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Abstract: Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety
of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and
development, but its regulatory mechanisms are not well understood, especially in goats. In this
study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression
levels changed during longissimus dorsi muscle development in goats. The effects of HuR on
goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as
a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1
(MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the
knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression
significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes
affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small
interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated
differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were
screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the
expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the
siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA
stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the
rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact
of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in
promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA.

Keywords: HuR; goat; Myomaker; MuSCs; stability

1. Introduction

Approximately 40 to 60 percent of an adult animal’s body weight is composed of
skeletal muscle, making it the most abundant type of tissue in the body [1]. Skeletal muscle
is composed of multinucleated contractile muscle cells (also called myofibers). During de-
velopment, myofibers are formed by the fusion of progenitors from the mesoderm, known
as myoblasts. In neonatal/juvenile stages, the number of myofibers remains constant,
but each myofiber grows in size through the fusion of muscle satellite cells (MuSCs), a
population of postnatal muscle stem cells [2,3]. In general, muscle satellite cells account
for 30–35% of the sublaminal nuclei on myofibers in early postnatal murine muscles, and
this number declines to 2–7% in adult muscles [2]. In adult skeletal muscle, MuSCs are
quiescent but become active when skeletal muscle is damaged. When MuSCs become
activated, they produce progeny and myoblasts and finally differentiate and fuse to form

Int. J. Mol. Sci. 2023, 24, 6893. https://doi.org/10.3390/ijms24086893 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24086893
https://doi.org/10.3390/ijms24086893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3449-9682
https://orcid.org/0000-0003-3429-9082
https://orcid.org/0000-0001-9672-7703
https://orcid.org/0000-0001-9773-2280
https://orcid.org/0000-0001-9953-9898
https://orcid.org/0000-0003-2459-3499
https://orcid.org/0000-0001-8290-7041
https://doi.org/10.3390/ijms24086893
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24086893?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 6893 2 of 14

myotubes [4]. At the cellular level, myogenesis is controlled by the sequential expression of
transcriptional regulators involving myogenic regulatory factors (MRFs), myocyte enhancer
factor 2 (MEF2), and the Pax (paired box) family [5–7]. There is mounting evidence that
long, noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs)
play a role in the regulation of myogenesis [8–10]. It is worth mentioning that myogenesis
is also controlled by the interaction between RNA binding proteins (RBPs) and coding and
non-coding RNAs, which contributes to the growth and development of skeletal muscle
satellite cells (MuSC) [11,12].

The RNA-binding protein HuR, also known as ELAV (embryonic lethal abnormal
vision), like RNA-binding protein 1 (ELAV 1), is a crucial RNA binding protein that is
widely expressed in various tissues of the body and plays key roles in several biological
processes. In skeletal muscle, HuR plays a key role in the differentiation via stabilization
of the mRNA transcripts of many important myogenic factors such as Myogenin, MyoD,
and p21 [13,14]. During the early stages of myogenesis, HuR promotes the expression
of the alarmin HMGB1 by preventing the miR-1192-mediated translation inhibition of
its mRNA [15]. Simultaneously, HuR collaborates with the RBP KSRP (KH-type splicing
regulatory protein) to reduce the expression of the nucleophosmin (NPM) protein by
destabilizing its mRNA [16]. Linc-MD1 was the first lncRNA to be shown to play a relevant
role in muscle differentiation by regulating specific myogenic factors required for the
onset of late muscle gene transcription [17]. HuR regulates the expression of Linc-MD1 by
favoring its accumulation in the cytoplasm at the expense of miR-133b synthesis, which
is necessary for the correct progression of muscle differentiation [18]. In addition, the
lncRNA OIP5-AS1 has been shown to bind to the 3′UTR of the myocyte-specific enhancer
factor 2C (MEF2C) mRNA, whereas HuR binds both transcripts in myoblasts. HuR bound
to MEF2C mRNA optimally only in the presence of OIP5-AS1. In turn, HuR binding to
MEF2C mRNA results in the stabilization of MEF2C mRNA, increasing MEF2C levels
and promoting myogenesis [19]. Another study found that HuR inhibition results in
impaired metabolic flexibility and decreased lipid oxidation, suggesting a role for HuR as
an important regulator of skeletal muscle metabolism [20]. Moreover, HuR counteracts
miR-330 to promote STAT3 (signal transducer and activator of transcription 3) translation
during inflammation-induced muscle wasting [21]. During the transition of myoblasts to
myotubes, HuR associates with the YB1 protein in an RNA-independent manner. This
complex is then recruited to a consensus motif in the 3′UTR of target mRNAs such as
MyoG, MyoD, and c-Myc. As a result, the HuR/YB1 complex increases the stability of
these mRNAs, resulting in the formation and maintenance of muscle fibers [22]. Despite
several decades of study on HuR, our knowledge about its functions and mechanisms is
still limited.

Here, we discovered that HuR is highly expressed in skeletal muscle tissues and is
able to facilitate the differentiation of myoblasts effectively. Moreover, we identified the
Myomaker as a novel HuR-binding partner during myogenic differentiation. Mechanisti-
cally, HuR binds to Myomaker and increases the mRNA stability of Myomaker, thereby
activating MuSC differentiation by positively regulating the expression of Myomaker. In
this study, we demonstrate that HuR is a crucial posttranslational regulator of muscle
differentiation and identify a novel target of HuR in the promotion of muscle differentiation
in goats.

2. Results
2.1. Expression Patterns of HuR

We performed a qRT-PCR to determine the HuR expression level in various goat
tissues (lung, kidney, liver, brain, longissimus dorsi muscle, semitendinosus muscle, gas-
trocnemius muscle, psoas major muscle, adductor muscle, and semimembranosus muscle).
The results showed that HuR is highly enriched in skeletal muscles (Figure 1A). In the
longissimus dorsi muscle (LD), the expression level of HuR peaked on day 90 of gestation
(Figure 1B). The muscle cell differentiation goat model was successfully constructed in
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order to detect the expression of HuR in goat muscle cells (Figure 1C,D). In addition, the ex-
pression levels of MyoG (marker of myogenic differentiation) during MuSC differentiation
were quantified (Figure 1E). The expression of MyoG is consistent with a previous study [8]
and demonstrated that HuR expression could be quantified accurately (Figure 1E). Further-
more, the expression levels of HuR during goat MuSC differentiation were measured, and
the results indicated that the expression of HuR fluctuates during MuSC differentiation
(Figure 1F).

2.2. HuR Promotes MuSC Differentiation in Goats

To address the function of HuR on the muscle differentiation, we conducted a func-
tional gain/loss experiment on HuR in MuSCs. The results showed that the overexpression
of HuR by the pEGFP-HuR vector significantly enhanced the mRNA expression of MyoG,
MyoD, and MyHC (Figure 2A) and the protein abundance of MyHC (Figure 2B), whereas
the knockdown of HuR had the opposite effect (Figure 2D,E). In addition, the immunoflu-
orescence of MyHC showed that the overexpression of HuR resulted in the promotion
of MuSC differentiation; this was assessed by an increased MyHC immunostaining and
fusion index (Figure 2C). In contrast, the knockdown of HuR inhibits the differentiation of
MuSCs, with a reduced MyHC immunostaining and fusion index (Figure 2F).

HuR promoted muscle differentiation by enhancing the mRNA stability of MyoD and
MyoG in previous studies [23]. To monitor the effect of HuR on the stability of MyoD and
MyoG mRNA after transfection with siRNA control and siRNA-HuR, we treated cultured
MuSCs with actinomycin D (ActD, 5 µg/mL) to compromise the transcription process [24].
We extracted total RNA from MuSCs at 0, 1, 2, and 3 h after ActD treatment. We found that
the stability of the MyoD and MyoG mRNA was significantly reduced in the siRNA-HuR
group compared with the control group (Figure 2G,H). As the internal reference gene, the
mRNA stability of GAPDH remained unchanged (Figure 2I). These results indicate that
HuR promotes the differentiation of MuSCs by increasing the mRNA stability of MyoD
and MyoG in goats.

2.3. Identification of HuR Downstream Targets

In order to systematically screen the downstream genes affected by HuR at the dif-
ferentiation stage, we sequenced mRNA transcriptomes using siRNA-HuR and siRNA-
control samples. First, the qRT-RCR results showed the successful knockdown of HuR in
MuSCs after transfection with the siRNA-HuR and siRNA-control using ACTIN, GAPDH,
and PGK1 as reference genes, respectively (Figure 3A). The samples were then used for
mRNA-seq. A total of 144 differentially expressed genes (DEGs) were identified, including
31 upregulated and 113 downregulated DEGs (Figure 3B). Moreover, a GO enrichment
analysis revealed that the DEGs were primarily involved in biological processes such as
muscle structure development, muscle system process, and muscle organ development
(Figure 3C). As a result of the KEGG analysis, the DEGs were found to be enriched in
muscle-differentiation-related pathways, such as the PI3K-Akt signaling pathway and the
MAPK signaling pathway (Figure 3D). A total of 11 DEGs related to muscle differentiation
were screened for qRT-PCR detection. The results indicated that three DEGs (Myomaker,
CHRNA1, and CAPN6) were significantly decreased in the HuR interference group com-
pared with the control group (p < 0.01) (Figure 3E). It is noteworthy that Myomaker is
a muscle-specific membrane protein that actively regulates the fusion of mononuclear
myoblasts into multinucleated myofibers, as indicated in a previous study [25–27]. Thus,
we performed RNA immunoprecipitation to explore the binding relationship between the
HuR protein and Myomaker. Interestingly, we found that Myomaker was highly enriched
by the HuR antibody compared with the control IgG (Figure 3F). These results imply that
HuR most likely promotes muscle differentiation in goats by regulating Myomaker.
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Figure 1. The expression profile of HuR. (A) qRT-PCR analysis of HuR expression in different tissues
of goats on the third day after birth (B3). (B) The expression pattern of HuR in the developmental LD
muscle. The embryonic period is defined as (E), and the postnatal period is defined as (B). (C) Rep-
resentative immunofluorescence images of MuSCs stained using anti-Pax7 (green) and cultured in
growth medium (GM). (D) MyHC immunofluorescence staining of MuSCs cultured in differentiation
medium (DM) for 5 days. (E) The expression level of MyoG during MuSC differentiation (cultured in
the growth medium (P1) and differentiation medium for 0, 1, 3, 5, and 7 days). (F) The expression
pattern of HuR during differentiation of goat MuSCs (cultured in the growth medium (P1) and
differentiation medium for 0, 1, 3, 5, and 7 days). Data are means ± standard error from at least three
biological replicates.
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Figure 2. HuR promotes the differentiation of goat MuSCs. (A) The expression levels of HuR
and muscle differentiation marker genes (MyoD, MyoG, and MyHC) were determined in MuSCs
transfected with pEGFP-HuR or pEGFP-control. (B) MyHC protein levels were determined in MuSCs
transfected with pEGFP-HuR or pEGFP-control. (C) Immunofluorescence detection of MyHC in
MuSCs after 4 days of pEGFP-HuR transfection. DAPI labelling was used to view cell nuclei (blue).
The fusion index of myotubes was calculated. Scale bars = 200 µm. (D) The expression levels of HuR
and muscle differentiation marker genes (MyoD, MyoG, and MyHC) were determined in MuSCs
transfected with siRNA-HuR or siRNA-control. (E) The protein levels of MyHC were determined
in MuSCs transfected with siRNA-HuR or siRNA-control. (F) Immunofluorescence examination of
MyHC-stained cells transfected with siRNA-HuR or siRNA-control for four days. Cell nuclei were
visualized with DAPI (blue). The fusion index of myotubes was calculated. Scale bars = 200 µm.
(G,H) HuR knockdown inhibits the stability of MyoD and MyoG mRNA. (I) HuR knockdown does
not affect the stability of the internal reference gene GAPDH. The data are represented by the average
of three independent experiments ± SEM; * p < 0.05; ** p < 0.01.
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Figure 3. Identification of HuR downstream targets. (A) qRT-PCR showed that the expression
of HuR in MuSCs transfected with siRNA-control or siRNA-HuR using different reference genes.
(B) Numbers of upregulated and downregulated DEGs in goat MuSCs. (C) GO enrichment analysis
of DEGs. (D) KEGG pathway enrichment analysis of DEGs. (E) qRT-PCR detection of 11 DEGs
related to muscle differentiation. (F) RIP assay was carried out using HuR antibody, with IgG as the
negative control. The H19 group served as a positive control. The data are represented by the average
of three independent experiments ± SEM, * p < 0.05, ** p < 0.01.
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2.4. HuR Promotes the Differentiation of Goat MuSCs by Regulating Myomaker mRNA Stability

To explore whether Myomaker was regulated by HuR in goat MuSCs, we detected
Myomaker mRNA and protein expression in MuSCs with HuR overexpression or HuR
knockdown. The results showed that both Myomaker mRNA and protein were significantly
increased when HuR was overexpressed (Figure 4A,B), while they were significantly
decreased when HuR was knocked down (Figure 4C,D). To examine whether HuR regulated
Myomaker expression in a post-transcription mechanism and in order to assess the effect of
HuR on the stability of Myomaker mRNA, siRNA-control and siRNA-HuR were transfected
into MuSCs differentiated for three days. The cultured MuSCs were then treated with
actinomycin D (ActD, 5 µg/mL). The results of the qRT-PCR showed that the stability of
the Myomaker mRNA was significantly reduced in the siRNA-HuR group (Figure 4E).

Furthermore, we performed co-transfection experiments using a HuR overexpression
vector and Myomaker siRNA transfected into MuSCs differentiated for 3 days. The re-
sults showed that Myomaker knockdown decreased MyoG and MyHC expression levels.
However, HuR overexpression abrogates this effect (Figure 4F,G). This indicates that HuR
modulates the effect of Myomaker on MuSC differentiation. These results suggest that HuR
promotes the differentiation of goat MuSCs by enhancing Myomaker stability.
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Figure 4. HuR promotes MuSC differentiation by modulating Myomaker stability. (A) The expression
levels of HuR and Myomaker were determined in MuSCs transfected with pEGFP-HuR or pEGFP-
control. (B) Myomaker protein levels were determined in MuSCs transfected with pEGFP-HuR
or pEGFP-control. (C) The expression levels of HuR and Myomaker were determined in MuSCs
transfected with siRNA-HuR or siRNA-control. (D) Myomaker protein levels were determined
in MuSCs transfected with siRNA-HuR or siRNA-control. (E) qRT-PCR results showed that HuR
knockdown inhibited the stability of the Myomaker mRNA. (F) The expression of HuR and Myomaker
were determined after treatment with pEGFP-HuR and/or siRNA-Myomaker. (G) The expression of
MyoG and MyHC was determined after treatment with pEGFP-HuR and/or siRNA-Myomaker. The
data are represented by the average of three independent experiments ± SEM, * p < 0.05, ** p < 0.01.
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3. Discussion

HuR plays critical roles in muscle development and disease. Previous studies have
established that HuR promotes the differentiation of muscle by regulating the expression of
myogenic regulators (p21, MyoD, MyoG). In addition, lncMGPF regulates myogenesis by
enhancing the stability of HuR-mediated mRNAs such as MyoD and MyoG. It promotes
muscle differentiation by facilitating HuR migration from the nucleus to the cytoplasm [28].
HuR promotes the transcription of the cardiac sodium channel gene (SCN5A) by binding
to and enhancing the stability of MEF2C mRNA [29]. However, our knowledge of its
role in muscle differentiation is still limited to goats. In the present study, we found that
HuR expression was significantly higher in skeletal muscle than in other goat tissues, and
expression changed during MuSC differentiation, suggesting that HuR might be involved
in the regulation of muscle development. The effect of HuR overexpression and knockdown
on MuSC differentiation was examined in vitro. The overexpression of HuR promoted
muscle differentiation, whereas the inhibition of HuR had the opposite effect, as suggested
by previous studies [13,14]. Several studies have demonstrated that HuR regulates mRNA
expression either by stabilizing messages or by influencing their translation [30–32]. For
instance, HuR bound to the 3′UTR of RAB5C, increasing RAB5C mRNA stability [33]. HuR
affects FGFRL1 expression by binding to and stabilizing FGFRL1 mRNA [34]. Moreover,
the mRNA stability of MyoG and MyoD decreased after interference with HuR, which is
also consistent with previous findings [35]. Our results illustrated that HuR could promote
the differentiation of goat MuSCs by enhancing MyoG and MyoD stability.

In order to systematically screen the downstream genes affected by HuR at the differ-
entiation stage, we transfected siRNA-HuR into differentiating MuSCs and then performed
mRNA transcriptome sequencing. A total of 144 differentially expressed genes (DEGs)
were identified. Of these, 11 DEGs related to muscle differentiation were screened for qRT-
PCR detection. Compared to the control group, the expression of three DEGs (Myomaker,
CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). It is
noteworthy that Myomaker is a muscle-specific membrane protein that actively regulates
the fusion of mononuclear myoblasts into multinucleated myofibers, as indicated in a
previous study [25–27]. Interestingly, we found that Myomaker was highly enriched by
the HuR antibody compared with the control IgG. These results suggest that HuR may
promote muscle differentiation in goats by regulating Myomaker. The formation of skeletal
muscle requires the mononucleated myoblasts to withdraw from the cell cycle and to fuse
with each other to form nascent, multinucleated myotubes. As a result of further cell
fusion, the nascent myotubes develop and express contractile proteins, which form mature
myotubes. The fusion of myoblasts is a fundamental step during muscle differentiation,
which involves a variety of cellular and molecular behaviors, including cell migration,
recognition, adhesion, membrane alignment, signaling transduction, and actin cytoskeletal
reorganization, leading to the final membrane fusion [36]. The fusion of myoblasts is an
important step during skeletal muscle differentiation. Therefore, we speculate that HuR
may regulate muscle differentiation by influencing the expression of Myomaker. Here, we
found that Myomaker mRNA and protein were significantly increased when HuR was
overexpressed, while they were significantly decreased when HuR was knocked down.
Additionally, our results indicate that HuR positively regulates the stability of Myomaker
mRNA. Myomaker, regulated by MyoD and MyoG, promotes chicken myoblast fusion, as
previously reported [37]. In Myomaker knockout mice, MyoD and MyoG genes could be
normally expressed, indicating that Myomaker does not affect the expression of differen-
tiation marker genes [25]. In our study, we found that Myomaker knockdown decreased
MyoG and MyHC expression; this may be caused by species differences.

In conclusion, our results demonstrate that HuR promotes the differentiation of goat
MuSCs by enhancing Myomaker stability and identify a novel target of HuR in the promo-
tion of muscle differentiation in goats.
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4. Materials and Methods
4.1. Sample Preparation

The Animal Care and Use Committee of the College of Animal Science and Technology,
Sichuan Agricultural University, Sichuan, China, approved all of the animal care, slaughter,
and experimental procedures in accordance with the Regulations for the Administration of
Affairs Concerning Experimental Animals (Ministry of Science and Tech-nology, Beijing,
China) [SAU201418]. Pregnant goats (aged 2–3 years) were used in this study. Nine
fetuses were removed through humane caesarean section at 90, 105, and 135 days of
gestation (E90, E105, and E135). In addition, six female goats were sacrificed humanely on
the third day after birth (B3) and 150 days after birth (B150). Longissimus dorsi muscle
samples were obtained from these five developmental stages, and lung, kidney, liver, brain,
semimembranosus muscle, semitendinosus muscle, gastrocnemius muscle, psoas major
muscle, and adductor muscle samples were collected at B3. All samples were frozen in
liquid nitrogen for RNA extraction.

4.2. Cell Culture and Transfection

Primary MuSCs were isolated and cultured from the longissimus dorsi (LD) muscle
of a fetal goat (Chengdu Ma goat, female), as previously described [10,38]. MuSCs were
seeded in 6-well (~2 × 105 cells per well) or 12-well (~1 × 105 cells per well) plates
and culture in a growth medium (GM) consisting of Dulbecco’s Modified Eagle Medium
(DMEM/high glucose, Meilunbio, Dalian, China) supplemented with 15% fetal bovine
serum (FBS, Gibco, Grand Island, NY, USA). When the MuSCs density reached 80–90%,
induced differentiation was carried out in a differentiation medium (DM) containing
DMEM with 2% horse serum (HS, Gibco, Grand Island, NY, USA) and cultured in an
incubator at 37 ◦C and 5% CO2.

For the gain and loss of function study, cells were transfected using Lipofectamine
3000 (Invitrogen, Waltham, MA, USA) with siRNAs or overexpression plasmids. After 8 h
of transfection, the GM was replaced with DM. The transfected cells were harvested at 48 h
(for RNA assay), 72 h (for protein assay), and immunofluorescence stained at the 4th day
of differentiation.

4.3. Extraction of Total RNA and qRT-PCR

The total RNA was extracted using an RNAiso Plus reagent (TaKaRa, Dalian, China),
according to the manufacturer’s instructions. RNA quality was assessed by electrophore-
sis on a 1.5% agarose gel, and RNA concentration was measured using a NanoDrop
2000 Spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA). RNA (~1 µg) was
reverse-transcribed into cDNA using the PrimeScriptTM RT Reagent Kit with gDNA Eraser
(Takara, Dalian, China). A quantitative real-time PCR (qRT-PCR) was performed in a 10 µL
volume containing 5 µL of ChamQ SYBR qRT-PCR Master Mix (Vazyme, Nanjing, China),
0.8 µL of cDNA, 3.4 µL of ddH2O, and 0.4 µL of each forward and reverse primer (10 µM),
according to the manufacturer’s protocol. Each experiment was conducted independently
three times with three biological replicates. The 2−∆∆Ct method [39] was used to calculate
the relative expression levels. As internal controls, the genes ACTB, GAPDH, and PGK1
were used. All primers used in this work are provided in Supplementary Table S1.

4.4. Plasmid Construction and siRNAs

To investigate the potential role of HuR, the pEGFP-N1 vector (Promega, Madison,
WI, USA) was used to design the HuR overexpression vector using the HindIII and XhoI
restriction sites. The primers used in vector construction are mentioned in Supplementary
Table S1. Two small, interfering RNAs (siRNAs) against HuR and Myomaker were designed
and synthesized by RiboBio (Guangzhou, China).
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4.5. Western Blot Analysis

The antibodies used were MyHC (381620, ZENBIO), Myomaker (A18158, ABclonal),
HuR (382170, ZENBIO), β-tubulin (200608, ZENBIO), and horseradish peroxidase (HRP)-
conjugated anti-rabbit IgG (511203, ZENBIO). Total protein from in vitro cultured MuSCs
was extracted using a total protein extraction kit (Solarbio, Beijing, China) and quantified
using the BCA Protein Quantitation Kit (BestBio, Shanghai, China). In brief, ~20 µg of
the qualified protein per samples were separated on a 10% SAS-PAGE, transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore, Burlington, MA, USA), blocked
with 5% non-fat milk for 2 h at 37 ◦C, incubated with primary anti-rabbit for MyHC (1:500),
Myomaker (1:1000), and HuR (1:1000) at 4 ◦C overnight and with a secondary antibody
conjugated with HRP (1:10,000) for 1.5 h at 37 ◦C. Eventually, protein bands were exposed
via the enhanced chemiluminescence detection system (BeyoECL Plus, TIANGEN, Beijing,
China). β-tubulin antibody (1:1000) worked as a loading control.

4.6. Immunofluorescence Analyses

The MuSCs were transfected and cultured in DM. After 72 h, the culture medium was
removed and the cells were washed three times with phosphate-buffered saline (PBS), fixed
with 4% paraformaldehyde for 15 min at room temperature, washed three times again
with 1 mL PBS after paraformaldehyde removal, permeabilized with 0.5% Triton X-100
for 10 min at 4◦C, washed three times with 1 mL PBS, blocked with 1 mL of 2% bovine
serum albumin (BSA) for 30 min at 37 ◦C, and incubated with anti-mouse MyHC (1:200;
sc-376157, Santa Cruz, CA, USA) overnight at 4 ◦C and with secondary antibody IgG
(H + L) (1:200, ABclonal, China) for 2 h at 37 ◦C. Finally, the cells were stained with
0.05 g/mL 4′,6′-diamidino-2-phenylindole (DAPI; Invitrogen) for 10 min at room temper-
ature in the dark. Images were captured with a fluorescent inverted microscope (Leica,
Wetzlar, Germany) and analyzed using ImageJ software. The fusion index was computed as
the proportion of nuclei in fused myotubes with two or more nuclei. At least three samples
were examined separately for each treatment.

4.7. RNA Stability Analyses

RNA stability was analyzed using the same methodology as described in previous
studies [40]. Actinomycin D (ActD) was used to analyze the effect of HuR on Myomaker
mRNA stability (ActD, Sigma, Shanghai, China). After treating the differentiated cells with
ActD (5 µg /mL) for 48 h, we transfected MuSCs with siRNA-control or siRNA-HuR. Cells
were harvested for qRT-PCR following transfection at 0, 1, 2, and 3 h.

4.8. RNA Immunoprecipitation Assay

The manufacturer’s instructions were followed for RNA immunoprecipitation (RIP),
using the Magna RIP RNA-binding protein immunoprecipitation kit (Millipore, Billerica,
MA, USA). In general, we collected cells that had differentiated for 5 days using a RIP
lysis buffer. Then, 5 µg anti-HuR antibody (Abcam, Cambridge, UK) or an IgG (Millipore,
Burlington, MA, USA) was mixed with magnetoglin A/G overnight at 4 ◦C for HuR
immunoprecipitation. Finally, a qPCR analysis showed the abundance of Myomaker
mRNA in the immunoprecipitated RNA.

4.9. RNA-Seq Analyses

Library preparation and poly(A) selection by RNA-seq were performed at Novogene
Company (Beijing, China). In brief, the extraction of total RNA from transfected with
siRNA-HuR or siRNA control in MuSCs (n = 3 per group). RNA integrity was assessed
using the RNA Nano 6000 Assay Kit for the Bioanalyzer 2100 system. The NEBNext ®

Ultra ™ RNA Library Prep Kit was used for library preparation. Next, the Qubit2.0
Fluorometer, the Agilent 2100 Bioanalyzer, and a qRT-PCR were used to assess library
quality. Then, qualified libraries were sequenced on the Illumina HiSeq 2500 platform
(Illumina, San Diego, CA, USA) with a 2 × 150 bp pair-end [41].
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Clean reads were obtained by removing the reads containing adapter, ploy-N, and
low-quality reads from raw data. Then, DESeq2 (1.20.0) was used to analyze the differen-
tially expressed genes (DEGs) between the two compared (|log2(Fold Change)| > 1 and
padj < 0.05). Finally, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses of the DEGs, which were implemented using the DESeq2
with padj < 0.05 and were considered significantly enriched [42].

4.10. Statistical Analysis

Data were the mean ± SEM, at least three biological replicates. GraphPad Prism 8.4
was used to conduct all statistical analyses. The unpaired two-tailed t-test was used for com-
parisons between two groups. * p < 0.05 and ** p < 0.01 represented statistical significance.
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