Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes
Abstract
:1. Introduction
2. Results
2.1. Fabrication and Characterization of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires
2.2. Magnetic Characterization of Ni@(NiO,Ni(OH)2) Nanowires
3. Discussion
4. Materials and Methods
4.1. Fabrication of Ni Nanowires
4.2. Fabrication of Core/Shell Nanowires
4.3. Characterization Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; Fischer, P.; Cowburn, R.P.; Fernandez-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; et al. Three-Dimensional Nanomagnetism. Nat. Commun. 2017, 8, 15756. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, A.; Wu, K.; Cao, X.; Gu, L. Magnetic Nanowires in Biomedical Applications. Nanotechnology 2020, 31, 433001. [Google Scholar] [CrossRef]
- Piraux, L. Magnetic Nanowires. Appl. Sci. 2020, 10, 1832. [Google Scholar] [CrossRef] [Green Version]
- Heck, C. Magnetic Materials and Their Applications, 1st ed.; Heck, C., Ed.; Butterworth-Heinemann: London, UK, 1974; ISBN 978-0-408-70399-4. [Google Scholar]
- Krishnan, K.M. Fundamentals and Applications of Magnetic Materials; Oxford University Press: Oxford, UK, 2016; ISBN 9780199570447. [Google Scholar]
- Liao, J.-W.; Zhang, H.-W.; Lai, C.-H. Magnetic Nanomaterials for Data Storage. In Magnetic Nanomaterials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; Chapter 14; pp. 439–472. ISBN 9783527803255. [Google Scholar]
- Chiolerio, A.; Allia, P. Magnetic Nanostructures and Spintronics. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1248–1256. ISBN 978-90-481-9751-4. [Google Scholar]
- Chen, Y.; Xu, C.; Zhou, Y.; Maaz, K.; Yao, H.; Mo, D.; Lyu, S.; Duan, J.; Liu, J. Temperature- and Angle-Dependent Magnetic Properties of Ni Nanotube Arrays Fabricated by Electrodeposition in Polycarbonate Templates. Nanomaterials 2016, 6, 231. [Google Scholar] [CrossRef] [Green Version]
- Lavrijsen, R.; Lee, J.-H.; Fernández-Pacheco, A.; Petit, D.C.M.C.; Mansell, R.; Cowburn, R.P. Magnetic Ratchet for Three-Dimensional Spintronic Memory and Logic. Nature 2013, 493, 647. [Google Scholar] [CrossRef]
- Chappert, C.; Fert, A.; van Dau, F.N. The Emergence of Spin Electronics in Data Storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef]
- Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; del Bianco, L. Interface Adjustment and Exchange Coupling in the IrMn/NiFe System. J. Magn. Magn. Mater. 2017, 421, 234–240. [Google Scholar] [CrossRef]
- Nogués, J.; Schuller, I.K. Exchange Bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J.S.; Baró, M.D. Exchange Bias in Nanostructures. Phys. Rep. 2005, 422, 65–117. [Google Scholar] [CrossRef]
- Fulara, H.; Chaudhary, S.; Kashyap, S.C.; Granville, S. Enhancement of Exchange Bias and Training Effect in Ion-Beam Sputtered Fe46Mn54/Ni81Fe19bilayers. J. Appl. Phys. 2014, 115, 043910. [Google Scholar] [CrossRef]
- Menéndez, E.; Silva, L.E.S.; Johann, G.; Sort, J.; Dias, T. Unraveling the Origin of Training in Granular Co-CoO Exchange Bias Systems with Buried Antiferromagnetic Constituents. J. Magn. Magn. Mater. 2019, 478, 170–174. [Google Scholar] [CrossRef]
- Lehmann, J.; Bortis, A.; Derlet, P.M.; Donnelly, C.; Leo, N.; Heyderman, L.J.; Fiebig, M. Relation between Microscopic Interactions and Macroscopic Properties in Ferroics. Nat. Nanotechnol. 2020, 15, 896–900. [Google Scholar] [CrossRef]
- O’Handley, R.C. Modern Magnetic Materials: Principles and Applications; Wiley: Freehold, NJ, USA, 1999; ISBN 9780471155669. [Google Scholar]
- Gomonay, H.V.; Loktev, V.M. Shape-Induced Phenomena in Finite-Size Antiferromagnets. Phys. Rev. B 2007, 75, 174439. [Google Scholar] [CrossRef] [Green Version]
- de Toro, J.A.; Marques, D.P.; Muñiz, P.; Skumryev, V.; Sort, J.; Givord, D.; Nogués, J. High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect. Phys. Rev. Lett. 2015, 115, 057201. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.B.; Puente-Orench, I.; Olivi, L.; Blanco, J.A. Size Effects on the Neél Temperature of Antiferromagnetic NiO Nanoparticles. AIP Adv. 2016, 6, 056104. [Google Scholar] [CrossRef] [Green Version]
- Devasahayam, A.J.; Kryder, M.H. The Dependence of the Antiferromagnet/Ferromagnet Blocking Temperature on Antiferromagnet Thickness and Deposition Conditions. J. Appl. Phys. 1999, 85, 5519–5521. [Google Scholar] [CrossRef]
- Spadaro, M.C.; D’Addato, S.; Luches, P.; Valeri, S.; Grillo, V.; Rotunno, E.; Roldan, M.A.; Pennycook, S.J.; Ferretti, A.M.; Capetti, E.; et al. Tunability of Exchange Bias in Ni@NiO Core-Shell Nanoparticles Obtained by Sequential Layer Deposition. Nanotechnology 2015, 26, 405704. [Google Scholar] [CrossRef]
- McCord, J.; Mangin, S. Separation of Low- and High-Temperature Contributions to the Exchange Bias in Ni81Fe19-NiO Thin Films. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 014416. [Google Scholar] [CrossRef]
- Fraune, M.; Rü, U.; Gü, G.; Cardoso, S.; Freitas, P. Size Dependence of the Exchange Bias Field in NiO/Ni Nanostructures. Appl. Phys. Lett. 2000, 77, 3815–3817. [Google Scholar] [CrossRef] [Green Version]
- Baltz, V.; Rodmacq, B.; Zarefy, A.; Lechevallier, L.; Dieny, B. Bimodal Distribution of Blocking Temperature in Exchange-Biased Ferromagnetic/Antiferromagnetic Bilayers. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 052404. [Google Scholar] [CrossRef] [Green Version]
- Baltz, V. Thermally Driven Asymmetric Responses of Grains versus Spin-Glass Related Distributions of Blocking Temperature in Exchange Biased Co/IrMn Bilayers. Appl. Phys. Lett. 2013, 102, 062410. [Google Scholar] [CrossRef]
- van der Zaag, P.J.; Ijiri, Y.; Borchers, J.A.; Feiner, L.F.; Wolf, R.M.; Gaines, J.M.; Erwin, R.W.; Verheijen, M.A. Difference between Blocking and Néel Temperatures in the Exchange Biased Fe3O4/CoO System. Phys. Rev. Lett. 2000, 84, 6102–6105. [Google Scholar] [CrossRef]
- Gandha, K.; Chaudhary, R.P.; Mohapatra, J.; Koymen, A.R.; Liu, J.P. Giant Exchange Bias and Its Angular Dependence in Co/CoO Core-Shell Nanowire Assemblies. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2017, 381, 2092–2096. [Google Scholar] [CrossRef]
- Maurer, T.; Zighem, F.; Ott, F.; Chaboussant, G.; André, G.; Soumare, Y.; Piquemal, J.Y.; Viau, G.; Gatel, C. Exchange Bias in Co/CoO Core-Shell Nanowires: Role of Antiferromagnetic Superparamagnetic Fluctuations. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 064427. [Google Scholar] [CrossRef] [Green Version]
- Verbeno, C.H.; Paes, V.Z.C.; Krohling, A.C.; Bueno, T.E.P.; Geshev, J.; van Lierop, J.; Passamani, E.C. Exchange Bias and Magnetic Anisotropies in Co Nanowire/IrMn Film Heterostructures. J. Magn. Magn. Mater. 2022, 546, 168768. [Google Scholar] [CrossRef]
- Díaz-Guerra, C.; Vila, M.; Piqueras, J. Exchange Bias in Single-Crystalline CuO Nanowires. Appl. Phys. Lett. 2010, 96, 193105. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef]
- Gokul, B.; Matheswaran, P.; Pandian, M.; Arun Paul, C.; Ravikumar, K.; Gopala Krishnan, V.; Shkir, M.; AlFaify, S.; Sreedevi, G. Polymorphism Induced Magnetic Transitions in Ni(OH)2 Nanostructures. J. Magn. Magn. Mater. 2021, 539, 168364. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, M.; Hua, Z. Synthesis and Magnetic Properties of β-Ni(OH)2 and NiO Nanosheets. J. Magn. Magn. Mater. 2014, 371, 10–13. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, W.; Lv, X.K.; Yang, F.; Wei, X.; Zhang, Z.D.; Sellmyer, D.J. Magnetic Properties of Nickel Hydroxide Nanoparticles. J. Appl. Phys. 2010, 107, 083919. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, M.B.; Joy, P.A. Evolution and Magnetic Characteristics of NiO-Ni(OH)2 Core-Shell Nanostructures. Phys. Chem. Chem. Phys. 2013, 15, 20808–20812. [Google Scholar] [CrossRef]
- Medway, S.L.; Lucas, C.A.; Kowal, A.; Nichols, R.J.; Johnson, D. In Situ Studies of the Oxidation of Nickel Electrodes in Alkaline Solution. J. Electroanal. Chem. 2006, 587, 172–181. [Google Scholar] [CrossRef]
- Reyes-Gasga, J.; Gómez-Rodríguez, A.; Gao, X.; José-Yacamán, M. On the Interpretation of the Forbidden Spots Observed in the Electron Diffraction Patterns of Flat Au Triangular Nanoparticles. Ultramicroscopy 2008, 108, 929–936. [Google Scholar] [CrossRef]
- Barriga-Castro, E.D.; García, J.; Mendoza-Reséndez, R.; Prida, V.M.; Luna, C. Pseudo-Monocrystalline Properties of Cylindrical Nanowires Confinedly Grown by Electrodeposition in Nanoporous Alumina Templates. RSC Adv. 2017, 7, 13817–13826. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.W.; Legrand, D.; Bancroft, G.M. Interpretation of Ni2p XPS Spectra of Ni Conductors and Ni Insulators. Phys. Chem. Miner. 2000, 27, 357–366. [Google Scholar] [CrossRef]
- Mansour, A.N.; Melendres, C.A. Characterization of α-Ni(OH)2 by XPS. Surf. Sci. Spectra 1994, 3, 255–262. [Google Scholar] [CrossRef]
- Koshtyal, Y.; Nazarov, D.; Ezhov, I.; Mitrofanov, I.; Kim, A.; Rymyantsev, A.; Lyutakov, O.; Popovich, A.; Maximov, M. Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries. Coatings 2019, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Schiavi, P.G.; Altimari, P.; Marzolo, F.; Rubino, A.; Zanoni, R.; Pagnanelli, F. Optimizing the Structure of Ni–Ni(OH)2/NiO Core-Shell Nanowire Electrodes for Application in Pseudocapacitors: The Influence of Metallic Core, Ni(OH)2/NiO Ratio and Nanowire Length. J. Alloys Compd. 2021, 856, 157718. [Google Scholar] [CrossRef]
- Sergelius, P.; Fernandez, J.G.; Martens, S.; Zocher, M.; Böhnert, T.; Martinez, V.V.; de La Prida, V.M.; Görlitz, D.; Nielsch, K. Statistical Magnetometry on Isolated NiCo Nanowires and Nanowire Arrays: A Comparative Study. J. Phys. D Appl. Phys. 2016, 49, 145005. [Google Scholar] [CrossRef]
- Rui, W.B.; Hu, Y.; Du, A.; You, B.; Xiao, M.W.; Zhang, W.; Zhou, S.M.; Du, J. Cooling Field and Temperature Dependent Exchange Bias in Spin Glass/Ferromagnet Bilayers. Sci. Rep. 2015, 5, 13640. [Google Scholar] [CrossRef] [Green Version]
- Vorobiov, S.; Stropkai, B.; Kožejová, M.; Tkach, O.; Latyshev, V.; Čižmár, E.; Orendáč, M.; Komanický, V. Magnetothermal Properties of Mesoscopic System Based on Ni3Pt Nanoparticle. Acta Phys. Pol. A 2020, 137, 922–925. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Q.; Zhou, J.; Sun, K.; Zhang, Z.; Feng, X.; Li, T. Magnetic Fe2P Nanowires and Fe2P@C Core@Shell Nanocables. Nano Res. 2010, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Ruta, S.; Hovorka, O.; Huang, P.W.; Wang, K.; Ju, G.; Chantrell, R. First Order Reversal Curves and Intrinsic Parameter Determination for Magnetic Materials; Limitations of Hysteron-Based Approaches in Correlated Systems. Sci. Rep. 2017, 7, 45218. [Google Scholar] [CrossRef] [Green Version]
- Pike, C.R.; Roberts, A.P.; Verosub, K.L. Characterizing Interactions in Fine Magnetic Particle Systems Using First Order Reversal Curves. J. Appl. Phys. 1999, 85, 6660–6667. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.L.A.V.; do Nascimento-Junior, A.M.; de Miranda, M.H.G.; Guerra, Y.; Viana, B.C.; Peña-Garcia, R.; Padrón-Hernández, E. The Temperature Dependence of Coercivity for Ni Nanowires: Possible Effect of NiO Antiferromagnetic Clusters. J. Magn. Magn. Mater. 2020, 508, 166889. [Google Scholar] [CrossRef]
- González, J.A.; Andrés, J.P.; López Antón, R.; De Toro, J.A.; Normile, P.S.; Muñiz, P.; Riveiro, J.M.; Nogués, J. Maximizing Exchange Bias in Co/CoO Core/Shell Nanoparticles by Lattice Matching between the Shell and the Embedding Matrix. Chem. Mater. 2017, 29, 5200–5206. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Alvarez, G.; Geshev, J.; Agramunt-Puig, S.; Navau, C.; Sanchez, A.; Sort, J.; Nogués, J. Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires. ACS Appl. Mater. Interfaces 2016, 8, 22477–22483. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Rafique, M.Y.; Razaq, A.; Mir, A.; Karim, S.; Anwar, S.; Sultana, I. Fabrication of Au/Ni/NiO Heterostructure Nanowires by Electrochemical Deposition and Their Temperature Dependent Magnetic Properties. J. Solid. State Chem. 2020, 284, 121186. [Google Scholar] [CrossRef]
- Jagodič, M.; Jagličić, Z.; Jelen, A.; Lee, J.B.; Kim, Y.-M.; Kim, H.J.; Dolinšek, J. Surface-Spin Magnetism of Antiferromagnetic NiO in Nanoparticle and Bulk Morphology. J. Phys. Condens. Matter 2009, 21, 215302. [Google Scholar] [CrossRef]
- Prida, V.M.; Vega, V.; García, J.; Iglesias, L.; Hernando, B.; Minguez-Bacho, I. Electrochemical Methods for Template-Assisted Synthesis of Nanostructured Materials. In Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications; Vázquez, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–39. ISBN 9780081001646. [Google Scholar]
- Vega, V.; García, J.; Montero-Moreno, J.M.; Hernando, B.; Bachmann, J.; Prida, V.M.; Nielsch, K. Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism. ACS Appl. Mater. Interfaces 2015, 7, 28682–28692. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast Fabrication of Long-Range Ordered Porous Alumina Membranes by Hard Anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Vega, V.; Böhnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J.M.; Görlitz, D.; Prida, V.M.; Nielsch, K. Tuning the Magnetic Anisotropy of Co–Ni Nanowires: Comparison between Single Nanowires and Nanowire Arrays in Hard-Anodic Aluminum Oxide Membranes. Nanotechnology 2012, 23, 465709. [Google Scholar] [CrossRef]
- Trafela, Š.; Zavašnik, J.; Šturm, S.; Rožman, K.Ž. Formation of a Ni(OH)2/NiOOH Active Redox Couple on Nickel Nanowires for Formaldehyde Detection in Alkaline Media. Electrochim. Acta 2019, 309, 346–353. [Google Scholar] [CrossRef]
- Åberg, E.R.; Gustavsson, A.G.T. Design and Evaluation of Modified Simplex Methods. Anal. Chim. Acta 1982, 144, 39–53. [Google Scholar] [CrossRef]
- Martínez Huerta, J.M.; de La Torre Medina, J.; Piraux, L.; Encinas, A. Self Consistent Measurement and Removal of the Dipolar Interaction Field in Magnetic Particle Assemblies and the Determination of Their Intrinsic Switching Field Distribution. J. Appl. Phys. 2012, 111, 083914. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.P.; Heslop, D.; Zhao, X.; Pike, C.R. Understanding Fine Magnetic Particle Systems through Use of First-Order Reversal Curve Diagrams. Rev. Geophys. 2014, 52, 557–602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, J.; Gutiérrez, R.; González, A.S.; Jiménez-Ramirez, A.I.; Álvarez, Y.; Vega, V.; Reith, H.; Leistner, K.; Luna, C.; Nielsch, K.; et al. Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes. Int. J. Mol. Sci. 2023, 24, 7036. https://doi.org/10.3390/ijms24087036
García J, Gutiérrez R, González AS, Jiménez-Ramirez AI, Álvarez Y, Vega V, Reith H, Leistner K, Luna C, Nielsch K, et al. Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes. International Journal of Molecular Sciences. 2023; 24(8):7036. https://doi.org/10.3390/ijms24087036
Chicago/Turabian StyleGarcía, Javier, Ruth Gutiérrez, Ana S. González, Ana I. Jiménez-Ramirez, Yolanda Álvarez, Víctor Vega, Heiko Reith, Karin Leistner, Carlos Luna, Kornelius Nielsch, and et al. 2023. "Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes" International Journal of Molecular Sciences 24, no. 8: 7036. https://doi.org/10.3390/ijms24087036
APA StyleGarcía, J., Gutiérrez, R., González, A. S., Jiménez-Ramirez, A. I., Álvarez, Y., Vega, V., Reith, H., Leistner, K., Luna, C., Nielsch, K., & Prida, V. M. (2023). Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes. International Journal of Molecular Sciences, 24(8), 7036. https://doi.org/10.3390/ijms24087036