, R.; Budde, J.; Bergmann, K.; Bradley, J.; Harari, O.; et al. Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain 2022, 145, 2394–2406. [Google Scholar] [CrossRef]
- Gallagher, M.D.; Chen-Plotkin, A.S. The Post-GWAS Era: From Association to Function. Am. J. Hum. Genet. 2018, 102, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, H.L.; John, C.R.; Watson, D.S.; Munroe, P.B.; Barnes, M.R.; Cabrera, C.P. Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci. Front. Genet. 2020, 11, 350. [Google Scholar] [CrossRef]
- Zheng, Q.; Ma, Y.; Chen, S.; Che, Q.; Chen, D. The Integrated Landscape of Biological Candidate Causal Genes in Coronary Artery Disease. Front. Genet. 2020, 11, 320. [Google Scholar] [CrossRef] [Green Version]
- Dergunova, L.V.; Filippenkov, I.B.; Stavchansky, V.V.; Denisova, A.E.; Yuzhakov, V.V.; Mozerov, S.A.; Gubsky, L.V.; Limborska, S.A. Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model. BMC Genom. 2018, 19, 655. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Xie, Q.; Li, Y.; Chen, Z.; Ren, M.; Chen, H.; Li, H.; Li, J.; Wang, J. Animal models of cerebral ischemia: A review. Biomed. Pharmacother. 2020, 131, 110686. [Google Scholar] [CrossRef]
- Narayan, S.K.; Grace Cherian, S.; Babu Phaniti, P.; Babu Chidambaram, S.; Rachel Vasanthi, A.H.; Arumugam, M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Anim. Model. Exp. Med. 2021, 4, 104–115. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Y. Obtaining Human Ischemic Stroke Gene Expression Biomarkers from Animal Models: A Cross-species Validation Study. Sci. Rep. 2016, 6, 29693. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, D.K.; Lauffenburger, D.A. Translating preclinical models to humans. Science 2020, 367, 742–743. [Google Scholar] [CrossRef]
- Khvorykh, G.; Khrunin, A.; Filippenkov, I.; Stavchansky, V.; Dergunova, L.; Limborska, S. A Workflow for Selection of Single Nucleotide Polymorphic Markers for Studying of Genetics of Ischemic Stroke Outcomes. Genes 2021, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Khrunin, A.V.; Khvorykh, G.V.; Rozhkova, A.V.; Koltsova, E.A.; Petrova, E.A.; Kimelfeld, E.I.; Limborska, S.A. Examination of Genetic Variants Revealed from a Rat Model of Brain Ischemia in Patients with Ischemic Stroke: A Pilot Study. Genes 2021, 12, 1938. [Google Scholar] [CrossRef]
- Kongsawasdi, S.; Klaphajone, J.; Wivatvongvana, P.; Watcharasaksilp, K. Prognostic Factors of Functional Outcome Assessed by Using the Modified Rankin Scale in Subacute Ischemic Stroke. J. Clin. Med. Res. 2019, 11, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, P.S.; Sawalha, A.H. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J. 2020, 34, 8810–8823. [Google Scholar] [CrossRef]
- Huang, J.J.; Ma, W.J.; Yokoyama, S. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Brain Behav. 2012, 2, 85–96. [Google Scholar] [CrossRef]
- Nakano, Y.; Suzuki, Y.; Takagi, T.; Kitashoji, A.; Ono, Y.; Tsuruma, K.; Yoshimura, S.; Shimazawa, M.; Iwama, T.; Hara, H. Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia-reperfusion injury. Neuroscience 2014, 277, 123–131. [Google Scholar] [CrossRef]
- Neal, M.L.; Boyle, A.M.; Budge, K.M.; Safadi, F.F.; Richardson, J.R. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J. Neuroinflamm. 2018, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Budge, K.M.; Neal, M.L.; Richardson, J.R.; Safadi, F.F. Transgenic Overexpression of GPNMB Protects Against MPTP-Induced Neurodegeneration. Mol. Neurobiol. 2020, 57, 2920–2933. [Google Scholar] [CrossRef]
- Tanaka, H.; Shimazawa, M.; Kimura, M.; Takata, M.; Tsuruma, K.; Yamada, M.; Takahashi, H.; Hozumi, I.; Niwa, J.I.; Iguchi, Y.; et al. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci. Rep. 2012, 2, 573. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, D.A.E.; van Scheppingen, J.; van der Poel, M.; Bossers, K.; Schuurman, K.G.; van Eden, C.G.; Hol, E.M.; Hamann, J.; Huitinga, I. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol. 2017, 8, 1810. [Google Scholar] [CrossRef] [Green Version]
- Hüttenrauch, M.; Ogorek, I.; Klafki, H.; Otto, M.; Stadelmann, C.; Weggen, S.; Wiltfang, J.; Wirths, O. Glycoprotein NMB: A novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol. Commun. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Radecki, D.Z.; Wang, A.R.; Johnson, A.S.; Overman, C.A.; Thatcher, M.M.; Iyer, G.; Samanta, J. Gpnmb inhibits oligodendrocyte differentiation of adult neural stem cells by amplifying TGFβ1 signaling. bioRxiv 2021, bioRxiv:2021.08.13.456269. [Google Scholar] [CrossRef]
- Diaz-Ortiz, M.E.; Seo, Y.; Posavi, M.; Cordon, M.C.; Clark, E.; Jain, N.; Charan, R.; Gallagher, M.D.; Unger, T.L.; Amari, N.; et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science 2022, 377, eabk0637. [Google Scholar] [CrossRef]
- Lind, L.; Zanetti, D.; Ingelsson, M.; Gustafsson, S.; Ärnlöv, J.; Assimes, T.L. Large-scale plasma protein profiling of incident myocardial infarction, ischemic stroke, and heart failure. J. Am. Heart Assoc. 2021, 10, e023330. [Google Scholar] [CrossRef]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; Destefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, M.N.; Blauwendraat, C.; Guelfi, S.; Hardy, J.; Lewis, P.A.; Trabzuni, D. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson’s disease on chromosome 7p15.3. Neurogenetics 2017, 18, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasayama, D.; Hattori, K.; Ogawa, S.; Yokota, Y.; Matsumura, R.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Kunugi, H. Genome-wide quantitative trait loci mapping of the human cerebrospinal fluid proteome. Hum. Mol. Genet. 2017, 26, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Jongstra-Bilen, J.; Jongstra, J. Leukocyte-specific protein 1 (LSP1): A regulator of leukocyte emigration in inflammation. Immunol. Res. 2006, 35, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Jung, S.H.; Lee, S.; Choi, S.; Yoo, S.A.; Park, J.H.; Hwang, D.; Shim, S.C.; Sabbagh, L.; Kim, K.J.; et al. Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2015, 112, E6535–E6543. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Cara, D.C.; Kaur, J.; Raharjo, E.; Mullaly, S.C.; Jongstra-Bilen, J.; Jongstra, J.; Kubes, P. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J. Exp. Med. 2005, 201, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, B.; Kaur, J.; Long, E.M.; Li, H.; Parsons, S.A.; Butz, S.; Phillipson, M.; Vestweber, D.; Patel, K.D.; Robbins, S.M.; et al. Endothelial LSP1 is involved in endothelial dome formation, minimizing vascular permeability changes during neutrophil transmigration in vivo. Blood 2011, 117, 942–952. [Google Scholar] [CrossRef]
- Hossain, M.; Qadri, S.M.; Su, Y.; Liu, L. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am. J. Physiol.—Cell Physiol. 2013, 304, C895–C904. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Qadri, S.M.; Xu, N.; Su, Y.; Cayabyab, F.S.; Heit, B.; Liu, L. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. J. Immunol. 2015, 195, 2408–2416. [Google Scholar] [CrossRef] [Green Version]
- Hannigan, M.; Zhan, L.; Ai, Y.; Huang, C. Leukocyte-specific gene 1 protein (LSP1) is involved in chemokine KC-activated cytoskeletal reorganization in murine neutrophils in vitro. J. Leukoc. Biol. 2001, 69, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D’Amato, M.; Taylor, K.D.; Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A.; et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Le, N.P.K.; do Nascimento, A.F.; Schneberger, D.; Quach, C.C.; Zhang, X.; Aulakh, G.K.; Dawicki, W.; Liu, L.; Gordon, J.R.; Singh, B. Deficiency of leukocyte-specific protein 1 (LSP1) alleviates asthmatic inflammation in a mouse model. Respir. Res. 2022, 23, 165. [Google Scholar] [CrossRef]
- Ganesh, S.K.; Tragante, V.; Guo, W.; Guo, Y.; Lanktree, M.B.; Smith, E.N.; Johnson, T.; Castillo, B.A.; Barnard, J.; Baumert, J.; et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 2013, 22, 1663–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Hu, Z.; Gao, Y.; Xia, Y.; Zhang, X.; Jiang, Z. A computational approach based on weighted gene co-expression network analysis for biomarkers analysis of Parkinson’s disease and construction of diagnostic model. Front. Comput. Neurosci. 2023, 16, 1095676. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Dong, L.H.; Zheng, B.; Shi, J.H.; Wen, J.K.; Cheng, Y. Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci. 2009, 84, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.H.; Wen, J.K.; Liu, G.; McNutt, M.A.; Miao, S.B.; Gao, R.; Zheng, B.; Zhang, H.; Han, M. Blockade of the ras-extracellular signal-regulated kinase 1/2 pathway is involved in smooth muscle 22α-mediated suppression of vascular smooth muscle cell proliferation and neointima hyperplasia. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 683–691. [Google Scholar] [CrossRef]
- Dvorakova, M.; Nenutil, R.; Bouchal, P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev. Proteom. 2014, 11, 149–165. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Hou, L.; Xiao, Y.; Qin, F.; Yan, J.; Zhou, J.; Jing, Z. The regulatory role of smooth muscle 22 on the proliferation of aortic smooth muscle cells participates in the development of aortic dissection. J. Vasc. Surg. 2017, 66, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Shao, T.; Luo, J.; Zhang, X.; Bao, M.; Ye, L.; Cheng, H. TAGLN expression decreases in the wall of unruptured intracranial aneurysms in Chinese population. Int. J. Clin. Exp. Med. 2020, 13, 3108–3118. [Google Scholar]
- Wang, J.; Kang, Z.; Liu, Y.; Li, Z.; Liu, Y.; Liu, J. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Front. Immunol. 2022, 13, 956078. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, F.; Song, L.; Shu, Y.; Lin, Y.; Dong, L.; Nie, X.; Zhang, D.; Chen, P.; Han, M. Transcriptome profiling reveals that the SM22α-regulated molecular pathways contribute to vascular pathology. J. Mol. Cell. Cardiol. 2014, 72, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granata, A.; Kasioulis, I.; Serrano, F.; Cooper, J.D.; Traylor, M.; Sinha, S.; Markus, H.S. The Histone Deacetylase 9 Stroke-Risk Variant Promotes Apoptosis and Inflammation in a Human iPSC-Derived Smooth Muscle Cells Model. Front. Cardiovasc. Med. 2022, 9, 849664. [Google Scholar] [CrossRef]
- Shu, Y.N.; Zhang, F.; Bi, W.; Dong, L.H.; Zhang, D.D.; Chen, R.; Lv, P.; Xie, X.L.; Lin, Y.L.; Xue, Z.Y.; et al. SM22α inhibits vascular inflammation via stabilization of IκBα in vascular smooth muscle cells. J. Mol. Cell. Cardiol. 2015, 84, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Xuan, X.; Hu, J.; Zhang, R.; Jin, H.; Dong, H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun. Signal. 2022, 20, 180. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhu, R. Association of GWAS-susceptibility loci with ischemic stroke recurrence in a Han Chinese population. J. Gene Med. 2021, 23, e3264. [Google Scholar] [CrossRef]
- Ugorski, M.; Dziegiel, P.; Suchanski, J. Podoplanin—A small glycoprotein with many faces. Am. J. Cancer Res. 2016, 6, 370–386. [Google Scholar] [PubMed]
- Wang, Y.; Peng, D.; Huang, Y.; Cao, Y.; Li, H.; Zhang, X. Podoplanin: Its roles and functions in neurological diseases and brain cancers. Front. Pharmacol. 2022, 13, 964973. [Google Scholar] [CrossRef]
- Suzuki-Inoue, K.; Osada, M.; Ozaki, Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: Partners from in utero to adulthood. J. Thromb. Haemost. 2017, 15, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, W.; Wu, X.; Li, H.; Zhang, C.; Huang, Z.; Shi, R.; You, T.; Shi, J.; Cao, Y. Prognostic Significance of Plasma CLEC-2 (C-Type Lectin-Like Receptor 2) in Patients With Acute Ischemic Stroke. Stroke 2018, 50, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, W.; Li, H.; You, S.; Shi, J.; Zhang, C.; Shi, R.; Huang, Z.; Cao, Y.; Zhang, X. Plasma C-type lectin-like receptor 2 as a predictor of death and vascular events in patients with acute ischemic stroke. Eur. J. Neurol. 2019, 26, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Ma, X.; Li, H.; Wu, X.; Cao, Y.; Miao, Z.; Zhang, X. A Role of the Podoplanin-CLEC-2 Axis in Promoting Inflammatory Response After Ischemic Stroke in Mice. Neurotox. Res. 2021, 39, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Qian, L.; Yang, Y.; Cui, J.; Zhao, Y. Podoplanin neutralization reduces thrombo-inflammation in experimental ischemic stroke by inhibiting interferon/caspase-1/GSDMD in microglia. Ann. Transl. Med. 2022, 10, 979. [Google Scholar] [CrossRef]
- De Meyer, S.F.; Denorme, F.; Langhauser, F.; Geuss, E.; Fluri, F.; Kleinschnitz, C. Thromboinflammation in Stroke Brain Damage. Stroke 2016, 47, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, K.; Kaneko, M.K.; Kato, Y.; Ishikawa, T.; Nishihira, K.; Tsujimoto, Y.; Shibata, Y.; Ozaki, Y.; Asada, Y. Podoplanin expression in advanced atherosclerotic lesions of human aortas. Thromb. Res. 2012, 129, e70–e76. [Google Scholar] [CrossRef] [PubMed]
- Furukoji, E.; Yamashita, A.; Nakamura, K.; Hirai, T.; Asada, Y. Podoplanin expression on endothelial cells promotes superficial erosive injury and thrombus formation in rat carotid artery: Implications for plaque erosion. Thromb. Res. 2019, 183, 76–79. [Google Scholar] [CrossRef]
- Shetova, I.M.; Timofeev, D.I.; Shamalov, N.A.; Bondarenko, E.A.; Slominskiĭ, P.A.; Limborskaia, S.A.; Skvortsova, V.I. The association between the DNA marker rs1842993 and risk for cardioembolic stroke in the Slavic population. Zhurnal Nevrol. i psikhiatrii Im. S.S. Korsakova 2012, 112, 38–41. [Google Scholar]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Milligan, B.G. Total DNA isolation. In Molecular Genetic Analysis of Populations; Hoelzel, A., Ed.; Oxford University Press: London, UK, 1998; pp. 29–60. [Google Scholar]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Hombach, D.; Köhler, S.; Cooper, D.N.; Schuelke, M.; Seelow, D. RegulationSpotter: Annotation and interpretation of extratranscriptic DNA variants. Nucleic Acids Res. 2019, 47, W106–W113. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Statistics and Computing; Springer New York: New York, NY, USA, 2002; ISBN 978-1-4419-3008-8. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression Models for Count Data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lesnoff, M.; Lancelot, R. aod: Analysis of Overdispersed Data 2010; R Foundation for Statistical Computiong: Vienna, Austria, 2010. [Google Scholar]
SNP | Allele | Study 1 * | p | Study 2 * | p | Study 3 * | p | Study 4 * | p | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mRS 0–1 | mRS 2–6 | mRS 0–2 | mRS 3–6 | mRS 0–3 | mRS 4–6 | ∆mRS > 0 | ∆mRS < 0 | ∆mRS = 0 | ||||||
rs858239 | A/A | 0.30 (21) | 0.16 (42) | 0.0091 | 0.27 (31) | 0.15 (32) | 0.0331 | 0.22 (39) | 0.15 (24) | 0.2589 | 0.22 (34) | 0.13 (9) | 0.19 (20) | 0.5496 |
A/G | 0.48 (33) | 0.48 (124) | 0.44 (51) | 0.50 (106) | 0.45 (78) | 0.51 (79) | 0.45 (70) | 0.55 (37) | 0.46 (50) | |||||
G/G | 0.22 (15) | 0.36 (95) | 0.29 (34) | 0.36 (76) | 0.33 (58) | 0.34 (52) | 0.33 (51) | 0.31 (21) | 0.35 (38) | |||||
rs34323745 | A/A | 0.01 (1) | 0.03 (7) | 0.1119 | 0.03 (3) | 0.02 (5) | 0.1431 | 0.03 (6) | 0.01 (2) | 0.4429 | 0.03 (5) | 0.00 (0) | 0.03 (3) | 0.6606 |
A/C | 0.19 (13) | 0.31 (80) | 0.22 (25) | 0.32 (68) | 0.27 (48) | 0.29 (45) | 0.28 (43) | 0.27 (18) | 0.30 (32) | |||||
C/C | 0.80 (55) | 0.67 (174) | 0.76 (88) | 0.66 (141) | 0.69 (121) | 0.70 (108) | 0.69 (107) | 0.73 (49) | 0.68 (73) | |||||
rs11267036 | G/G | 0.01 (1) | 0.02 (6) | 0.7061 | 0.02 (2) | 0.02 (5) | 0.6852 | 0.02 (3) | 0.03 (4) | 0.8588 | 0.03 (4) | 0.01 (1) | 0.02 (2) | 0.6253 |
C/G | 0.22 (15) | 0.26 (67) | 0.22 (26) | 0.26 (56) | 0.25 (44) | 0.25 (38) | 0.26 (41) | 0.18 (12) | 0.27 (29) | |||||
C/C | 0.77 (53) | 0.72 (188) | 0.76 (88) | 0.71 (153) | 0.73 (128) | 0.73 (113) | 0.71 (110) | 0.81 (54) | 0.71 (77) | |||||
rs907611 | A/A | 0.09 (6) | 0.13 (34) | 0.2044 | 0.10 (12) | 0.13 (28) | 0.1686 | 0.13 (22) | 0.12 (18) | 0.7418 | 0.12 (18) | 0.21 (14) | 0.07 (8) | 0.0494 |
A/G | 0.52 (36) | 0.41 (106) | 0.50 (58) | 0.39 (84) | 0.45 (78) | 0.41 (64) | 0.45 (70) | 0.43 (29) | 0.40 (43) | |||||
G/G | 0.39 (27) | 0.46 (121) | 0.40 (46) | 0.48 (102) | 0.43 (75) | 0.47 (73) | 0.43 (67) | 0.36 (24) | 0.53 (57) | |||||
rs2089910 | A/A | 0.07 (5) | 0.08 (21) | 0.9577 | 0.07 (8) | 0.08 (18) | 0.4976 | 0.08 (14) | 0.08 (12) | 0.8730 | 0.08 (13) | 0.06 (4) | 0.08 (9) | 0.2184 |
A/G | 0.39 (27) | 0.38 (98) | 0.34 (40) | 0.40 (85) | 0.37 (64) | 0.39 (61) | 0.34 (52) | 0.34 (23) | 0.46 (50) | |||||
G/G | 0.54 (37) | 0.54 (142) | 0.59 (68) | 0.52 (111) | 0.55 (97) | 0.53 (82) | 0.58 (90) | 0.60 (40) | 0.45 (49) | |||||
rs494356 | T/T | 0.01 (1) | 0.03 (9) | 0.6892 | 0.02 (2) | 0.04 (8) | 0.5108 | 0.03 (6) | 0.03 (4) | 0.9005 | 0.03 (4) | 0.01 (1) | 0.05 (5) | 0.2398 |
T/C | 0.26 (18) | 0.25 (66) | 0.28 (32) | 0.24 (52) | 0.25 (44) | 0.26 (40) | 0.21 (33) | 0.25 (17) | 0.31 (34) | |||||
C/C | 0.72 (50) | 0.71 (186) | 0.71 (82) | 0.72 (154) | 0.71 (125) | 0.72 (111) | 0.76 (118) | 0.73 (49) | 0.64 (69) | |||||
rs664922 | G/G | 0.13 (9) | 0.08 (21) | 0.2555 | 0.12 (14) | 0.07 (16) | 0.3753 | 0.12 (21) | 0.06 (9) | 0.1432 | 0.10 (15) | 0.06 (4) | 0.10 (11) | 0.7847 |
G/T | 0.30 (21) | 0.39 (102) | 0.35 (41) | 0.38 (82) | 0.35 (62) | 0.39 (61) | 0.35 (54) | 0.42 (28) | 0.38 (41) | |||||
T/T | 0.57 (39) | 0.53 (138) | 0.53 (61) | 0.54 (116) | 0.53 (92) | 0.55 (85) | 0.55 (86) | 0.52 (35) | 0.52 (56) | |||||
rs5759195 | G/G | 0.12 (8) | 0.13 (34) | 0.9368 | 0.13 (15) | 0.13 (27) | 0.9931 | 0.14 (24) | 0.12 (18) | 0.2877 | 0.12 (18) | 0.15 (10) | 0.13 (14) | 0.8769 |
G/C | 0.41 (28) | 0.41 (107) | 0.41 (47) | 0.41 (88) | 0.44 (77) | 0.37 (58) | 0.43 (67) | 0.36 (24) | 0.41 (44) | |||||
C/C | 0.48 (33) | 0.46 (120) | 0.47 (54) | 0.46 (99) | 0.42 (74) | 0.51 (79) | 0.45 (70) | 0.49 (33) | 0.46 (50) | |||||
rs762959 | T/T | 0.13 (9) | 0.13 (34) | 0.9998 | 0.14 (16) | 0.13 (27) | 0.9497 | 0.15 (26) | 0.11 (17) | 0.3826 | 0.12 (19) | 0.15 (10) | 0.13 (14) | 0.9257 |
T/C | 0.42 (29) | 0.42 (110) | 0.41 (48) | 0.43 (91) | 0.43 (76) | 0.41 (63) | 0.43 (67) | 0.37 (25) | 0.44 (47) | |||||
C/C | 0.45 (31) | 0.45 (117) | 0.45 (52) | 0.45 (96) | 0.42 (73) | 0.48 (75) | 0.45 (69) | 0.48 (32) | 0.44 (47) | |||||
rs1261025 | G/G | 0.10 (7) | 0.14 (37) | 0.5349 | 0.13 (15) | 0.14 (29) | 0.9308 | 0.14 (24) | 0.13 (20) | 0.9637 | 0.13 (20) | 0.10 (7) | 0.16 (17) | 0.4551 |
G/A | 0.45 (31) | 0.47 (123) | 0.46 (53) | 0.47 (101) | 0.47 (82) | 0.46 (72) | 0.47 (73) | 0.55 (37) | 0.41 (44) | |||||
A/A | 0.45 (31) | 0.39 (101) | 0.41 (48) | 0.39 (84) | 0.39 (69) | 0.41 (63) | 0.40 (62) | 0.34 (23) | 0.44 (47) | |||||
rs434651 | A/A | 0.28 (19) | 0.22 (57) | 0.3460 | 0.25 (29) | 0.22 (47) | 0.5163 | 0.22 (39) | 0.24 (37) | 0.3393 | 0.23 (35) | 0.22 (15) | 0.24 (26) | 0.8155 |
G/A | 0.55 (38) | 0.53 (139) | 0.55 (64) | 0.53 (113) | 0.57 (100) | 0.50 (77) | 0.57 (88) | 0.52 (35) | 0.50 (54) | |||||
G/G | 0.17 (12) | 0.25 (65) | 0.20 (23) | 0.25 (54) | 0.21 (36) | 0.26 (41) | 0.21 (32) | 0.25 (17) | 0.26 (28) |
Model | Outcome * | SNP | df | χ2 | p-Value |
---|---|---|---|---|---|
Additive | Study 2 | rs858239 | 2 | 6.8 | 0.03 |
Additive | Study 1 | rs858239 | 2 | 9.4 | 0.01 |
Additive | Study 4 | rs907611 | 4 | 9.5 | 0.05 |
Additive | ∆ = mRS14 − mRS1_4 | rs907611 | 2 | 6.9 | 0.03 |
Additive | ∆ = mRS14 − mRS1_1c | rs907611 | 2 | 8.7 | 0.01 |
Dominant | severity 5 | rs34323745 | 2 | 8.7 | 0.01 |
Dominant | Study 1 | rs858239 | 1 | 4.6 | 0.03 |
Dominant | Study 1 | rs34323745 | 1 | 3.8 | 0.05 |
Dominant | ∆ = mRS14 − mRS1_1b | rs494356 | 1 | 4.1 | 0.04 |
Dominant | ∆ = mRS14 − mRS1_1c | rs907611 | 1 | 4.1 | 0.04 |
Recessive | severity 5 | rs858239 | 2 | 6.9 | 0.03 |
Recessive | Study 2 | rs858239 | 1 | 6 | 0.01 |
Recessive | Study 1 | rs858239 | 1 | 6.4 | 0.01 |
Recessive | Study 4 | rs907611 | 2 | 7.1 | 0.03 |
Recessive | ∆ = mRS14 − mRS1_4 | rs907611 | 1 | 5.1 | 0.02 |
Recessive | ∆ = mRS14 − mRS1_1c | rs907611 | 1 | 5.7 | 0.02 |
Overdominant | severity 5 | rs34323745 | 2 | 7.1 | 0.03 |
Overdominant | ∆ = mRS14 − mRS1_1b | rs2089910 | 1 | 3.8 | 0.05 |
Model | Outcome | Feature | Estimate | Std. Error | CI 2.5% | CI 97.5% | p-Value | OR | OR 2.5% | OR 97.5% |
---|---|---|---|---|---|---|---|---|---|---|
Additive | Study 1 | rs858239GG | 1.23 | 0.48 | 0.31 | 2.2 | 0.01 | 3.43 | 1.36 | 9 |
Additive | ∆ = mRS14 − mRS1_3 | rs494356TC | 0.87 | 0.37 | 0.15 | 1.6 | 0.02 | 2.38 | 1.16 | 4.95 |
Additive | ∆ = mRS14 − mRS1_4 | rs907611GG | −1.15 | 0.48 | −2.11 | −0.2 | 0.02 | 0.32 | 0.12 | 0.82 |
Additive | ∆ = mRS14 − mRS1_1b | rs494356TC | 1.2 | 0.45 | 0.33 | 2.12 | 0.01 | 3.32 | 1.39 | 8.32 |
Additive | ∆ = mRS14 − mRS1_1c | rs907611GG | 1.35 | 0.61 | 0.18 | 2.58 | 0.03 | 3.84 | 1.19 | 13.24 |
Additive | Study 4 | rs494356TC | 0.87 | 0.34 | 0.22 | 1.54 | 0.01 | 2.4 | 1.25 | 4.66 |
Dominant | ∆ = mRS14 − mRS1_3 | rs494356 | 0.75 | 0.34 | 0.08 | 1.43 | 0.03 | 2.12 | 1.08 | 4.19 |
Dominant | ∆ = mRS14 − mRS1_1b | rs494356 | 1.12 | 0.43 | 0.3 | 1.98 | 0.01 | 3.06 | 1.35 | 7.25 |
Dominant | Study 4 | rs494356 | 0.81 | 0.32 | 0.19 | 1.44 | 0.01 | 2.24 | 1.21 | 4.21 |
Recessive | severity 5 | rs858239 | −0.61 | 0.28 | −1.16 | −0.06 | 0.03 | 0.55 | 0.31 | 0.94 |
Recessive | Study 2 | rs858239 | −0.79 | 0.3 | −1.39 | −0.2 | 0.01 | 0.45 | 0.25 | 0.82 |
Recessive | Study 1 | rs858239 | −0.89 | 0.34 | −1.54 | −0.22 | 0.01 | 0.41 | 0.21 | 0.8 |
Recessive | ∆ = mRS14 − mRS1_4 | rs907611 | 0.9 | 0.38 | 0.13 | 1.64 | 0.02 | 2.47 | 1.14 | 5.2 |
Recessive | ∆ = mRS14 − mRS1_1b | rs494356 | −1.11 | 0.42 | −1.98 | −0.3 | 0.01 | 0.33 | 0.14 | 0.74 |
Overdominant | ∆ = mRS14 − mRS1_1b | rs494356 | 0.87 | 0.38 | 0.14 | 1.63 | 0.02 | 2.39 | 1.15 | 5.08 |
Overdominant | Study 4 | rs494356 | 0.65 | 0.29 | 0.08 | 1.22 | 0.03 | 1.91 | 1.08 | 3.4 |
SNP | chr | Position (GRCh38) | Alleles | Gene | Primer and Probe Sequences | Ta, °C |
---|---|---|---|---|---|---|
rs858239 | 7 | 23,246,696 | G/A | GPNMB | 5′-(FAM)TCAGGCAATGCCGC(BHQ1)-3′ 5′-(VIC) CAGGCAGTGCCGC(BHQ2)-3′ 5′-AGGAGTGAGTCATAAGC-3′ 5′-CCACCAAGAGCAACA-3′ | 57 |
rs34323745 | 7 | 23,272,449 | C/A | GPNMB | 5′-(FAM)CAGCAAAAACCTGTCTGAA(BHQ1)-3′ 5′-(VIC)CAGCAAAACCCTGTCTGA(BHQ2)-3′ 5′-GAGCCCAGAAGTCCAG-3′ 5′-ATCCCCACTGAATTAAAACC-3′ | 60 |
rs11267036 | 18 | 12,308,794 | G/C | TUBB6 | 5′-(FAM)TGCTACTCACACGATGACTC(BHQ1)-3′ 5′-(VIC)TGCTACTCACAGGATGACTC(BHQ2)-3′ 5′-AGGCTACGTGGGAGA-3′ 5′-GCCGCGCTAAGAGG-3′ | 60 |
rs907611 | 11 | 1,852,842 | G/A | LSP1 | 5′-(FAM)CCTGCGACCATCTTGG(BHQ1)-3′ 5′-(VIC) CTGCGGCCATCTTGG(BHQ2)-3′ 5′-CCCGAGCCATGAAGA-3′ 5′-GCTACAAGAGGAGAGGAA-3′ | 60 |
rs2089910 | 11 | 1,853,174 | C/T | LSP1 | 5′-(FAM)TCCTCAGCACCCGG(BHQ1)-3′ 5′-(VIC)TCCTCGGCACCCG(BHQ2)-3′ 5′-CAGACTACAGGCTGATG-3′ 5′-AGACCCTTACCCCAG-3′ | 58 |
rs494356 | 11 | 117,201,254 | T/C | TAGLN | 5′-(FAM)AGTGGTCCTGCCCC(BHQ1)-3′ 5′-(VIC)AGTGGTCCCGCCC(BHQ2)-3′ 5′-CCAGTGCTCAGAGAAC-3′ 5′-CGGACTCATCGAAGTG-3′ | 60 |
rs664922 | 11 | 117,200,179 | C/A | TAGLN | 5′-(FAM)CTACATAAATGTGTGCCAT(BHQ1)-3′ 5′-(VIC)CTACATAAATTTGTGCCATC(BHQ2)-3′ 5′-GGTCTTTCCCAAAGG-3′ 5′-GGACAAACAGGAGTG-3′ | 55 |
rs5759195 | 22 | 43,152,613 | G/C | TSPO | 5′-(FAM)TGGCTCTGCTGTCCT(BHQ1)-3′ 5′-(VIC)TGGCTCTCCTGTCCT(BHQ2)-3′ 5′-GCCTACTGCCAGAAC-3′ 5′-CCAGGTGGAGACTCA-3′ | 55 |
rs762959 | 22 | 43,155,001 | C/T | TSPO | 5′-(FAM)TGGCACCCTATGCCC(BHQ1)-3′ 5′-(VIC)TGGCACCCCATGCC(BHQ2)-3′ 5′-CTGACATGGGTGCTCAC-3′ 5′-CCTTCATGCTGGAGGTTC-3′ | 58 |
rs1261025 | 1 | 13,593,698 | A/G | PDPN | 5′-(FAM) TCAGGGCGTGCTCA(BHQ1)-3′ 5′-(VIC)ATCAGGGCATGCTCA(BHQ2)-3′ 5′-AGGTCAGATGCAAAGG-3′ 5′-TCGGAAACTGAATGGAA-3′ | 57 |
rs434651 | 1 | 13,590,314 | T/C | PDPN | 5′-(FAM)TGCAAGCTGCAATCACA(BHQ1)-3′ 5′-(VIC)TGCAAGCTACAATCACAG(BHQ2)-3′ 5′-CAGTGCTGGGAGTAC-3′ 5′-GTTGCTTGTATGTTCTTTC-3′ | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrunin, A.V.; Khvorykh, G.V.; Arapova, A.S.; Kulinskaya, A.E.; Koltsova, E.A.; Petrova, E.A.; Kimelfeld, E.I.; Limborska, S.A. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int. J. Mol. Sci. 2023, 24, 6831. https://doi.org/10.3390/ijms24076831
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. International Journal of Molecular Sciences. 2023; 24(7):6831. https://doi.org/10.3390/ijms24076831
Chicago/Turabian StyleKhrunin, Andrey V., Gennady V. Khvorykh, Anna S. Arapova, Anna E. Kulinskaya, Evgeniya A. Koltsova, Elizaveta A. Petrova, Ekaterina I. Kimelfeld, and Svetlana A. Limborska. 2023. "The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population" International Journal of Molecular Sciences 24, no. 7: 6831. https://doi.org/10.3390/ijms24076831
APA StyleKhrunin, A. V., Khvorykh, G. V., Arapova, A. S., Kulinskaya, A. E., Koltsova, E. A., Petrova, E. A., Kimelfeld, E. I., & Limborska, S. A. (2023). The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. International Journal of Molecular Sciences, 24(7), 6831. https://doi.org/10.3390/ijms24076831