Anti-Obesity and Anti-Inflammatory Synergistic Effects of Green Tea Catechins and Citrus β-Cryptoxanthin Ingestion in Obese Mice
Abstract
:1. Introduction
2. Results
2.1. Changes in Body Weight
2.2. Food and Water Intake
2.3. Blood Biochemistry Analysis
2.4. Changes in White Adipocytes
2.5. The Adipocyte Inflammatory Response
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Producing Obese Mice
4.3. Weight Measurement, Measurement of Food and Water Intake, Drinking of Green Tea and/or β-Cryptoxanthin
4.4. Blood Biochemistry Test
4.5. Histological Analysis
4.6. ELISA Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozen, G.; Elbaz-Greener, G.; Margolis, G.; Marai, I.; Heist, E.K.; Ruskin, J.N.; Carasso, S.; Roguin, A.; Birati, E.Y.; Amir, O. The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S. J. Clin. Med. 2022, 11, 1678. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Carreño, F.O.; Loop, M.S.; Lee, C.R.; Edginton, A.N.; Sinha, J.; Kumar, K.R.; Kirkpatrick, C.M.; Hornik, C.P.; Gonzalez, D.; et al. Use of Real-World Data and Physiologically-Based Pharmacokinetic Modeling to Characterize Enoxaparin Disposition in Children With Obesity. Clin. Pharmacol. Ther. 2022, 112, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of Childhood and Adult Obesity in the United States, 2011-2012. JAMA J. Am. Med. Assoc. 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Lobstein, T. Exploring an algorithm to harmonize International Obesity Task Force and World Health Organization child overweight and obesity prevalence rates. Pediatr. Obes. 2022, 17, e12905. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.; Gauthier, M.-F.; Lafortune, A.; Tchernof, A.; Santosa, S. Adipocyte size, adipose tissue fibrosis, macrophage infiltration and disease risk are different in younger and older individuals with childhood versus adulthood onset obesity. Int. J. Obes. 2022, 46, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Pineros-Leano, M.; Grafft, N.; Aguayo, L. Childhood obesity risk factors by race and ethnicity. Obesity 2022, 30, 1670–1680. [Google Scholar] [CrossRef]
- Huang, W.; Igusa, T.; Wang, G.; Buckley, J.P.; Hong, X.; Bind, E.; Steffens, A.; Mukherjee, J.; Haltmeier, D.; Ji, Y.; et al. In-utero co-exposure to toxic metals and micronutrients on childhood risk of overweight or obesity: New insight on micronutrients counteracting toxic metals. Int. J. Obes. 2022, 46, 1435–1445. [Google Scholar] [CrossRef]
- Kushi, L.H.; Byers, T.; Doyle, C.; Bandera, E.V.; McCullough, M.; McTiernan, A.; Gansler, T.; Andrews, K.S.; Thun, M.J.; American Cancer Society, N.; et al. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2006, 56, 254–281; quiz 313–254. [Google Scholar] [CrossRef]
- Wang, X.; Li, H. Chronic high-fat diet induces overeating and impairs synaptic transmission in feeding-related brain regions. Front. Mol. Neurosci. 2022, 15, 1019446. [Google Scholar] [CrossRef]
- Maldonado, M.; Chen, J.; Duan, H.; Zhou, S.; Yang, L.; Raja, M.A.; Huang, T.; Jiang, G.; Zhong, Y. Effects of caloric overload before caloric restriction in the murine heart. Aging 2022, 14, 2695–2719. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Kim, T.-Y.; Hong, J.-Y.; Kim, G.-J.; Oh, J.-B.; Kim, M.-J.; Apostolidis, E.; Lee, J.-Y.; Kwon, Y.-I. Anti-Obesity and Anti-Adipogenic Effects of Administration of Arginyl-Fructose-Enriched Jeju Barley (Hordeum vulgare L.) Extract in C57BL/6 Mice and in 3T3-L1 Preadipocytes Models. Molecules 2022, 27, 3248. [Google Scholar] [CrossRef]
- Parfait, B.; Jean, B.G.; Roger, P.; Hervé, N.A.H.; Balbine, K.K.; Guillaume, C.W.; Desire, G.N.S.; Linda, D.K.J.; Blondelle, K.D.L.; Germain, S.T. Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. Evid.-Based Complement. Altern. Med. 2022, 2022, 7576132. [Google Scholar] [CrossRef] [PubMed]
- Sasaki-Hamada, S.; Hojyo, Y.; Mizumoto, R.; Koyama, H.; Yanagisawa, S.; Oka, J.-I. Cognitive and hippocampal synaptic profiles in monosodium glutamate-induced obese mice. Neurosci. Res. 2020, 170, 201–207. [Google Scholar] [CrossRef]
- Nakadate, K.; Hirakawa, T.; Tanaka-Nakadate, S. Small intestine barrier function failure induces systemic inflammation in monosodium glutamate-induced chronically obese mice. Appl. Physiol. Nutr. Metab. 2019, 44, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Nakadate, K.; Motojima, K.; Hirakawa, T.; Tanaka-Nakadate, S. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity. BioMed Res. Int. 2016, 2016, 5251738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakadate, K.; Motojima, K.; Kamata, S.; Yoshida, T.; Hikita, M.; Wakamatsu, H. Pathological Changes in Hepatocytes of Mice with Obesity-induced Type 2 Diabetes by Monosodium Glutamate. YAKUGAKU ZASSHI 2014, 134, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, L.A.; Lau, J.M.; Stein, E.A. Carotenoid composition, concentrations, and relationships in various human organs. Clin. Physiol. Biochem. 1990, 8, 1–10. [Google Scholar] [PubMed]
- Pogodziński, D.; Ostrowska, L.; Smarkusz-Zarzecka, J.; Zyśk, B. Secretome of Adipose Tissue as the Key to Understanding the Endocrine Function of Adipose Tissue. Int. J. Mol. Sci. 2022, 23, 2309. [Google Scholar] [CrossRef]
- Tumminia, A.; Vinciguerra, F.; Parisi, M.; Graziano, M.; Sciacca, L.; Baratta, R.; Frittitta, L. Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk. Int. J. Mol. Sci. 2019, 20, 2863. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Ceccarini, G.; Scabia, G.; Barone, I.; Pelosini, C.; Ferrari, F.; Magno, S.; Dattilo, A.; Chiovato, L.; Vitti, P.; et al. Lipodystrophy and obesity are associated with decreased number of T cells with regulatory function and pro-inflammatory macrophage phenotype. Int. J. Obes. 2017, 41, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Chylikova, J.; Dvorackova, J.; Tauber, Z.; Kamarad, V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed. Pap. 2018, 162, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Ni, W.; Wang, X.; Wang, Y.; Huang, X. Intermolecular hydrogen bonds between catechin and theanine in tea: Slow release of the antioxidant capacity by a synergetic effect. RSC Adv. 2022, 12, 21135–21144. [Google Scholar] [CrossRef] [PubMed]
- Rigling, M.; Liu, Z.; Hofele, M.; Prozmann, J.; Zhang, C.; Ni, L.; Fan, R.; Zhang, Y. Aroma and catechin profile and in vitro antioxidant activity of green tea infusion as affected by submerged fermentation with Wolfiporia cocos (Fu Ling). Food Chem. 2021, 361, 130065. [Google Scholar] [CrossRef]
- Trautwein, E.A.; Du, Y.; Meynen, E.; Yan, X.; Wen, Y.; Wang, H.; Molhuizen, H.O.F. Purified black tea theaflavins and theaflavins/catechin supplements did not affect serum lipids in healthy individuals with mildly to moderately elevated cholesterol concentrations. Eur. J. Nutr. 2009, 49, 27–35. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tanaka, Y.; Kamimaki, I.; Nagao, T.; Tokimitsu, I. Catechin Safely Improved Higher Levels of Fatness, Blood Pressure, and Cholesterol in Children. Obesity 2008, 16, 1338–1348. [Google Scholar] [CrossRef]
- Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A Catechin-rich Beverage Improves Obesity and Blood Glucose Control in Patients With Type 2 Diabetes. Obesity 2009, 17, 310–317. [Google Scholar] [CrossRef]
- Sun, X.; Dey, P.; Bruno, R.S.; Zhu, J. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. J. Nutr. Biochem. 2022, 109, 109094. [Google Scholar] [CrossRef]
- Unno, K.; Yamamoto, H.; Maeda, K.-I.; Takabayashi, F.; Yoshida, H.; Kikunaga, N.; Takamori, N.; Asahina, S.; Iguchi, K.; Sayama, K.; et al. Protection of brain and pancreas from high-fat diet: Effects of catechin and caffeine. Physiol. Behav. 2009, 96, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Yoneshiro, T.; Matsushita, M.; Hibi, M.; Tone, H.; Takeshita, M.; Yasunaga, K.; Katsuragi, Y.; Kameya, T.; Sugie, H.; Saito, M. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am. J. Clin. Nutr. 2017, 105, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirengi, S.; Amagasa, S.; Homma, T.; Yoneshiro, T.; Matsumiya, S.; Kurosawa, Y.; Sakane, N.; Ebi, K.; Saito, M.; Hamaoka, T. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus 2016, 5, 1363. [Google Scholar] [CrossRef] [Green Version]
- Maki, K.C.; Reeves, M.S.; Farmer, M.; Yasunaga, K.; Matsuo, N.; Katsuragi, Y.; Komikado, M.; Tokimitsu, I.; Wilder, D.; Jones, F.; et al. Green Tea Catechin Consumption Enhances Exercise-Induced Abdominal Fat Loss in Overweight and Obese Adults. J. Nutr. 2009, 139, 264–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, H.M.; New, S.A.; Golden, M.H.; Campbell, M.K.; Reid, D.M. Nutritional associations with bone loss during the menopausal transition: Evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am. J. Clin. Nutr. 2004, 79, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiura, M. ^|^beta;-Cryptoxanthin and the Risk for Lifestyle-related Disease: Findings from Recent Nutritional Epidemiologic Studies. YAKUGAKU ZASSHI 2015, 135, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Nagashimada, M.; Zhan, L.; Nagata, N.; Kobori, M.; Sugiura, M.; Ogawa, K.; Kaneko, S.; Ota, T. Prevention and Reversal of Lipotoxicity-Induced Hepatic Insulin Resistance and Steatohepatitis in Mice by an Antioxidant Carotenoid, β-Cryptoxanthin. Endocrinology 2015, 156, 987–999. [Google Scholar] [CrossRef]
- Sugiura, M.; Kato, M.; Matsumoto, H.; Nagao, A.; Yano, M. Serum concentration of β-cryptoxanthin in Japan reflects the frequency of Satsuma mandarin (Citrus unshiu Marc.) consumption. J. Health Sci. 2002, 48, 350–353. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, M.; Matsumoto, H.; Kato, M.; Ikoma, Y.; Yano, M.; Nagao, A. Multiple linear regression analysis of the seasonal changes in the serum concentration of beta-cryptoxanthin. J. Nutr. Sci. Vitaminol. 2004, 50, 196–202. [Google Scholar] [CrossRef]
- Hikita, M.; Motojima, K.; Kamata, S.; Yoshida, T.; Tanaka-Nakadate, S.; Nakadate, K. Protective Efficacy of the Ingestion of Mandarin Orange Containing β-Cryptoxanthin on Lipopolysaccharide-induced Acute Nephritis. YAKUGAKU ZASSHI 2016, 136, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Murakami, A.; Nakashima, M.; Koshiba, T.; Maoka, T.; Nishino, H.; Yano, M.; Sumida, T.; Kim, O.K.; Koshimizu, K.; Ohigashi, H. Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 2000, 149, 115–123. [Google Scholar] [CrossRef]
- New, S.A. Intake of fruit and vegetables: Implications for bone health. Proc. Nutr. Soc. 2003, 62, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Benoit, M.; Desnues, B.; Mege, J.-L. Macrophage Polarization in Bacterial Infections. J. Immunol. 2008, 181, 3733–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Behl, T.; Sachdeva, M.; Sehgal, A.; Kumari, S.; Kumar, A.; Kaur, G.; Yadav, H.N.; Bungau, S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2020, 264, 118661. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Xie, Y.; Li, N.; Liu, Y.; Wen, J.; Zhang, M.; Feng, W.; Huang, J.; Guo, Y.; et al. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res. Int. 2022, 162, 112008. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Millán-Martínez, M.; Domínguez-Riscart, J.; Mateos, R.M.; Lechuga-Sancho, A.M.; González-Domínguez, R. Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance. Antioxidants 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Di Felice, G.; Manco, M.; Pastore, A.; Pezzi, S.; Mariani, M.; Fintini, D.; Muda, A.O.; Porzio, O. Study of the Association between Thiols and Oxidative Stress Markers in Children with Obesity. Nutrients 2022, 14, 3637. [Google Scholar] [CrossRef]
- Sahu, A. Intracellular Leptin-Signaling Pathways in Hypothalamic Neurons: The Emerging Role of Phosphatidylinositol-3 Kinase-Phosphodiesterase-3B-cAMP Pathway. Neuroendocrinology 2011, 93, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front. Neuroendocr. 2003, 24, 225–253. [Google Scholar] [CrossRef]
- Beyreuther, K.; Biesalski, H.K.; Fernstrom, J.D.; Grimm, P.; Hammes, W.P.; Heinemann, U.; Kempski, O.; Stehle, P.; Steinhart, H.; Walker, R. Consensus meeting: Monosodium glutamate—An update. Eur. J. Clin. Nutr. 2006, 61, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Viña, J.R. Structure of the Blood–Brain Barrier and Its Role in the Transport of Amino Acids. J. Nutr. 2006, 136, 218S–226S. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, I.; Tsuda, K.; Suzuki, Y.; Kobayashi, M.; Unno, T.; Tomoyori, H.; Goto, H.; Kawata, Y.; Imaizumi, K.; Nozawa, A.; et al. Tea Catechins with a Galloyl Moiety Suppress Postprandial Hypertriacylglycerolemia by Delaying Lymphatic Transport of Dietary Fat in Rats. J. Nutr. 2005, 135, 155–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers 2020, 12, 1397. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Osaki, N.; Shimotoyodome, A. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes. Biochem. Biophys. Res. Commun. 2015, 461, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Murase, T.; Nagasawa, A.; Suzuki, J.; Hase, T.; Tokimitsu, I. Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int. J. Obes. 2002, 26, 1459–1464. [Google Scholar] [CrossRef] [Green Version]
- Suchacki, K.; Stimson, R. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients 2021, 13, 1748. [Google Scholar] [CrossRef]
- Armani, A.; Feraco, A.; Camajani, E.; Gorini, S.; Lombardo, M.; Caprio, M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022, 11, 3996. [Google Scholar] [CrossRef]
- Ikeda, I.; Kobayashi, M.; Hamada, T.; Tsuda, K.; Goto, H.; Imaizumi, K.; Nozawa, A.; Sugimoto, A.; Kakuda, T. Heat-Epimerized Tea Catechins Rich in Gallocatechin Gallate and Catechin Gallate Are More Effective To Inhibit Cholesterol Absorption than Tea Catechins Rich in Epigallocatechin Gallate and Epicatechin Gallate. J. Agric. Food Chem. 2003, 51, 7303–7307. [Google Scholar] [CrossRef]
- Ikeda, I.; Imasato, Y.; Sasaki, E.; Nakayama, M.; Nagao, H.; Takeo, T.; Yayabe, F.; Sugano, M. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim. Biophys. Acta BBA-Lipids Lipid Metab. 1992, 1127, 141–146. [Google Scholar] [CrossRef]
- Kajimoto, O.; Kajimoto, Y.; Yabune, M.; Nakamura, T.; Kotani, K.; Suzuki, Y.; Nozawa, A.; Nagata, K.; Unno, T.; Sagesaka, Y.M.; et al. Tea Catechins with a Galloyl Moiety Reduce Body Weight and Fat. J. Health Sci. 2005, 51, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, H.; Koga, K.; Fujimura, Y.; Yamada, K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 2004, 11, 380–381. [Google Scholar] [CrossRef]
- Kumazoe, M.; Yamashita, M.; Nakamura, Y.; Takamatsu, K.; Bae, J.; Yamashita, S.; Yamada, S.; Onda, H.; Nojiri, T.; Kangawa, K.; et al. Green Tea Polyphenol EGCG Upregulates Tollip Expression by Suppressing Elf-1 Expression. J. Immunol. 2017, 199, 3261–3269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumazoe, M.; Sugihara, K.; Tsukamoto, S.; Huang, Y.; Tsurudome, Y.; Suzuki, T.; Suemasu, Y.; Ueda, N.; Yamashita, S.; Kim, Y.; et al. 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J. Clin. Investig. 2013, 123, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, D.; Mouchlis, V.D.; Okamoto, S.; Namba, T.; Wang, L.; Li, S.; Ueda, S.; Yamanoue, M.; Tachibana, H.; Arai, H.; et al. Vitamin E functions by association with a novel binding site on the 67 kDa laminin receptor activating diacylglycerol kinase. J. Nutr. Biochem. 2022, 110, 109129. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kishikawa, M.; Kumazoe, M.; Yamada, K.; Tachibana, H. Vitamin A Enhances Antitumor Effect of a Green Tea Polyphenol on Melanoma by Upregulating the Polyphenol Sensing Molecule 67-kDa Laminin Receptor. PLoS ONE 2010, 5, e11051. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; et al. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed. Pharmacother. 2020, 130, 110714. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; Fernández-Quintela, A.; Lasa, A.; Aguirre, L.; Rimando, A.M.; Portillo, M.P. Pterostilbene, a Dimethyl Ether Derivative of Resveratrol, Reduces Fat Accumulation in Rats Fed an Obesogenic Diet. J. Agric. Food Chem. 2014, 62, 8371–8378. [Google Scholar] [CrossRef]
- Wingerath, T.; Stahl, W.; Sies, H. β-Cryptoxanthin Selectively Increases in Human Chylomicrons upon Ingestion of Tangerine Concentrate Rich in β-Cryptoxanthin Esters. Arch. Biochem. Biophys. 1995, 324, 385–390. [Google Scholar] [CrossRef]
- Breithaupt, D.E.; Bamedi, A. Carotenoid esters in vegetables and fruits: A screening with emphasis on beta-cryptoxanthin esters. J. Agric. Food. Chem. 2001, 49, 2064–2070. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Furr, H.C.; Amedée-Manesme, O.; A Olson, J. Retinyl ester (vitamin A ester) and carotenoid composition in human liver. Int. J. Vitam. Nutr. Res. 1990, 60, 307–313. [Google Scholar]
- Schmitz, H.H.; Poor, C.L.; Wellman, R.B.; Erdman, J.W. Concentrations of Selected Carotenoids and Vitamin A in Human Liver, Kidney and Lung Tissue. J. Nutr. 1991, 121, 1613–1621. [Google Scholar] [CrossRef]
- Stahl, W.; Schwarz, W.; Sundquist, A.R.; Sies, H. cis-trans isomers of lycopene and beta-carotene in human serum and tissues. Arch. Biochem. Biophys. 1992, 294, 173–177. [Google Scholar] [CrossRef]
- Yano, M.; Ikoma, Y.; Sugiura, M. Recent Progress in β-Cryptoxanthin Research. Bull. Natl. Inst. Fruit Tree Sci. 2005, 4, 13–28. [Google Scholar]
- Froy, O.; Garaulet, M. The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. Endocr. Rev. 2018, 39, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntzouvani, A.; Fragopoulou, E.; Panagiotakos, D.; Pitsavos, C.; Antonopoulou, S. Reduced circulating adiponectin levels are associated with the metabolic syndrome independently of obesity, lipid indices and serum insulin levels: A cross-sectional study. Lipids Health Dis. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Karmelić, I.; Lovrić, J.; Božina, T.; Ljubić, H.; Vogrinc, Z.; Božina, N.; Sertić, J. Adiponectin Level and Gene Variability Are Obesity and Metabolic Syndrome Markers in a Young Population. Arch. Med. Res. 2012, 43, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshitomi, R.; Yamamoto, M.; Kumazoe, M.; Fujimura, Y.; Yonekura, M.; Shimamoto, Y.; Nakasone, A.; Kondo, S.; Hattori, H.; Haseda, A.; et al. The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: A randomized placebo-controlled clinical trial. Sci. Rep. 2021, 11, 19067. [Google Scholar] [CrossRef]
- Satoh, R.; Kawakami, K.; Nakadate, K. Effects of Smart Drugs on Cholinergic System and Non-Neuronal Acetylcholine in the Mouse Hippocampus: Histopathological Approach. J. Clin. Med. 2022, 11, 3310. [Google Scholar] [CrossRef] [PubMed]
Experimental Groups | 11 w–12 w | 12 w–13 w | 13 w–14 w | 14 w–15 w |
---|---|---|---|---|
Control | 4.29 ± 1.27 | 4.22 ± 1.07 | 4.31 ± 1.77 | 4.40 ± 1.28 |
MSG | 4.68 ± 1.61 | 4.51 ± 1.33 | 4.51 ± 1.40 | 4.57 ± 1.67 |
MSG + green tea catechin | 4.59 ± 1.62 | 4.61 ± 1.40 | 4.59 ± 1.25 | 4.55 ± 1.66 |
MSG + β-cryptoxanthin | 4.71 ± 1.45 | 4.60 ± 1.23 | 4.39 ± 1.38 | 4.62 ± 1.53 |
MSG + green tea + β-cryptoxanthin | 4.57 ± 1.38 | 4.52 ± 1.02 | 4.45 ± 1.71 | 4.48 ± 1.32 |
Experimental Groups | 11 w–12 w | 12 w–13 w | 13 w–14 w | 14 w–15 w |
---|---|---|---|---|
Control | 4.13 ± 0.10 | 4.20 ± 0.26 | 4.23 ± 0.19 | 4.25 ± 0.17 |
MSG | 4.48 ± 0.15 | 4.43 ± 0.17 | 4.48 ± 0.25 | 4.38 ± 0.15 |
MSG + green tea catechin | 4.18 ± 0.05 | 4.40 ± 0.08 | 4.38 ± 0.15 | 4.40 ± 0.08 |
MSG + β-cryptoxanthin | 3.95 ± 0.13 | 4.38 ± 0.21 | 4.55 ± 0.13 | 4.53 ± 0.22 |
MSG + green tea + β-cryptoxanthin | 4.20 ± 0.08 | 4.40 ± 0.14 | 4.50 ± 0.08 | 4.53 ± 0.05 |
Experimental Groups | Weight (g) | Average Diameter (mm2) |
---|---|---|
Control | 0.8 ± 0.2 | 1457.2 ± 763.0 |
MSG | 2.4 ± 0.5 * | 5922.7 ± 3211.9 * |
MSG + green tea catechin | 1.9 ± 0.6 * | 4197.8 ± 2741.3 * |
MSG + β-cryptoxanthin | 2.3 ± 0.5 * | 5558.9 ± 873.8 * |
MSG + green tea + β-cryptoxanthin | 0.9 ± 0.7 # | 1622.5 ± 1081.2 # |
Experimental Groups | Drinking Period |
---|---|
Control | - |
MSG | - |
MSG + green tea catechin | 11–15 w |
MSG + β-cryptoxanthin | 11–15 w |
MSG + green tea + β-cryptoxanthin | 11–15 w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakadate, K.; Kawakami, K.; Yamazaki, N. Anti-Obesity and Anti-Inflammatory Synergistic Effects of Green Tea Catechins and Citrus β-Cryptoxanthin Ingestion in Obese Mice. Int. J. Mol. Sci. 2023, 24, 7054. https://doi.org/10.3390/ijms24087054
Nakadate K, Kawakami K, Yamazaki N. Anti-Obesity and Anti-Inflammatory Synergistic Effects of Green Tea Catechins and Citrus β-Cryptoxanthin Ingestion in Obese Mice. International Journal of Molecular Sciences. 2023; 24(8):7054. https://doi.org/10.3390/ijms24087054
Chicago/Turabian StyleNakadate, Kazuhiko, Kiyoharu Kawakami, and Noriko Yamazaki. 2023. "Anti-Obesity and Anti-Inflammatory Synergistic Effects of Green Tea Catechins and Citrus β-Cryptoxanthin Ingestion in Obese Mice" International Journal of Molecular Sciences 24, no. 8: 7054. https://doi.org/10.3390/ijms24087054
APA StyleNakadate, K., Kawakami, K., & Yamazaki, N. (2023). Anti-Obesity and Anti-Inflammatory Synergistic Effects of Green Tea Catechins and Citrus β-Cryptoxanthin Ingestion in Obese Mice. International Journal of Molecular Sciences, 24(8), 7054. https://doi.org/10.3390/ijms24087054