Electrochemical Behavior of Reduced Graphene Oxide Supported Germanium Oxide, Germanium Nitride, and Germanium Phosphide as Lithium-Ion Battery Anodes Obtained from Highly Soluble Germanium Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Electrochemical Evaluation
3. Materials and Methods
3.1. Synthetic Procedures
3.1.1. Synthesis of Highly Soluble Germanium Oxide (HSGO)
3.1.2. Preparation of Graphene Oxide (GO) Dispersion
3.1.3. Synthesis of GeO2-rGO
3.1.4. Synthesis of Ge3N4-rGO
3.1.5. Synthesis of GeP-rGO
3.2. Material Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emsley, J. Nature’s Building Blocks: Everything You Need to Know about the Elements; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Lange, T.; Njoroge, W.; Weis, H.; Beckers, M.; Wuttig, M. Physical Properties of Thin GeO2 Films Produced by Reactive DC Magnetron Sputtering. Thin Solid Films 2000, 365, 82–89. [Google Scholar] [CrossRef]
- Xu, M.-F.; Shi, X.-B.; Jin, Z.-M.; Zu, F.-S.; Liu, Y.; Zhang, L.; Wang, Z.-K.; Liao, L.-S. Aqueous Solution-Processed GeO2: An Anode Interfacial Layer for High Performance and Air-Stable Organic Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 10866–10873. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Li, M.; Yuan, D.X.; Shi, X.B.; Ma, H.; Liao, L.S. Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Appl. Mater. Interfaces 2015, 7, 9645–9651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, J.; Zhang, Y.; Liu, J.; Ponraj, J.S.; Dhanabalan, S.C.; Zhai, T.; Liu, X.; Song, Y.; Zhang, H. 2D GeP-Based Photonic Device for near-Infrared and Mid-Infrared Ultrafast Photonics. Nanophotonics 2020, 9, 3645–3654. [Google Scholar] [CrossRef]
- Hayakawa, R.; Yoshida, M.; Ide, K.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Kunugi, S.; Uehara, T.; Fujimura, N. Structural Analysis and Electrical Properties of Pure Ge3N4 Dielectric Layers Formed by an Atmospheric-Pressure Nitrogen Plasma. J. Appl. Phys. 2011, 110, 064103. [Google Scholar] [CrossRef]
- Yuan, L.; Han, C.; Yang, M.-Q.; Xu, Y.-J. Photocatalytic Water Splitting for Solar Hydrogen Generation: Fundamentals and Recent Advancements. Int. Rev. Phys. Chem. 2016, 35, 1–36. [Google Scholar] [CrossRef]
- Jishiashvili, D.; Kapaklis, V.; Devaux, X.; Politis, C.; Kutelia, E.; Makhatadze, N.; Gobronidze, V.; Shiolashvili, Z. Germanium Nitride Nanowires Produced by Thermal Annealing in Hydrazine Vapor. Adv. Sci. Lett. 2009, 2, 40–44. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wang, W.; Zhang, E.H.; Xiao, W. Half-Metallic Ferromagnetism in Transition-Metal Doped Germanium Nitride: A First-Principles Study. Phys. Lett. A 2010, 374, 3234–3237. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, S.J.; Peng, G.W.; Wu, R.Q.; Feng, Y.P. Ab Initio Study on Intrinsic Defect Properties of Germanium Nitride Considered for Gate Dielectric. Appl. Phys. Lett. 2007, 91, 132906. [Google Scholar] [CrossRef]
- Maeda, K.; Saitoh, N.; Inoue, Y.; Domen, K. Dependence of Activity and Stability of Germanium Nitride Powder for Photocatalytic Overall Water Splitting on Structural Properties. Chem. Mater. 2007, 19, 4092–4097. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Zhu, T. Germanium-Based Electrode Materials for Lithium-Ion Batteries. ChemElectroChem 2014, 1, 706–713. [Google Scholar] [CrossRef]
- Bogart, T.D.; Chockla, A.M.; Korgel, B.A. High Capacity Lithium Ion Battery Anodes of Silicon and Germanium. Curr. Opin. Chem. Eng. 2013, 2, 286–293. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Fu, Y.; Qiao, L.; Li, D.; Yue, H.; He, D. Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium–Cobalt Oxide Lithium-Ion Battery. ACS Nano 2015, 9, 1858–1867. [Google Scholar] [CrossRef]
- Sierra, L.; Gibaja, C.; Torres, I.; Salagre, E.; Avilés Moreno, J.R.; Michel, E.G.; Ocón, P.; Zamora, F. Alpha-Germanium Nanolayers for High-Performance Li-Ion Batteries. Nanomaterials 2022, 12, 3760. [Google Scholar] [CrossRef]
- Loaiza, L.C.; Monconduit, L.; Seznec, V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism. Small 2020, 16, 1905260. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, Y.J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. Small Methods 2020, 4, 200218. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.Y.; Chang, B.; Wang, K.X. Recent Progress on Germanium-Based Anodes for Lithium Ion Batteries: Efficient Lithiation Strategies and Mechanisms. Energy Storage Mater. 2020, 30, 146–169. [Google Scholar] [CrossRef]
- Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O’Dwyer, C.; Ryan, K.M. High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles through in Situ Formation of a Continuous Porous Network. Nano Lett. 2014, 14, 716–723. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Zhang, X.F.; Cui, Y. High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano Lett. 2008, 8, 307–309. [Google Scholar] [CrossRef]
- Lee, G.-H.; Kwon, S.J.; Park, K.-S.; Kang, J.-G.; Park, J.-G.; Lee, S.; Kim, J.-C.; Shim, H.-W.; Kim, D.-W. Germanium Microflower-on-Nanostem as a High-Performance Lithium Ion Battery Electrode. Sci. Rep. 2014, 4, 6883. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Feng, C.; Liu, H.K.; Guo, Z. Hollow Carbon Spheres with Encapsulated Germanium as an Anode Material for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 978–981. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.T.; Kalubarme, R.S.; Le, H.T.T.; Park, C.-N.; Park, C.-J. Conducting Additive-Free Amorphous GeO2/C Composite as a High Capacity and Long-Term Stability Anode for Lithium Ion Batteries. Nanoscale 2015, 7, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Paek, S.M. Microwave-Assisted Synthesis of Ge/GeO2-Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Capacity for Lithium-Ion Batteries. Nanomaterials 2021, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, K.; Zhu, C.; Chen, C.C.; Van Aken, P.A.; Maier, J.; Yu, Y. Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries. ACS Nano 2014, 8, 7051–7059. [Google Scholar] [CrossRef] [PubMed]
- Jahel, A.; Darwiche, A.; Matei Ghimbeu, C.; Vix-Guterl, C.; Monconduit, L. High Cycleability Nano-GeO2/Mesoporous Carbon Composite as Enhanced Energy Storage Anode Material in Li-Ion Batteries. J. Power Source 2014, 269, 755–759. [Google Scholar] [CrossRef]
- McNulty, D.; Geaney, H.; Buckley, D.; O’Dwyer, C. High Capacity Binder-Free Nanocrystalline GeO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life and Stable Cell Voltage. Nano Energy 2018, 43, 11–21. [Google Scholar] [CrossRef]
- Yan, S.; Song, H.; Lin, S.; Wu, H.; Shi, Y.; Yao, J. GeO2 Encapsulated Ge Nanostructure with Enhanced Lithium-Storage Properties. Adv. Funct. Mater. 2019, 29, 1807946. [Google Scholar] [CrossRef]
- Son, Y.; Park, M.; Son, Y.; Lee, J.-S.; Jang, J.-H.; Kim, Y.; Cho, J. Quantum Confinement and Its Related Effects on the Critical Size of GeO2 Nanoparticles Anodes for Lithium Batteries. Nano Lett. 2014, 14, 1005–1010. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Yu, J.; Liao, J.; Zhao, B.; Huang, L.; Abdelhafiz, A.; Zhang, H.; Wang, J.H.; Guo, Z.; et al. A Self-Healing Layered GeP Anode for High-Performance Li-Ion Batteries Enabled by Low Formation Energy. Nano Energy 2019, 61, 594–603. [Google Scholar] [CrossRef]
- Kulova, T.L.; Skundin, A.M.; Gavrilin, I.M.; Kudryashova, Y.O.; Martynova, I.K.; Novikova, S.A. Binder-Free Ge-Co-P Anode Material for Lithium-Ion and Sodium-Ion Batteries. Batteries 2022, 8, 98. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Lu, Z.; Gan, L.; Ke, L.; Zhai, T.; Zhou, H. Layered Phosphorus-like GeP5: A Promising Anode Candidate with High Initial Coulombic Efficiency and Large Capacity for Lithium Ion Batteries. Energy Environ. Sci. 2015, 8, 3629–3636. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Shen, P.; Yang, L.; Li, Y.; Shi, Z.; Zhang, H. Layered GeP-Black P(Ge2P3): An Advanced Binary-Phase Anode for Li/Na-Storage. J. Ceram. Int. 2019, 45, 15711–15714. [Google Scholar] [CrossRef]
- Yan, Y.; Ruan, J.; Xu, H.; Xu, Y.; Pang, Y.; Yang, J.; Zheng, S. Fast and Stable Batteries with High Capacity Enabled by Germanium-Phosphorus Binary Nanoparticles Embedded in a Porous Carbon Matrix via Metallothermic Reduction. ACS Appl. Mater. Interfaces 2020, 12, 21579–21585. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Y.; Chang, Y.; Hao, R.; Ma, Z.; Wu, K.; Du, P.; Guo, B.; Lyu, Y.; Wang, P.; et al. Narrowing Working Voltage Window to Improve Layered GeP Anode Cycling Performance for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 17466–17473. [Google Scholar] [CrossRef]
- Kulova, T.; Gryzlov, D.; Skundin, A.; Gavrilin, I.; Kudryashova, Y.; Pokryshkin, N. Anode Material Synthesized from Red Phosphorus and Germanium Nanowires for Lithium-Ion and Sodium-Ion Batteries. Int. J. Electrochem. Sci 2021, 16, 211229. [Google Scholar] [CrossRef]
- Nam, K.H.; Sung, G.K.; Choi, J.H.; Youn, J.S.; Jeon, K.J.; Park, C.M. New High-Energy-Density GeTe-Based Anodes for Li-Ion Batteries. J. Mater. Chem. A 2019, 7, 3278–3288. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, L.; He, J.; Guo, Y.; Qin, R.; Li, H.; Zhai, T. Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe2 for High Performance Li-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703635. [Google Scholar] [CrossRef]
- Feng, D.; Liu, Q.; Li, Z.; Zeng, T. Confining Nano-GeS2 in Cross-Linked Porous Carbon Networks for High-Performance and Flexible Li-Ion Battery Anodes. ACS Appl. Energy Mater. 2021, 4, 6096–6105. [Google Scholar] [CrossRef]
- Zeng, T.; Feng, D.; Liu, Q.; Hao, S.; Zhou, R. Boosting Cyclability Performance of GeP Anode via In-Situ Generation of Free Expansion Volume. J. Alloys Compd. 2021, 883, 160857. [Google Scholar] [CrossRef]
- Tseng, K.W.; Huang, S.B.; Chang, W.C.; Tuan, H.Y. Synthesis of Mesoporous Germanium Phosphide Microspheres for High-Performance Lithium-Ion and Sodium-Ion Battery Anodes. Chem. Mater. 2018, 30, 4440–4447. [Google Scholar] [CrossRef]
- Kulova, T.; Gryzlov, D.; Skundin, A.; Gavrilin, I.; Martynova, I.; Kudryashova, Y. Causes of Germanium Phosphide Degradation under Prolonged Cycling. EIS Study. Int. J. Electrochem. Sci. 2022, 17, 220224. [Google Scholar] [CrossRef]
- Pereira, N.; Balasubramanian, M.; Dupont, L.; McBreen, J.; Klein, L.C.; Amatucci, G.G. The Electrochemistry of Germanium Nitride with Lithium. J. Electrochem. Soc. 2003, 150, A1118. [Google Scholar] [CrossRef]
- Nakhutsrishvili, I.G.; Dzhishiashvili, D.A.; Miminoshvili, E.B.; Mushkudiani, M.A. Preparation of Germanium Oxynitride Films in Ammonia. Inorg. Mater. 2000, 36, 1340–1341. [Google Scholar] [CrossRef]
- Kim, C.; Hwang, G.; Jung, J.W.; Cho, S.H.; Cheong, J.Y.; Shin, S.; Park, S.; Kim, I.D. Fast, Scalable Synthesis of Micronized Ge3N4@C with a High Tap Density for Excellent Lithium Storage. Adv. Funct. Mater. 2017, 27, 1605975. [Google Scholar] [CrossRef]
- Ramana, C.V.; Troitskaia, I.B.; Gromilov, S.A.; Atuchin, V.V. Electrical Properties of Germanium Oxide with α-Quartz Structure Prepared by Chemical Precipitation. Ceram. Int. 2012, 38, 5251–5255. [Google Scholar] [CrossRef]
- Qiu, H.; Zeng, L.; Lan, T.; Ding, X.; Wei, M. In Situ Synthesis of GeO2/Reduced Graphene Oxide Composite on Ni Foam Substrate as a Binder-Free Anode for High-Capacity Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 1619–1623. [Google Scholar] [CrossRef]
- Qin, W.; Chen, T.; Hu, B.; Sun, Z.; Pan, L. GeO2 Decorated Reduced Graphene Oxide as Anode Material of Sodium Ion Battery. Electrochim. Acta 2015, 173, 193–199. [Google Scholar] [CrossRef]
- Ma, D.-L.; Yuan, S.; Huang, X.-L.; Cao, Z.-Y. Synthesis of Ultrathin GeO2-Reduced Graphene Oxide (RGO) Sheets for a High-Capacity Lithium-Ion Battery Anode. Energy Technol. 2014, 2, 342–347. [Google Scholar] [CrossRef]
- Medvedev, A.G.; Mikhaylov, A.A.; Grishanov, D.A.; Yu, D.Y.W.; Gun, J.; Sladkevich, S.; Lev, O.; Prikhodchenko, P.V. GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode. ACS Appl. Mater. Interfaces 2017, 9, 9152–9160. [Google Scholar] [CrossRef]
- Lv, D.; Gordin, M.L.; Yi, R.; Xu, T.; Song, J.; Jiang, Y.B.; Choi, D.; Wang, D. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance. Adv. Funct. Mater. 2014, 24, 1059–1066. [Google Scholar] [CrossRef]
- Qin, J.; Cao, M. Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries. Chem.-Asian J. 2016, 11, 1169–1182. [Google Scholar] [CrossRef]
- Sladkevich, S.; Mikhaylov, A.A.; Prikhodchenko, P.V.; Tripol’skaya, T.A.; Lev, O. Antimony Tin Oxide (ATO) Nanoparticle Formation from H2O2 Solutions: A New Generic Film Coating from Basic Solutions. Inorg. Chem. 2010, 49, 9110–9112. [Google Scholar] [CrossRef]
- Sladkevich, S.; Gun, J.; Prikhodchenko, P.V.; Gutkin, V.; Mikhaylov, A.A.; Medvedev, A.G.; Tripol’skaya, T.A.; Lev, O. The Formation of a Peroxoantimonate Thin Film Coating on Graphene Oxide (GO) and the Influence of the GO on Its Transformation to Antimony Oxides and Elemental Antimony. Carbon 2012, 50, 5463–5471. [Google Scholar] [CrossRef]
- Grishanov, D.A.; Mikhaylov, A.A.; Medvedev, A.G.; Gun, J.; Prikhodchenko, P.V.; Xu, Z.J.; Nagasubramanian, A.; Srinivasan, M.; Lev, O. Graphene Oxide-Supported β-Tin Telluride Composite for Sodium- and Lithium-Ion Battery Anodes. Energy Technol. 2018, 6, 127–133. [Google Scholar] [CrossRef]
- Mikhaylov, A.A.; Medvedev, A.G.; Tripol’skaya, T.A.; Popov, V.S.; Mokrushin, A.S.; Krut’ko, D.P.; Prikhodchenko, P.V.; Lev, O. H2O2 Induced Formation of Graded Composition Sodium-Doped Tin Dioxide and Template-Free Synthesis of Yolk–Shell SnO2 Particles and Their Sensing Application. Dalton Transact. 2017, 46, 16171–16179. [Google Scholar] [CrossRef]
- Mikhaylov, A.A.; Medvedev, A.G.; Grishanov, D.A.; Sladkevich, S.; Gun, J.; Prikhodchenko, P.V.; Xu, Z.J.; Nagasubramanian, A.; Srinivasan, M.; Lev, O. Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode. Langmuir 2018, 34, 2741–2747. [Google Scholar] [CrossRef]
- Prikhodchenko, P.V.; Gun, J.; Sladkevich, S.; Mikhaylov, A.A.; Lev, O.; Tay, Y.Y.; Batabyal, S.K.; Yu, D.Y.W. Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3 Graphene for a Superior Lithium Battery Anode. Chem. Mater. 2012, 24, 4750–4757. [Google Scholar] [CrossRef]
- Lakshmi, V.; Chen, Y.; Mikhaylov, A.A.; Medvedev, A.G.; Sultana, I.; Rahman, M.M.; Lev, O.; Prikhodchenko, P.V.; Glushenkov, A.M. Nanocrystalline SnS2 Coated onto Reduced Graphene Oxide: Demonstrating the Feasibility of a Non-Graphitic Anode with Sulfide Chemistry for Potassium-Ion Batteries. Chem. Commun. 2017, 53, 8272–8275. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V.; Mikhaylov, A.A.; Medvedev, A.G.; Zhang, C.; Ramireddy, T.; Rahman, M.M.; Cizek, P.; Golberg, D.; Chen, Y.; Lev, O.; et al. Probing Electrochemical Reactivity in an Sb2S3-Containing Potassium-Ion Battery Anode: Observation of an Increased Capacity. J. Mater. Chem. A 2020, 8, 11424–11434. [Google Scholar] [CrossRef]
- Prikhodchenko, P.V.; Yu, D.Y.W.; Batabyal, S.K.; Uvarov, V.; Gun, J.; Sladkevich, S.; Mikhaylov, A.A.; Medvedev, A.G.; Lev, O. Nanocrystalline Tin Disulfide Coating of Reduced Graphene Oxide Produced by the Peroxostannate Deposition Route for Sodium Ion Battery Anodes. J. Mater. Chem. A 2014, 2, 8431–8437. [Google Scholar] [CrossRef]
- Mikhaylov, A.A.; Medvedev, A.G.; Mason, C.W.; Nagasubramanian, A.; Madhavi, S.; Batabyal, S.K.; Zhang, Q.; Gun, J.; Prikhodchenko, P.V.; Lev, O. Graphene Oxide Supported Sodium Stannate Lithium Ion Battery Anodes by the Peroxide Route: Low Temperature and No Waste Processing. J. Mater. Chem. A 2015, 3, 20681–20689. [Google Scholar] [CrossRef]
- Yu, D.Y.W.; Batabyal, S.K.; Gun, J.; Sladkevich, S.; Mikhaylov, A.A.; Medvedev, A.G.; Novotortsev, V.M.; Lev, O.; Prikhodchenko, P.V. Antimony and Antimony Oxide@graphene Oxide Obtained by the Peroxide Route as Anodes for Lithium-Ion Batteries. Main Group Metal Chem. 2015, 38, 43–50. [Google Scholar] [CrossRef]
- Sladkevich, S.; Gun, J.; Prikhodchenko, P.V.; Gutkin, V.; Mikhaylov, A.A.; Novotortsev, V.M.; Zhu, J.X.; Yang, D.; Hng, H.H.; Tay, Y.Y.; et al. Peroxide Induced Tin Oxide Coating of Graphene Oxide at Room Temperature and Its Application for Lithium Ion Batteries. Nanotechnology 2012, 23, 485601. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.W.; Prikhodchenko, P.V.; Mason, C.W.; Batabyal, S.K.; Gun, J.; Sladkevich, S.; Medvedev, A.G.; Lev, O. High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries. Nat. Commun. 2013, 4, 2922. [Google Scholar] [CrossRef] [Green Version]
- Alpen, U.V.; Rabenau, A.; Talat, G.H. Ionic Conductivity in Li3N Single Crystals. Appl. Phys. Lett. 2008, 30, 621. [Google Scholar] [CrossRef]
- Nazri, G. Preparation, Structure and Ionic Conductivity of Lithium Phosphide. Solid State Ion. 1989, 34, 97–102. [Google Scholar] [CrossRef]
- Hayashi, A.; Iio, K.; Morimoto, H.; Minami, T.; Tatsumisago, M. Mechanochemical Synthesis of Amorphous Solid Electrolytes Using SiS2 and Various Lithium Compounds. Solid State Ion. 2004, 175, 637–640. [Google Scholar] [CrossRef]
- Miyamura, M.; Tomura, S.; Imai, A.; Inomata, S. Electrochemical Studies of Lithium Nitride Solid Electrolyte for Electrochromic Devices. Solid State Ion. 1981, 3–4, 149–152. [Google Scholar] [CrossRef]
- Nazri, G. Preparation, Characterization and Conductivity of Li3N, Li3P and Li3As. MRS Proc. 1988, 135, 117–130. [Google Scholar] [CrossRef]
- Grishanov, D.A.; Churakov, A.V.; Medvedev, A.G.; Mikhaylov, A.A.; Lev, O.; Prikhodchenko, P.V. Crystalline Ammonium Peroxogermanate as a Waste-Free, Fully Recyclable Versatile Precursor for Germanium Compounds. Inorg. Chem. 2019, 58, 1905–1911. [Google Scholar] [CrossRef]
- Kansuzyan, A.V.; Farafonova, S.D.; Saverina, E.A.; Krylova, I.V.; Balycheva, V.A.; Akyeva, A.Y.; Medvedev, A.G.; Nikolaevskaya, E.N.; Egorov, M.P.; Prikhodchenko, P.V.; et al. Highly Soluble Germanium Dioxide as a New Source of Germanium for Derivatization with Organic Compounds. Mend. Commun. 2022, 32, 25–27. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. An Estimation of the Correctness of XRD Results Obtained from the Analysis of Materials with Bimodal Crystallite Size Distribution. CrystEngComm 2015, 17, 8300–8306. [Google Scholar] [CrossRef]
- Wei, W.; Guo, L. One-Step In Situ Synthesis of GeO2/Graphene Composites Anode for High-Performance Li-Ion Batteries. Part. Part. Syst. Charact. 2013, 30, 658–661. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.P.; Liao, H.; Wang, J.; Feng, Z.; Lev, O.; Loo, J.S.C.; Sougrati, M.T.; Xu, Z.J. Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Na-Ion Batteries. Small 2018, 14, 1703338. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zhang, S.; Yang, J.; Shao, Z.; Guo, Z. Recent Progress on Sodium Ion Batteries: Potential High-Performance Anodes. Energy Environ. Sci. 2018, 11, 2310–2340. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T.; Kuo, C.T.; Yew, T.R. Investigation on the Voltage Hysteresis of Mn3O4 for Lithium-Ion Battery Applications. ACS Appl. Mater. Interfaces 2021, 13, 570–579. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Eng, C.; Wang, J. Elucidating the Irreversible Mechanism and Voltage Hysteresis in Conversion Reaction for High-Energy Sodium–Metal Sulfide Batteries. Adv. Energy Mater. 2017, 7, 1602706. [Google Scholar] [CrossRef]
- Mikhaylov, A.A.; Medvedev, A.G.; Buldashov, I.A.; Fazliev, T.M.; Mel’nik, E.A.; Tripol’skaya, T.A.; Sladkevich, S.; Nikolaev, V.A.; Lev, O.; Prikhodchenko, P.V. Green Synthesis of Zinc Sulfide-Reduced Graphene Oxide Composite and Its Application in Sodium-Ion Batteries. J. Alloys Compd. 2022, 910, 164769. [Google Scholar] [CrossRef]
- Zhong, K.; Xia, X.; Zhang, B.; Li, H.; Wang, Z.; Chen, L. MnO Powder as Anode Active Materials for Lithium Ion Batteries. J. Power Source 2010, 195, 3300–3308. [Google Scholar] [CrossRef]
Material | C, wt.% (by CHN) | N, wt.% (by CHN) | Ge:P, at:at (by EDX) |
---|---|---|---|
GeO2-rGO-80 | 16.7 | ||
GeO2-rGO-50 | 42.9 | ||
GeO2-rGO-20 | 75.5 | ||
Ge3N4-rGO-80 | 25.0 | 12.0 | |
Ge3N4-rGO-50 | 48.0 | 9.4 | |
Ge3N4-rGO-20 | 76.2 | 6.8 | |
GeP-rGO-80 | 13.5 | 1.1 | |
GeP-rGO-50 | 45.1 | 0.9 | |
GeP-rGO-20 | 74.3 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhaylov, A.A.; Medvedev, A.G.; Grishanov, D.A.; Fazliev, T.M.; Chernyshev, V.; Mel’nik, E.A.; Tripol’skaya, T.A.; Lev, O.; Prikhodchenko, P.V. Electrochemical Behavior of Reduced Graphene Oxide Supported Germanium Oxide, Germanium Nitride, and Germanium Phosphide as Lithium-Ion Battery Anodes Obtained from Highly Soluble Germanium Oxide. Int. J. Mol. Sci. 2023, 24, 6860. https://doi.org/10.3390/ijms24076860
Mikhaylov AA, Medvedev AG, Grishanov DA, Fazliev TM, Chernyshev V, Mel’nik EA, Tripol’skaya TA, Lev O, Prikhodchenko PV. Electrochemical Behavior of Reduced Graphene Oxide Supported Germanium Oxide, Germanium Nitride, and Germanium Phosphide as Lithium-Ion Battery Anodes Obtained from Highly Soluble Germanium Oxide. International Journal of Molecular Sciences. 2023; 24(7):6860. https://doi.org/10.3390/ijms24076860
Chicago/Turabian StyleMikhaylov, Alexey A., Alexander G. Medvedev, Dmitry A. Grishanov, Timur M. Fazliev, Vasilii Chernyshev, Elena A. Mel’nik, Tatiana A. Tripol’skaya, Ovadia Lev, and Petr V. Prikhodchenko. 2023. "Electrochemical Behavior of Reduced Graphene Oxide Supported Germanium Oxide, Germanium Nitride, and Germanium Phosphide as Lithium-Ion Battery Anodes Obtained from Highly Soluble Germanium Oxide" International Journal of Molecular Sciences 24, no. 7: 6860. https://doi.org/10.3390/ijms24076860
APA StyleMikhaylov, A. A., Medvedev, A. G., Grishanov, D. A., Fazliev, T. M., Chernyshev, V., Mel’nik, E. A., Tripol’skaya, T. A., Lev, O., & Prikhodchenko, P. V. (2023). Electrochemical Behavior of Reduced Graphene Oxide Supported Germanium Oxide, Germanium Nitride, and Germanium Phosphide as Lithium-Ion Battery Anodes Obtained from Highly Soluble Germanium Oxide. International Journal of Molecular Sciences, 24(7), 6860. https://doi.org/10.3390/ijms24076860