Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity against Planktonic and Biofilm Embedded Microbial Cells
2.2. Elucidation of the Potential Mechanisms of Antimicrobial Action by Flow Cytometry (FCM)
2.3. The Toxicity Profile of the Tested Compounds on the Artemia franciscana Kellog Model
2.4. Antioxidant Activity Evaluated by Scavenger Activity towards DPPH and ABTS•+ Free Radicals
2.5. Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. Tested Compounds
4.2. Microbiological Assays
4.3. The Toxicity on the Artemia Franciscana Kellog Crustacean Species
4.4. In Vitro Cytotoxicity Assay
4.5. Antioxidant Activity of Compounds
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gould, I.M.; Bal, A.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 2013, 4, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014. Available online: https://amr-review.org/sites/default/files/AMRReviewPaper-Tacklingacrisisforthehealthandwealthofnations_1.pdf (accessed on 30 November 2021).
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 16 December 2022).
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries 2014, 8, 129–136. [Google Scholar] [CrossRef]
- Gross, M. Antibiotics in crisis. Curr. Biol. 2013, 23, R1063–R1065. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Pircalabioru, G.G.; Chifiriuc, M.C. Nanoparticulate drug-delivery systems for fighting microbial biofilms: From bench to bedside. Future Microbiol. 2020, 15, 679–698. [Google Scholar] [CrossRef]
- Choi, S.; Larson, M.A.; Hinrichs, S.H.; Narayanasamy, P. Development of potential broad spectrum antimicrobials using C2-symmetric 9-fluorenone alkyl amine. Bioorganic Med. Chem. Lett. 2016, 26, 1997–1999. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, R.; Sonar, P.K.; Saraf, S.K. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation. Biochem. Res. Int. 2016, 2016, 8086762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, K.; Dhivya, S.; Rethavathi, J.; Srinivasan, N. Preparation of various Schiff’s bases of 9-fluorenone and its biological application. J. Chem. Pharm. Res. 2012, 4, 4477–4483. [Google Scholar]
- Vlad, I.M.; Nuță, D.C.; Ancuceanu, R.V.; Caproiou, M.T.; Dumitrascu, F.; Marinas, I.C.; Chifiriuc, M.C.; Măruţescu, L.G.; Zarafu, I.; Papacocea, I.R.; et al. New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives with MI-Crobicidal and Antibiofilm Activity Enhanced by Combination with Iron Oxide Nanoparticles. Molecules 2021, 26, 2. [Google Scholar] [CrossRef]
- Ali Raza Naqvi, S.; Nadeem, S.; Komal, S.; Ali Asad Naqvi, S.; Samee Mubarik, M.; Yaqub Qureshi, S.; Ahmad, S.; Abbas, A.; Zahid, M.; Naeem-Ul-Haq, K.; et al. Antioxidants: Natural Antibiotics; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Neha, K.; Haider, M.R.; Pathak Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Adwas, A.A.; Elsayed, A.; Azab, A.E.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaiza, M.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxidative Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed. Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikov, E.Y.; Morosanova, M.A.; Pevzner, I.B.; Zorova, L.D.; Manskikh, V.N.; Pulkova, N.V.; Galkina, S.; Skulachev, V.P.; Zorov, D.B. Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc. Natl. Acad. Sci. USA 2013, 110, E3100–E3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treffon, J.; Chaves-Moreno, D.; Niemann, S.; Pieper, D.H.; Vogl, T.; Roth, J.; Kahl, B.C. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell. Microbiol. 2020, 22, e13158. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, S.A.; Ahn, D.; Prince, A. Pseudomonas aeruginosa and Klebsiella pneumoniae adaptation to innate immune clearance mechanisms in the lung. J. Innate Immun. 2018, 10, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Paulis, G. Inflammatory mechanisms and oxidative stress in prostatitis: The possible role of antioxidant therapy. Res. Rep. Urol. 2018, ume 10, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.S.; Hung, D.T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 2013, 4, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, A. Medicinal Chemistry, 3rd ed.; New Age International (P) Ltd.: New Delhi, India, 2005; pp. 172–173. [Google Scholar]
- Hohf, R.P.; Ivy, A.C. The effect of pavatrine (beta-diethylaminoethyl fluorene-9-carboxylate hydrochloride) on the sphincter of Oddi with studies on its toxicity. Q. Bull. Northwestern Univ. Med. Sch. 1946, 20, 311–314. [Google Scholar]
- Lehmann, G. The action of some spamolytic substances on uterine motility. J. Pharmacol. Exp. Ther. 1945, 83, 86 LP–89. Available online: http://jpet.aspetjournals.org/content/83/1/86.abstract (accessed on 16 December 2022).
- Eli Lilly and Company, Assignee. Verfahrenzur Herstellung von Neuen 9-Aminoalkyl-Fluorenen und von Deren Salzen [Process for the Production of New 9-aminoalkyl-fluorenes and Their Salts]. Österreichisches Patentamt AT 368125, 1982. [Google Scholar]
- Brazzell, R.K.; Wooldridge, C.B.; Hackett, R.B.; McCue, B.A. Pharmacokinetics of the Aldose Reductase Inhibitor Imirestat Following Topical Ocular Administration. Pharm. Res. 1990, 7, 192–198. [Google Scholar] [CrossRef]
- Chien, J.Y.; Banfield, C.R.; Brazzell, R.K.; Mayer, P.R.; Slattery, J.T. Saturable tissue binding and imirestat pharmacokinetics in rats. Pharm. Res. 1992, 9, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.N.; Lin, L.-R.; Giblin, F.J.; Lou, M.; Kador, P.F.; Kinoshita, J.H. The Efficacy of Aldose Reductase Inhibitors on Polyol Accumulation in Human Lens and Retinal-Pigment Epithelium in Tissue-Culture. J. Ocul. Pharmacol. Ther. 1992, 8, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Griffin, B.W.; Chandler, M.L.; DeSantis, L. Prevention of diabetic cataract and neuropathy in rats by two new aldose reductase inhibitors. Drug discovery and evaluation: Pharmacological assays. Investig. Ophthalmol. Vis. Sci. 1984, 25, 159. [Google Scholar]
- Walker Griffin, B.; McNatt, L.G.; Chandler, M.L.; York, B.M. Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 1987, 36, 486–490. [Google Scholar] [CrossRef]
- York, B.M.J. Treatment of Diabetic Complications with Certain Spiro-Imidazolidine-Diones. United States Patent US 4540700A; Alcon Laboratories Inc.: Fort Worth, TX, USA, 1985. [Google Scholar]
- Hamilton, G.S.; Mewshaw, R.E.; Bryant, C.M.; Feng, Y.; Endemann, G.; Madden, K.S.; Danczak, J.E.; Perumattam, J.; Stanton, L.W. Fluorenylalkanoic and Benzoic Acids as Novel Inhibitors of Cell Adhesion Processes in Leukocytes. J. Med. Chem. 1995, 38, 1650–1656. [Google Scholar] [CrossRef]
- Lan, S.J.; Dean, A.V.; Kripalani, K.J.; Cohen, A.I. Metabolism of α-Methylfluorene-2-acetic acid (Cicloprofen): Isolation and Identification of Metabolites from Rat Urine. Xenobiotica 1978, 8, 121–131. [Google Scholar] [CrossRef]
- McCafferty, D.M.; Kubes, P.; Wallace, J.L. Inhibition of platelet-activating factor-induced leukocyte adhesion in vivo by a leumedin. Eur. J. Pharmacol. 1993, 232, 169–172. [Google Scholar] [CrossRef] [PubMed]
- AdisInsight; Springer: Berlin/Heidelberg, Germany, 1998; Available online: https://adisinsight.springer.com/drugs/800002734 (accessed on 10 December 2022).
- Marquié, G.; Duhault, J.; Espinal, J.; Petkov, P.; Jablenska, R.; Khallayoun, S.; Bennani, N. S 15261, a novel agent for the treatment of insulin resistance. Studies on Psammomysobesus. Effect on pancreatic islets of insulin resistant animals. Cell Mol. Biol. 1997, 43, 243–251. [Google Scholar]
- Alcaro, S.; Artese, A.; Iley, J.N.; Missailidis, S.; Ortuso, F.; Parrotta, L.; Pasceri, R.; Paduano, F.; Sissi, C.; Trapasso, F.; et al. Rational Design, Synthesis, Biophysical and Antiproliferative Evaluation of Fluorenone Derivatives with DNA G-Quadruplex Binding Properties. ChemMedChem 2010, 5, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Lane, T.R.; Madrid, P.B. Tilorone: A Broad-Spectrum Antiviral Invented in the USA and Commercialized in Russia and beyond. Pharm. Res. 2020, 37, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.-F.; Zhou, B.; Huang, J.-M.; Gao, X.-M.; Shu, L.-D.; Yang, G.-Y.; Che, C.-T. Antiviral Phenolic Compounds from Arundinagramnifolia. J. Nat. Prod. 2013, 76, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Nikolaeva, I.S.; Bogdanova, N.S.; Pershin, G.N.; Amur-Sanan, A.V. [Experimental study of the new medicinal form of the antiviral preparation fluorenal]. Farmakol Toksikol 1977, 40, 82–86. [Google Scholar] [PubMed]
- Oladimeji, O.H.; Ahmadu, A.A. Antioxidant activity of compounds isolated from Pycnanthusangolensis (Welw.) Warb and Byrophyllumpinnatum (Lam.) Oken. Eur. Chem. Bull. 2019, 8, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Perry, P.J.; Read, M.A.; Davies, R.T.; Gowan, S.M.; Reszka, A.P.; Wood, A.A.; Kelland, L.R.; Neidle, S. 2,7-disubstituted amidofluorenone derivatives as inhibitors of human telomerase. J. Med. Chem. 1999, 42, 2679–2684. [Google Scholar] [CrossRef]
- Schrimpf, M.R.; Sippy, K.B.; Briggs, C.A.; Anderson, D.J.; Li, T.; Ji, J.; Frost, J.M.; Surowy, C.S.; Bunnelle, W.H.; Gopalakrishnan, M.; et al. SAR of α7 nicotinic receptor agonists derived from tilorone: Exploration of a novel nicotinic pharmacophore. Bioorg. Med. Chem. Lett. 2012, 22, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, D.A.; Glasgow, L.A. Tilorone Hydrochloride: An Oral Interferon-Inducing Agent. Antimicrob. Agents Chemother. 1972, 2, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, J.K.; Wang, J.; Wang, N.L.; Kurihara, H.; Kitanaka, S.; Yao, X.S. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J. Nat. Prod. 2007, 70, 24–28. [Google Scholar] [CrossRef]
- Zhou, D.; Tuo, W.; Hu, H.; Xu, J.; Chen, H.; Rao, Z.; Xiao, Y.; Hu, X.; Liu, P. Synthesis and activity evaluation of tilorone analogs as potential anticancer agents. Eur. J. Med. Chem. 2013, 64, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.F.; Stauffer, K.J.; Lumma, W.C.; Smith, G.M.; Ramjit, H.G.; Lewis, S.D.; Lucas, B.J.; Gardell, S.J.; Lyle, E.A.; Appleby, S.D.; et al. Discovery and development of the novel potent orally active thrombin inhibitor N-(9-hydroxy-9-fluorenecarboxy)prolyl trans-4-aminocyclohexylmethyl amide (L-372,460): Coapplication of structure-based design and rapid multiple analogue synthesis on solids. J. Med. Chem. 1998, 41, 401–406. [Google Scholar] [CrossRef]
- Skálová, L.; Nobilis, M.; Szotáková, B.; Kondrová, E.; Šavlík, M.; Wsól, V.; Pichard-Garcia, L.; Maser, E. Carbonyl reduction of the potential cytostatic drugs benfluron and 3,9-dimethoxybenfluron in human in vitro. BiochemPharmacol 2002, 64, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Paluska, E.; Hrubá, A.; Soucek, J.; Danĕk, P.F.; Chudomel, V.; Pujman, V.; Krepelka, J. Derivatives of benzo(c)fluorene. X. Inhibitory effect of Benfluron on cellular immunity. Neoplasma 1984, 31, 399–406. [Google Scholar] [PubMed]
- Erario, M.d.l.Á.; Croce, E.; Moviglia Brandolino, M.T.; Moviglia, G.; Grangeat, A.M. Selective cardiodepressant activity of fluodipine, a fluorenone-1,4-dihydropyridine derivative. Eur. J. Pharmacol. 1998, 359, 161–170. [Google Scholar]
- Friedrich, C.L.; Moyles, D.; Beveridge, T.I.; Hancock, R.E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 2000, 44, 2086–2092. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Sam, T.W. Toxicity Testing Using the Brine Shrimp (Artemia salina). In Bioactive Natural Products: Detection, Isolation and Structure Determination; Colegate, S.M., Molyneux, R.J., Eds.; CRC Press: Boca Raton, FL, USA, 1993; pp. 441–456. [Google Scholar]
- Artoxkit, M. Artemia Toxicity Screening Test for Estuarine and Marine Waters. Available online: https://www.microbiotests.com/wp-content/uploads/2019/07/artemia-toxicity-test_artoxkit-m_standard-operating-procedure.pdf (accessed on 2 December 2022).
- Cock, I.E.; Kalt, F.R. Toxicity evaluation of Xanthorrhoeajohnsonii leaf methanolic extract using the Artemia franciscana bioassay. Pharmacogn. Mag. 2010, 6, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cock, I.E.; Van Vuuren, S.F. A Comparison of the Antimicrobial Activity and Toxicity of Six Combretum and Two Terminalia Species from Southern Africa. Pharmacogn. Mag. 2015, 11, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamidi, M.R.; Jovanova, B.; KadifkovaPanovska, T. Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Maced. Pharm. Bull. 2014, 60, 9–18. [Google Scholar] [CrossRef]
- Moshi, M.J.; Innocent, E.; Magadula, J.J.; Otieno, D.F.; Weisheit, A.; Mbabazi, P.K.; Nondo, R.S.O. Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, north western Tanzania. Tanzan J. Health Res. 2010, 12, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Wolszleger (Drăgan), M.; Stan, C.D.; Pânzariu, A.; Jităreanu, A.; Profire, L. New thiazolidine-4-ones of ferulic acid with antioxidant potential. Farmacia 2015, 63, 150–154. [Google Scholar]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996, 384, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Magalhaes, L.M.; Segundo, M.A.; Reis, S.; Lima, J. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 2014, 111, E2100–E2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limban, C.; Chifiriuc, M.C.; Caproiu, M.T.; Dumitrascu, F.; Ferbinteanu, M.; Pintilie, L.; Stefaniu, A.; Vlad, I.M.; Bleotu, C.; Marutescu, L.G.; et al. New Substituted Benzoylthiourea Derivatives: From Design to Antimicrobial Applications. Molecules 2020, 25, 1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlad, I.M.; Nuta, D.C.; Chirita, C.; Caproiu, M.T.; Draghici, C.; Dumitrascu, F.; Bleotu, C.; Avram, S.; Udrea, A.M.; Missir, A.V.; et al. In Silico and In vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents. Molecules 2020, 25, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velican, A.M.; Kamerzan, C.; Marutescu, L.; Lambert, C.; Chifiriuc, M.C. The development of an analysis protocol based on flow cytometry for rapid detection of uropathogenic E. coli in artificially contaminated urine samples. Rom. Biotechnol. Lett. 2019, 24, 563–570. [Google Scholar] [CrossRef]
- Landis, J.T.; Peng, A.; An, H.; Bailey, A.G.; Dittmer, D.P.; Marron, J.S. dr4pl: Dose Response Data Analysis Using the 4 Parameter Logistic (4pl) Model. 2021. Available online: https://cran.r-project.org/package=dr4pl (accessed on 10 November 2022).
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Germanò, M.; Cacciola, F.; Donato, P.; Dugo, P.; Certo, G.; D’Angelo, V.; Mondello, L.; Rapisarda, A. Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia 2012, 83, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Costea, T.; Lupu, A.R.; Vlase, L.; Nencu, I.; Gird, C.E. Phenolic Content and Antioxidant Activity of a Raspberry Leaf Dry Extract. Rom. Biotechnol. Lett. 2016, 21, 11345–11356. [Google Scholar]
- Zaman, T.; Irshad, M.; Faraz Khan, M.; Mehmood, A.; Hussain, I.; Mahmood, M. In vitro Pharmacological Evaluation of Galium Elegans: Phytochemical, Antioxidant, Biofilm Inhibition and Cytotoxicity Potential. Farmacia 2021, 69, 1159–1165. [Google Scholar] [CrossRef]
Microbial Strain | Chemical Compound | |||
---|---|---|---|---|
1a | 1b | 1c | 1d | |
E. faecalis ATCC 29212 | 2.5 | 10 | 5 | 5 |
S. aureus ATCC 25923 | 2.5 | 2.5 | 2.5 | 0.156 |
P. aeruginosa ATCC 27853 | 2.5 | 2.5 | 2.5 | 2.5 |
E. coli ATCC 25922 | 2.5 | 5 | 2.5 | 5 |
C. albicans ATCC 90029 | 2.5 | 5 | 5 | 5 |
Microbial Strain | Chemical Compound | |||
---|---|---|---|---|
1a | 1b | 1c | 1d | |
E. faecalis ATCC 29212 | 5 | 10 | 5 | 5 |
S. aureus ATCC 25923 | 5 | 5 | 5 | 0.312 |
P. aeruginosa ATCC 27853 | 2.5 | 2.5 | 2.5 | 2.5 |
E. coli ATCC 25922 | 2.5 | 5 | 5 | 5 |
C. albicans ATCC 90029 | 5 | 10 | 10 | 10 |
Microbial Strain | Chemical Compound | |||
---|---|---|---|---|
1a | 1b | 1c | 1d | |
E. faecalis ATCC 29212 | 1.25 | 1.25 | 0.312 | 1.25 |
S. aureus ATCC 25923 | 5 | 2.5 | 5 | 0.019 |
P. aeruginosa ATCC 27853 | 0.009 | 0.156 | 1.25 | 1.25 |
E. coli ATCC 25922 | 0.625 | 0.078 | 1.25 | 0.625 |
C. albicans ATCC 90029 | 0.312 | 0.078 | 0.312 | 0.312 |
Microbial Strain | Chemical Compound | 1a | 1b | 1c | 1d |
---|---|---|---|---|---|
E. faecalis ATCC 29212 | Subinhibitory concentrations tested | 2.5 | 2.5 | 1.25 | 1.25 |
staining index value | 2.21 | 3.99 | 0.32 | 44.54 | |
S. aureus ATCC 25923 | Subinhibitory concentrations tested | 2.5 | 2.5 | 2.5 | 1.25 |
staining index value | 3.5 | 8.17 | 0.19 | 4.2 | |
P. aeruginosa ATCC 27892 | Subinhibitory concentrations tested | 2.5 | 2.5 | 2.5 | 2.5 |
staining index value | 6.68 | 6.5 | 2.38 | 20.45 | |
E. coli ATCC 25922 | Subinhibitory concentrations tested | 1.25 | 2.5 | 1.25 | 1.25 |
staining index value | 80.7 | 10.2 | 3.2 | 173.3 | |
C. albicans ATCC 90029 | Subinhibitory concentrations tested | 2.5 | 2.5 | - | 2.5 |
staining index value | 4.94 | 2.82 | - | 20.21 |
Compound | IC50 (μM) |
---|---|
1a | 5735.23 ± 0.0828 |
1b | 12262.66 ± 0.0574 |
1c | 5208.03 ± 0.1245 |
Tukey’s Multiple Comparisons Test between IC50 Values | Mean Difference | 95% CI of Difference | p Value |
---|---|---|---|
Compound 1a vs. compound 1b | −6527 | −6528 to −6527 | <0.0001 (***) |
Compound 1a vs. compound 1c | 527.2 | 527.1 to 527.3 | <0.0001 (***) |
Compound 1b vs. compound 1c | 7055 | 7055 to 7055 | <0.0001 (***) |
Compound | IC50 (μM) |
---|---|
1a | 9885.38 ± 0.2514 |
1b | 9379.42 ± 1.0247 |
1c | 18,165.5 ± 0.5478 |
Tukey’s Multiple Comparisons Test between IC50 Values | Mean Difference | 95% CI of Difference | p Value |
---|---|---|---|
Compound 1a vs. compound 1b | −506 | −506.8 to −505.2 | <0.0001 (***) |
Compound 1a vs. compound 1c | −8786 | −8787 to −8785 | <0.0001 (***) |
Compound 1b vs. compound 1c | −8280 | −8281 to −8279 | <0.0001 (***) |
1a | 1b | 1c | 1d | |
---|---|---|---|---|
HeLa | 7.52 ± 1.39 | 8.5 ± 2.26 | 8.9 ± 2.56 | 7.59 ± 3.64 |
HT29 | 11 ± 0.75 | 6.33 ± 3.02 | 10.8 ± 1.36 | 8.17 ± 2.98 |
MG63 | 31.5 | 22 ± 2.48 | 22.8 ± 0.78 | 26.3 ± 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlad, I.M.; Nuță, D.C.; Ancuceanu, R.V.; Costea, T.; Coanda, M.; Popa, M.; Marutescu, L.G.; Zarafu, I.; Ionita, P.; Pirvu, C.E.D.; et al. Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives. Int. J. Mol. Sci. 2023, 24, 7020. https://doi.org/10.3390/ijms24087020
Vlad IM, Nuță DC, Ancuceanu RV, Costea T, Coanda M, Popa M, Marutescu LG, Zarafu I, Ionita P, Pirvu CED, et al. Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives. International Journal of Molecular Sciences. 2023; 24(8):7020. https://doi.org/10.3390/ijms24087020
Chicago/Turabian StyleVlad, Ilinca Margareta, Diana Camelia Nuță, Robert Viorel Ancuceanu, Teodora Costea, Maria Coanda, Marcela Popa, Luminita Gabriela Marutescu, Irina Zarafu, Petre Ionita, Cristina Elena Dinu Pirvu, and et al. 2023. "Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives" International Journal of Molecular Sciences 24, no. 8: 7020. https://doi.org/10.3390/ijms24087020
APA StyleVlad, I. M., Nuță, D. C., Ancuceanu, R. V., Costea, T., Coanda, M., Popa, M., Marutescu, L. G., Zarafu, I., Ionita, P., Pirvu, C. E. D., Bleotu, C., Chifiriuc, M. -C., & Limban, C. (2023). Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives. International Journal of Molecular Sciences, 24(8), 7020. https://doi.org/10.3390/ijms24087020