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Abstract: Bacillus subtilis is an effective workhorse for the production of many industrial products.
The high interest aroused by B. subtilis has guided a large metabolic modeling effort of this species.
Genome-scale metabolic models (GEMs) are powerful tools for predicting the metabolic capabilities of
a given organism. However, high-quality GEMs are required in order to provide accurate predictions.
In this work, we construct a high-quality, mostly manually curated genome-scale model for B. subtilis
(iBB1018). The model was validated by means of growth performance and carbon flux distribution
and provided significantly more accurate predictions than previous models. iBB1018 was able
to predict carbon source utilization with great accuracy while identifying up to 28 metabolites as
potential novel carbon sources. The constructed model was further used as a tool for the construction
of the panphenome of B. subtilis as a species, by means of multistrain genome-scale reconstruction.
The panphenome space was defined in the context of 183 GEMs representative of 183 B. subtilis
strains and the array of carbon sources sustaining growth. Our analysis highlights the large metabolic
versatility of the species and the important role of the accessory metabolism as a driver of the
panphenome, at a species level.

Keywords: Bacillus subtilis; genome-scale metabolic model; flux balance analysis; multistrain modeling;
panphenome

1. Introduction

Aside from being the model organism of Firmicutes clade, Bacillus subtilis is a biotech-
nological workhorse for the production of many industrial products, such as enzymes,
vitamins, and antibiotics [1]. In recent years, a considerable effort has been aimed at
engineering better-performing B. subtilis strains, producing high added value industrial
products by means of metabolic engineering [2,3]. However, addressing such an ambitious
goal often requires advanced approaches beyond classic metabolic engineering [4]. In
this context, the complete understanding of microbial metabolic space, its optimization,
and rational expansion require holistic approaches accounting for system-level properties.
Since mathematical modeling can be used as accurate scaffolds towards this purpose, it is
not surprising that modeling approaches have been developed and thoroughly used for
optimizing microbial cell factories and to address important biological questions in the last
decade [5,6]. Genome-scale metabolic models (GEMs) are mathematical representations of
cellular metabolism accounting for the reactions’ stoichiometries and reversibility under the
assumption of a metabolic steady state [7]. Their intrinsic simplicity makes these models
powerful tools to analyze biological networks at the genome scale. Overall, GEMs have
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proven to be powerful computational tools for the computation of the metabolic capabilities
and phenotype of a given organism, even under perturbations, and can also be used for
strain optimization.

To date, B. subtilis has been subject to significant metabolic modeling efforts, and
various genome-scale metabolic network models of B. subtilis are available: iYO844 [8],
iBsu1103 [9], iBsu1103v2 [2], iBsu1147 [10], and iBsu1144 [11]. The first GEM, iYO844, was
constructed including phenotyping and gene essentiality data. More recently, this pioneer
model has been updated by integrating 17 enzyme kinetics for the central carbon and
related pathway reactions, significantly improving model predictions regarding growth
rate and flux distribution [12]. Another series of GEMs of B. subtilis was constructed using
the semi-automatic workflow developed by the SEED Project [9,13–15]. The initial model,
iBsu1103 (which also includes Gibbs free energy change values for 1403 of the reactions),
has been updated several times in the last decade [2,10,11]. The second update, iBsu1103v2,
analyzed and fixed the incorrect gene essentiality predictions of its initial version. Finally,
the latest model updates (iBsu1147 and iBsu1144) were aiming to optimize the production
of relevant added-value compounds including riboflavin, Egl-237, isobutanol, butanodiol,
and serine protease. Despite the efforts in the reconstruction of B. subtilis metabolism, it has
been recently shown that the current models are far from accurately predicting well-known
metabolic traits of this strain [16]. Overall, any discrepancies with experimental data were
mainly due to incorrect or incomplete annotations, missing reactions and/or pathways,
and/or inaccurate formulation of the biomass reaction. Therefore, there is still much room
for improvement in the metabolic modeling of this interesting microorganism.

On the other hand, the increasing number of genomes being sequenced is allowing re-
searchers to address the variability across strains within the same species. As more genome
sequences become available, substantial differences in genomic content and functions
across strains can be identified [17]. Therefore, it is now possible to explore strain-specific
variations using approaches such as pangenome analyses [18]. Pangenome studies have
highlighted the existence of important differences among strains, thus explaining divergent
phenotypes within a single species. However, despite the utility of pangenome-based func-
tional analyses, they do not provide a mechanistic insight into phenotypic potential based
on genetic and genomic variability within a species [19,20]. In this context, the possibility of
addressing the metabolic modeling of the whole set of strains of one given species becomes,
in an optimal computational framework, an opportunity to analyze, from a mechanistic
point of view, the phenotypic differences in a bacterial species [21–28]. However, such
multistrain modeling requires high-quality GEMs for each reference strain, which are not
always available, thus limiting this approach to a low number of species [25,28–30].

In this work, we develop a new and high-quality genome-scale model for B. subtilis
(iBB1018) based on the annotations of the SEED project [15]. iBB1018 was built based
on iBsu1103v2 but subject to a thoroughly manual curation that included the available
biochemical and physiological knowledge. The quality of iBB1018 was further validated by
means of growth performance and carbon flux distribution providing significantly more
accurate predictions than previous models. Overall, iBB1018 predicts the carbon sources
tested with high precision (84%), while it identifies up to 28 metabolites as potential novel
carbon sources, thus significantly expanding the known metabolic versatility of B. subtilis.
Furthermore, this updated B. subtilis GEM provides an essential tool to study pan-metabolic
capabilities, thus providing clues about the metabolic range of Bacillus subtilis as a species.
Subsequently, we provide here a multistrain metabolic model of B. subtilis.

2. Results
2.1. Genome-Scale Metabolic Reconstruction

The genome-scale metabolic model iBB1018 (Supplementary Additional Files S3 and S4)
contains 1577, 1291, and 1018 unique reactions, metabolites, and genes, respectively. The
model was created by updating the metabolic content derived from iBsu1103v2 following
a procedure that includes three iterative steps (Figure 1). Firstly, an initial draft model was
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constructed from the SEED-based iBsu1103v2 model. SEED nomenclature was then converted
to BiGG annotations using the platform MetaNetX as an intermediate while genes ID were
updated according to NCBI (BSU) nomenclature.

Secondly, we carried out an exhaustive revision and manual curation of all the reac-
tions based on the analysis of each Gene–Protein Reaction (GPR) association included in
the draft. Therefore, each individual GPR was evaluated based on physiological evidence
and information allocated on several databases, such as KEGG [31], MetaCyc [32], and
BRENDA [33]. During the manual curation, multiple inconsistencies were found in the
draft, which mainly fell into four categories: (1) 5.4% of the reactions initially included in
the draft were incorrectly described, in terms of stoichiometry and/or cofactor dependency;
(2) 10.8% of the reactions of the initial model were mass or charge unbalanced and were
adjusted accordingly; (3) 16.1% of the reactions were modified to change orientation and/or
reversibility according to KEGG and MetaCyc databases. Many of these incorrect reactions
yielded an unrealistic production of ATP which was not associated with metabolic costs,
e.g., pyruvate carboxylase was modified to be irreversible; and (4) 39 new reactions, mostly
transporter-related, were added to the model based on physiological and/or genomic data.
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Figure 1. Reconstruction process of iBB1018. (1) The initial model was reconstructed using iBsu1103v2
as a template within the framework of MetaNetX and BiGG model databases. (2) An exhaustive man-
ual curation was carried out using bibliographic, biochemical, and metabolic databases. (3) Biomass
production was selected as an objective function for gap-filling analysis.

Finally, in a third step, we applied a manual gap-filling analysis in order to complete
several biosynthetic pathways required to synthesize elements from the biomass reaction.
This process was profusely guided by the information available in biological databases and
the scientific literature. For instance, it was necessary to add the transporter reactions for
D-arabinose, galactitol, and sucrose due to a lack of genes associated with these reactions
in the initial draft model.

The metabolic expansion accounted for by iBB1018 in comparison with the highly
curated model iYO844 was highlighted by means of a Clusters of Orthologous Genes
(COG) analysis (Figure 2, Table S2). We observed an increase in the number of reactions in
almost all the different COGs categories. A noteworthy feature was the significant increase
of reactions on carbohydrates transport and metabolism, which led to an increase in the
number of new carbon sources used by the model, thus driving a better understanding of
the actual metabolic capabilities of B. subtilis.
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In order to ensure the quality of the iBB1018 model, we used the MEMOTE tool [34], a
well-known standardized quality control tool for GEMs. The quality evaluation included
the missing annotations test, format structuration, searching imbalanced reactions, and
searching of errors in stoichiometries. These tests allow the evaluation of the consistency
of the metabolic network. The model reached an overall score of 81.09%, which indicates
a good model completeness (Figure S1). The consistency of the model scored was 99.8%,
which represents the accuracy in stoichiometry, mass and charge balance, metabolite
connectivity, and reaction cycles. This analysis confirms that iBB1018 is a complete and
detailed model. A comparison between the models iBB1018, iBsu1103v2, and iYO844 by
MEMOTE showed high scores for iBB1018 and iYO844, with 81% and 80%, respectively. On
the other hand, the iBsu1103v2 model had the lowest score, 36% (Figure S1, Supplementary
Additional File S2).

2.2. Growth Rate Performance of iBB1018 Is in Agreement with Several In Vivo Nutritional
Scenarios

Large completeness and consistency of a model does not always mean a high-quality
model and GEMs need to be validated by assessing their ability to compute physiolog-
ical states [35]. To validate iBB1018, we evaluated its capability predicting well-known
metabolic traits of B. subtilis, with such growth performance in glucose as the sole carbon
source [36]. Aerobic growth was simulated allowing only the uptake of glucose while the
upper bound of the rest of the exchange reactions remained unconstrained (Table 1). The
performance of iBB1018 was further compared with that from previous models including
iYO844 and the reference SEED model iBsu1103v2. This analysis shows the higher accuracy
of iBB1018 when compared with previous models. In fact, iBB1018 not only predicts the
closest growth rate to that reported in vivo, but also a more accurate acetate production.
It is noteworthy that while iYO844 slightly overestimated acetate secretion, resulting in a
significantly lower growth rate, iBsu1103v2 was unable to predict acetate secretion at all,
thus overestimating the growth rate.
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Table 1. Parameters of B. subtilis 168 growing in glucose in vivo and in silico. Constraints used to
feed the model are underlined.

Glucose Uptake mmol
g−1 h−1

Oxygen Uptake
mmol g−1 h−1 Growth Rate h−1 Acetate Production

mmol g−1 h−1

In vivo [36] 8.71 ± 0.64 18 0.67 ± 0.02 4.28 ± 0.29

iBB1018 8.71 18 0.69 4.03

iBsu1103v2 8.71 18 1.27 0

iYO844 8.71 18 0.61 5.53

Since B. subtilis is able to grow on additional carbon sources besides glucose, we
decided to test the performance of iBB1018 on alternative nutritional scenarios in order to
complete the model validation. Specifically, we monitored the growth rate of iBB1018 using
single carbon sources such as citrate, gluconate, and glucose [37], while fixing the riboflavin
secretion to experimental data [38,39]. Overall, we found large agreement between in vivo
and in silico values, despite model-based predictions slightly overestimating in vivo growth
rates in all the carbon sources simulated (Table 2). These discrepancies are within an
acceptable error and are often found even in high-quality GEMs [29,30]. They might be
explained by: (i) a still incomplete formulation of biomass function, (ii) higher condition-
specific energy maintenance requirements not accounted for in the current reconstruction,
and (iii) missing adaptation to these alternative compounds as primary carbon sources [35].
Furthermore, these discrepancies may also refer to an incomplete in vivo phenotyping of
the strain, for example, not having taken into account possible metabolic byproducts such
lactate and pyruvate or the secretion of partially oxidized metabolites.

Table 2. Validation of growth performance of iBB1018 under various carbon source and production
scenarios. Constraints used to feed the model are underlined.

Carbon Source
Substrate a

Uptake (mmol g−1 h−1)

In Vivo
Riboflavin
Secretion

(mmol g−1 h−1)

In Vivo
Growth Rate (h−1)

In Silico
Growth Rate (h−1)

vglc = 1.55; vcit = 0.5 0.0173 0.10 0.12

vglc = 1.55; vglcn_D = 0.6 0.0258 0.12 0.13

vglc = 1.7 0.0181 0.10 0.10

vglc = 3.2 0.0210 0.20 0.24

vglc = 4.7 0.0231 0.30 0.39

vglc = 6.2 0.0255 0.40 0.54
a glc: D-glucose; cit: citrate; glcn_D: D-gluconate.

Once iBB1018 was validated applying experimental data from the literature, the capa-
bility of the in silico model iBB1018 to predict aerobic growth on various carbon sources was
determined (Figure 3, Table S3 in Supplementary Additional File S1). The in silico compu-
tations were compared against experimental data from the literature [8,40–42]. Growth on
different substrates was simulated by fixing their specific uptake rates to 10 mmol g−1 h−1

under aerobic conditions in minimal media. iBB1018 was able to correctly predict the
growth of the bacterium in 80 carbon sources. The model also suggests 28 new compounds
as potential carbon sources, including D-xylose or stachyose. This was possible thanks to
the expansion of the network, with manual gap filling of reactions involved in the transport
of metabolites. Network gap analysis found metabolites that were either consumed only or
produced only, and therefore broke the material balance on the metabolites. The candidate
metabolites were identified, and reactions were analyzed and filled. Although in silico
predictions generally agreed with experimental data, this model also erroneously indicated
growth for four carbon sources (4-aminobutanoate, glycine, L-isoleucine, and L-valine), as
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previous iBsu1103v2 and iYO844 models did (Figure 3). Such extended inaccurate predic-
tions argue in favor of a lack of adaptation of B. subtilis to these alternative compounds as
primary carbon sources, as has been discussed previously [28].
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2.3. iBB1018 Exhibits Superior Performance Predicting Carbon Flux Distribution Than Previous
Models

To further quantitatively evaluate the predictive capabilities of iBB1018, we performed
a careful analysis of carbon flux distribution using glucose as a single carbon and energy
source under aerobic conditions. Subsequently, we compared the fluxes predicted with
those experimentally reported [43]. Fluxes prediction using iYO844 and iBsu1103v2 were in-
cluded in the comparison in order to benchmark the performance of these previous models.
Overall, this analysis highlights that the manually curated models (iYO844 and iBB1018) can
predict experimentally reported metabolic fluxes with more accuracy (Figure S2, Table S1).
In contrast, the automatically constructed iBsu1103v2 yields significantly less accurate
fluxes’ predictions.

When focused on glycolysis, the three models exhibit good agreement with experi-
mental data, despite iBsu1103v2’s slightly underestimated flux through the late pathway.
In the case of pentose phosphate pathways, the flux predictions are underestimated, even
though the performance of the manually curated models is slightly better in terms of
flow correlation. The detailed analysis of the TCA cycle shows that iBB1018 and iYO844
predicted net flux through all the reactions of TCA. In contrast, iBsu1103v2 significantly
underutilizes TCA, predicting null flux through five of the eight reactions involved in
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the cycle. In addition, the only three active reactions presented underestimated fluxes. A
correlation plot was used to compare the models (Figure 4), showing low values for all the
models and presenting the model iBBb1018 with the highest correlation (R = 0.49, p-value
0.2). The iBsu1103v2 model shows, as expected, the lowest correlation values (Figure 4A).
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2.4. Multistrain Modeling of B. subtilis as Species

Multistrain genome-scale metabolic models can be used to study metabolic diversity
and speciation [44]. In order to analyze the phenotypic potential of B. subtilis, as species, we
first computed the pangenome of B. subtilis and, by using the high-quality model iBB1018
as a template, we further addressed the multistrain metabolic modeling of the whole
species [28].

The pangenome of 184 B. subtilis strains was addressed by performing a homology
analysis in order to identify orthologous genes among the analyzed strains. We noted
a large variability, in terms of number of genes, among the different genomes, ranging
from 2623 (CP029052, B. subtilis BS155) to 7044 (AP012495, B. subtilis BEST7613) (Figure S3,
Table S4). Interestingly, the second-largest genome including 4191 genes from B. subtilis
BEST7613 was identified as a chimera genome harboring an important fragment of the
genome of the cyanobacterium Synechocystis strain PCC6803 [45]; thus, it was discarded in
order to avoid potential errors in the downstream analysis.

Pangenomes make reference to the entire set of genes from all the strains within a
clade. Therefore, we defined the core pangenome as that including those genes present in
a high percentage of strains (>95%), while the accessory pangenome was defined as that
representing unique or shared functions by a reduced group of strains (Figures 5 and S3).
While the pangenome is useful in terms of comparative analysis, for modeling purposes,
the panphenome is more useful since it is the set of all the in silico metabolic phenotypes
displayed by the collection of B. subtilis GEMs constructed. Subsequently, we used the
estimated pangenome to compute the panphenome of B. subtilis. For this, we filtered
metabolic genes using the iBB1018 and BiGG database as a source of metabolic functions
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(Methods) and, subsequently, the list of metabolic genes for each strain was reduced to
those with any known metabolic function. Interestingly, we found a more homogeneous
number of genes in each strain (between 900 and 1200 genes), which strongly suggests
that metabolism is highly conserved in contrast to other functionalities. The computed
panphenome was finally used as basic metabolic information to construct strain-specific
GEMs for each strain analyzed. The GEMs were automatically gap-filled followed by
semi-manual curation to include metabolic information other than that included in the core
panphenome. A total of 183 strain-specific GEMs were constructed, covering 2324 of the
13,398 gene families present in the calculated pangenome (17.3%). Most of the sequences
not included into the GEMs were not annotated or failed to show any known function
(35%).
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Figure 5. (A) Schematic representation of the multiple filtering performed to calculate the final
GEMs. (B) Reaction frequency among the selected B. subtilis strains. The purple area represents core
metabolism and green represents accessory metabolism.

To validate this multistrain modeling and gain further insights in the phenotypic
features of B. subtilis, strain-specific GEMs were used to compute those carbon sources
supporting growth in the analyzed strains. (Figure 6, Table S5). This analysis unveiled a
small set of 18 incomplete and non-functional models which still need additional gap filling
or manual curation steps; therefore, only 165 GEMs were further analyzed. Overall, the
functional analysis of B. subtilis strains based on their cognate GEMs allows the classification
of the analyzed strains in two main groups: (i) High Metabolically Versatile (HMV) strains
and (ii) Low Metabolically Versatile (LMV) strains (Figure 6). HMV strains show the ability
for growth on a large variety of carbon sources, including mono and polysaccharides, amino
acids, nucleotides, organic acids, and TCA intermediate, among others. In contrast, LMV
strains exhibit a reduced catabolic space, being limited to mono and polysaccharides and a
few nucleotides. It is noteworthy that two of the strains identified as LMV, i.e., B. subtilis
strain PS38 (CP016789) and PG10 (CP016788), were subject to synthetic genome reduction
in the context of minimal genome identification [46], therefore explaining, to a great extent,
the low metabolic versatility computed. HMV strains could be additionally classified
into two subgroups, including HMVα which exhibits growth efficiently in ascorbic acid,
2-dehydro-D-gluconate, Cis-aconitate, and L-alanine-L-glutamate but not on L-arabinitol,
and HMVβ which exhibits the opposite phenotype.

Regarding carbon sources, we identified a group of selected monosaccharides, oligosac-
charides, and polysaccharides, such as xylose, fructose, and starch, as universal carbon
sources (>90% strains with growth) that were able to sustain the growth of most of the
B. subtilis strains. Interestingly, such carbon sources provided the highest growth rate
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computed, strongly suggesting optimal carbon sources for B. subtilis irrespective of the
particular strain being analyzed. A second group of carbon sources that included additional
mono and polysaccharides, amino acids, nucleotides, and organic acids were used for a
large number of B. subtilis strains, constituting a second core carbon source for this species.
Finally, we identified an important variety of carbon sources providing growth to only a low
number of strains (less than 50); therefore, we consider these compounds as strain-specific
carbon sources.
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(purple). The right bar indicates if the carbon source was tested in Biolog with B. subtilis 168 and the
growth result in vivo. The data were hierarchically clustered with the “manhattan” distance method.
The α and β symbols represent HMV subgroups. The universal class contains carbon sources with
more than 90% of the strains with growth, the core class contains between 30% and 90%, and the
strain-specific class contains less than 30%. The B. subtilis strain names are not shown, and the carbon
sources are identified with the reduced BiGG namespace IDs to facilitate the visualization. Growth
rates were normalized with the number of carbons of each carbon source metabolite.

3. Discussion

Bacillus subtilis is an important microorganism used for biotechnological processes
which have triggered a large effort of metabolic modeling in order to construct accurate and
predictive computational platforms towards biotechnology endeavors. However, available
in silico GEMs of B. subtilis are far away, in term of completeness and predictive potential,
from equivalent models of other well-known and widely used microbial cell factories
such as Escherichia coli [29], Pseudomonas putida [30], and Saccharomyces cerevisiae [47]. In
this study, we addressed this challenge and presented an upgraded genome-scale model
for B. subtilis (iBB1018). iBB1018 presents higher metabolic completeness and predictive
capabilities than previously published B. subtilis GEMs, and scores as the highest-quality
GEM when analyzed with the MEMOTE tool [34]. The final model was highly validated
against reported data and was used for an in-depth analysis of B. subtilis metabolism
exhibiting a high grade of accuracy in terms of carbon source utilization, growth rate, and
flux distribution predictions under various nutritional scenarios.

Once a high-quality GEM exists, its contents (e.g., genes, metabolites, and reactions)
can be straightforwardly mapped onto a closely related strain in a species. Following this, a
multistrain approach can be integrated with genome-scale modeling in order to gain novel
insights underlying the variability of phenotypes. This approach enables panphenome
analysis, thus empowering species-wide comparative systems biology that has been applied
to well-known species in a variety of studies, mainly involving the assessment of metabolic
potential. E. coli was the first species subject to multistrain modeling following its high
number of GEMs. An initial study by Monk and colleagues addressed the modeling of
55 fully sequenced E. coli strains identifying strain-specific auxotrophies and substrate
preferences among the set of strains [21]. Extending this analysis, a new multistrain effort
included 1200 E. coli strains and demonstrated a large variability both in gene content and
function within the species. The computed panphenome was further used to construct
a robust classification tree for determination between extra-intestinal and intra-intestinal
pathogens [29]. Following the E. coli example, multistrain modeling has been applied
to compute the panphenome of other bacteria having high-quality GEMs available. For
instance, 450 Salmonella strains were modeled from various serovars to show that metabolic
capabilities can be used to discriminate these serovars [25]. Additionally, and taking
advantage of high-quality GEMs, environmental and biotechnologically relevant bacteria
such as P. putida were subject to multistrain modeling, showing that the large metabolic
versatility described for many P. putida strains is a common feature of the whole species [30].

Despite the large interest in B. subtilis, its multistrain modeling has remained elusive
dues to the lack of high-quality GEMs to be used as guide. Here, by using iBB1018 as a
high-quality template, we have addressed the modeling of 184 B. subtilis strains whose
genomes were available at the time this study started. Overall, we were able to construct a
total of 165 functional GEMs which define a large panphenome space in terms of a carbon
source supporting growth (Figure 6). Overall, we found a large phenotypic homogeneity.
Most of the strains could be classified as high metabolically versatile according to the
number of carbon sources they were capable of using. With some exceptions, we found
that 95% of the strains were able to use up to 72% of the carbon source analyzed as a
sole carbon and energy source. Interestingly, we identified that a large number of carbon
sources (28%) were only used by a few strains (less than 50), highlighting the role of the
accessory metabolism as the driving force of the panphenome at a species level [48]. In
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addition to the intrinsic value of the panphenome identified in this study, the collection of
B. subtilis GEMs provided here constitutes an intangible value which can be leveraged as
high-quality guidance in future metabolic studies of this valuable bacteria species.

4. Materials and Methods
4.1. Model Reconstruction and Analysis

iBB1018 was reconstructed by refining and updating the previous genome-scale model
for B. subtilis. The metabolic network was reconstructed using standardized protocols
for metabolic reconstruction [35,49]. An initial draft reconstruction was generated from
the annotated genome of B. subtilis str. 168 (GenBank number: AL009126.3) and the
metabolic content from model iBsu1103v2 based on SEED annotations. The draft model
was converted to BiGG annotations through MetaNetX [50]. The final draft was subjected to
manual curation of the metabolic information in order to remove potential inconsistencies
and to connect the network as much as possible, using metabolic and GEMs databases
including KEGG [31], MetaCyc [32], BRENDA [33], and BiGG [51]. Transport reactions
were added by using the TransportDB database [52]. To improve the functionality of the
model, gap filling was performed using the RAVEN function fillGaps to ensure that the
model could grow in silico. Moreover, a manual gap-filling step was performed in order
to connect the network as much as possible and remove potential inconsistencies or close
death-end metabolites. Finally, it was confirmed that all reactions were balanced, and all
metabolites were annotated with their charge and location (_c, cytosol; _e, extracellular
space).

A robust correlation method, biweight midcorrelation [53] implemented in the WGCNA
R package [54], was used to compare the samples. This non-parametric, median-based method
was chosen because the datasets do not follow a normal distribution and it is less sensitive to
outliers. The plots were generated with the R package ggpubr [55].

To compare the performance between the three models, MEMOTE [34] was executed
with the function “diff”.

For the comparison of COGs between models, the genes from the iBB1018 and
iYO844 models were linked to COGs by using the NCBI COG database version 2020
(https://www.ncbi.nlm.nih.gov/research/cog, accessed on 22 December 2022) (Table S2,
Supplementary Additional File S1). The genes were aggregated into COG categories to
identify the improvements in high-level systems and in the case associated with multiple
COG categories, they were counted multiple times.

4.2. Flux Balance Analysis (FBA)

Flux Balance Analysis (FBA) was used to evaluate the biomass production and to
predict flux distributions once the biomass reaction was fixed as the objective function
(BOF, Biomass Objective Function). The foundations and applications of FBA have been
reviewed elsewhere [56]. The growth prediction when executing FBA was the growth
rate (h−1) predicted under the minimal M9 media, as previously described [30]. All the
exchange reactions were sequentially tested in minimal media as potential carbon and
nitrogen sources, using an uptake of −10 mmol gDW−1 h−1 to avoid limitations. Regarding
carbon sources, growth rate was further normalized considering the number of carbons of
each compound in both oxic and anoxic conditions. The COBRA ToolBox v.3.0 [57] running
on the MatLab platform was used for FBA simulations.

4.3. Multistrain

All assemblies of diverse strains of B. subtilis were downloaded from the NCBI
database (488 downloaded assemblies). Only the complete assemblies (NCBI completeness
class) with gene annotation and proteome availability were used for this analysis. To
reduce redundancy, only non-redundant genomes at the proteome level were selected,
with 184 strains in total. The final genome dataset contained 184 genomes of B. subtilis. To
perform multistrain models, the model developed for this work was used as a template
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and, following the protocol designed by Norsigian [28], the models of other strains were
created. To identify the multiple carbon sources used by the strains, in-house python scripts
were used.

Multi-gap filling was run over the single-strain models without growth in any carbon
source to identify essential genes from the metabolic information, with the results combined
with the homology results. For this analysis, the minimum percentage of homology used
to mark a gene as an ortholog of B. subtilis 168 was 70%, but this threshold was relaxed
when the number of genes of strains with a percentage of homology over 40% was present
in more than 75% of strains. In this case, the threshold decreased to 40% of homology.

The genes without homology against the template were compared to the total BiGG
gene datasets to identify possible homologs in other species and models. The involved
reactions were included in the final models.

The carbon source analysis over the B. subtilis strains GEMs were driven by the FBA
implementation of COBRApy v0.20. The uptakes were normalized based on the number
of carbons. The code and the multistrain GEMs can be accessed in the following GitHub
repository (https://github.com/SBGlab/Bacillus_Subtilis_multistrain_GEM).
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11. Kocabaş, P.; Çalık, P.; Çalık, G.; Özdamar, T.H. Analyses of extracellular protein production in Bacillus subtilis—I: Genome-scale
metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J. 2017, 127, 229–241. [CrossRef]

12. Massaiu, I.; Pasotti, L.; Sonnenschein, N.; Rama, E.; Cavaletti, M.; Magni, P.; Calvio, C.; Herrgård, M.J. Integration of enzymatic
data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-
glutamic acid production strains. Microb. Cell Fact. 2019, 18, 3. [CrossRef] [PubMed]

13. Overbeek, R.; Dlsz, T.; Stevens, R. The seed: A peer-to-peer environment for genome annotation. Commun. ACM 2004, 47, 46–50.
[CrossRef]

14. Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The
RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [CrossRef]

15. Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The
SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206.
[CrossRef]

16. Ghasemi-Kahrizsangi, T.; Marashi, S.-A.; Hosseini, Z. Genome-scale metabolic network models of Bacillus species suggest that
model improvement is necessary for biotechnological applications. Iran. J. Biotechnol. 2018, 16, e1684. [CrossRef]

17. Brockhurst, M.A.; Harrison, E.; Hall, J.P.J.; Richards, T.; McNally, A.; MacLean, C. The ecology and evolution of pangenomes.
Curr. Biol. 2019, 29, R1094–R1103. [CrossRef]

18. Vernikos, G.S. A review of pangenome tools and recent studies. In The Pangenome: Diversity, Dynamics and Evolution of Genomes;
Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 89–112. ISBN 9783030382810.

19. Norsigian, C.J.; Fang, X.; Palsson, B.O.; Monk, J.M. Pangenome flux balance analysis toward panphenomes. In The Pangenome:
Diversity, Dynamics and Evolution of Genomes; Springer: Cham, Switzerland, 2020; pp. 219–232. [CrossRef]

20. Hyun, J.C.; Monk, J.M.; Palsson, B.O. Comparative pangenomics: Analysis of 12 microbial pathogen pangenomes reveals
conserved global structures of genetic and functional diversity. BMC Genom. 2022, 23, 7. [CrossRef]

21. Monk, J.M.; Charusanti, P.; Aziz, R.K.; Lerman, J.A.; Premyodhin, N.; Orth, J.D.; Feist, A.M.; Palsson, B. Genome-scale metabolic
reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl.
Acad. Sci. USA 2013, 110, 20338–20343. [CrossRef]

22. Bosi, E.; Monk, J.M.; Aziz, R.K.; Fondi, M.; Nizet, V.; Palsson, B. Comparative genome-scale modelling of Staphylococcus aureus
strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl. Acad. Sci. USA 2016, 113, E3801–E3809.
[CrossRef]

23. Fouts, D.E.; Matthias, M.A.; Adhikarla, H.; Adler, B.; Amorim-Santos, L.; Berg, D.E.; Bulach, D.; Buschiazzo, A.; Chang, Y.F.;
Galloway, R.L.; et al. What makes a bacterial species pathogenic?: Comparative genomic analysis of the genus Leptospira. PLoS
Negl. Trop. Dis. 2016, 10, e0004403. [CrossRef]

24. Norsigian, C.J.; Kavvas, E.; Seif, Y.; Palsson, B.O.; Monk, J.M. iCN718, an updated and improved genome-scale metabolic network
reconstruction of Acinetobacter baumannii AYE. Front. Genet. 2018, 9, 121. [CrossRef] [PubMed]

25. Seif, Y.; Kavvas, E.; Lachance, J.C.; Yurkovich, J.T.; Nuccio, S.P.; Fang, X.; Catoiu, E.; Raffatellu, M.; Palsson, B.O.; Monk, J.M.
Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat. Commun. 2018,
9, 3771. [CrossRef]

26. Fang, X.; Monk, J.M.; Mih, N.; Du, B.; Sastry, A.V.; Kavvas, E.; Seif, Y.; Smarr, L.; Palsson, B.O. Escherichia coli B2 strains prevalent
in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC
Syst. Biol. 2018, 12, 66. [CrossRef] [PubMed]

27. Norsigian, C.J.; Pusarla, N.; McConn, J.L.; Yurkovich, J.T.; Dräger, A.; Palsson, B.O.; King, Z. BiGG Models 2020: Multi-strain
genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 2020, 48, D402–D406. [CrossRef]

28. Norsigian, C.J.; Fang, X.; Seif, Y.; Monk, J.M.; Palsson, B.O. A workflow for generating multi-strain genome-scale metabolic
models of prokaryotes. Nat. Protoc. 2020, 15, 1–14. [CrossRef]

29. Monk, J.M.; Lloyd, C.J.; Brunk, E.; Mih, N.; Sastry, A.; King, Z.; Takeuchi, R.; Nomura, W.; Zhang, Z.; Mori, H.; et al. iML1515, a
knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 2017, 35, 904–908. [CrossRef] [PubMed]

https://doi.org/10.1016/j.coisb.2021.100392
https://doi.org/10.1038/s41579-020-00440-4
https://doi.org/10.1074/jbc.M703759200
https://doi.org/10.1186/gb-2009-10-6-r69
https://doi.org/10.1039/c3mb25568a
https://doi.org/10.1016/j.bej.2017.07.005
https://doi.org/10.1186/s12934-018-1052-2
https://www.ncbi.nlm.nih.gov/pubmed/30626384
https://doi.org/10.1145/1029496.1029525
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.1093/nar/gkt1226
https://doi.org/10.21859/ijb.1684
https://doi.org/10.1016/j.cub.2019.08.012
https://doi.org/10.1007/978-3-030-38281-0_10
https://doi.org/10.1186/s12864-021-08223-8
https://doi.org/10.1073/pnas.1307797110
https://doi.org/10.1073/pnas.1523199113
https://doi.org/10.1371/journal.pntd.0004403
https://doi.org/10.3389/fgene.2018.00121
https://www.ncbi.nlm.nih.gov/pubmed/29692801
https://doi.org/10.1038/s41467-018-06112-5
https://doi.org/10.1186/s12918-018-0587-5
https://www.ncbi.nlm.nih.gov/pubmed/29890970
https://doi.org/10.1093/nar/gkz1054
https://doi.org/10.1038/s41596-019-0254-3
https://doi.org/10.1038/nbt.3956
https://www.ncbi.nlm.nih.gov/pubmed/29020004


Int. J. Mol. Sci. 2023, 24, 7091 14 of 15

30. Nogales, J.; Mueller, J.; Gudmundsson, S.; Canalejo, F.J.; Duque, E.; Monk, J.; Feist, A.M.; Ramos, J.L.; Niu, W.; Palsson, B.O.
High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ.
Microbiol. 2020, 22, 255–269. [CrossRef]

31. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 1999, 27, 29–34. [CrossRef]

32. Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C.A.; Holland, T.A.; Keseler, I.M.; Kothari, A.; Kubo, A.; et al.
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic
Acids Res. 2014, 42, D459–D471. [CrossRef]

33. Placzek, S.; Schomburg, I.; Chang, A.; Jeske, L.; Ulbrich, M.; Tillack, J.; Schomburg, D. BRENDA in 2017: New perspectives and
new tools in BRENDA. Nucleic Acids Res. 2017, 45, D380–D388. [CrossRef]

34. Lieven, C.; Beber, M.E.; Olivier, B.G.; Bergmann, F.T.; Ataman, M.; Babaei, P.; Bartell, J.A.; Blank, L.M.; Chauhan, S.; Correia, K.;
et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 2020, 38, 272–276. [CrossRef]

35. Thiele, I.; Palsson, B. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010, 5, 93–121.
[CrossRef] [PubMed]

36. Tännler, S.; Decasper, S.; Sauer, U. Maintenance metabolism and carbon fluxes in Bacillus species. Microb. Cell Fact. 2008, 7, 19.
[CrossRef] [PubMed]

37. Belda, E.; Sekowska, A.; Le Fèvre, F.; Morgat, A.; Mornico, D.; Ouzounis, C.; Vallenet, D.; Médigue, C.; Danchin, A. An updated
metabolic view of the Bacillus subtilis 168 genome. Microbiology 2013, 159, 757–770. [CrossRef] [PubMed]

38. Dauner, M.; Sauer, U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol. Bioeng. 2001, 76, 132–143.
[CrossRef] [PubMed]

39. Dauner, M.; Sonderegger, M.; Hochuli, M.; Szyperski, T.; Wüthrich, K.; Hohmann, H.P.; Sauer, U.; Bailey, J.E. Intracellular carbon
fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl. Environ. Microbiol. 2002, 68,
1760–1771. [CrossRef]

40. Chaudhuri, A.; Mishra, A.K.; Nanda, G. Variation of antimetabolite sensitivity with different carbon sources in Bacillus subtilis.
Folia Microbiol. 1982, 27, 73–75. [CrossRef] [PubMed]

41. Sonenshein, A.L.; Hoch, J.A.; Losick, R. Bacillus subtilis: From cells to genes and from genes to cells. In Bacillus subtilis and Its
Closest Relatives; ASM Press: Washington, DC, USA, 2001.

42. Yoshida, K.I.; Yamamoto, Y.; Omae, K.; Yamamoto, M.; Fujita, Y. Identification of two myo-inositol transporter genes of Bacillus
subtilis. J. Bacteriol. 2002, 184, 983–991. [CrossRef]

43. Chubukov, V.; Uhr, M.; Le Chat, L.; Kleijn, R.J.; Jules, M.; Link, H.; Aymerich, S.; Stelling, J.; Sauer, U. Transcriptional regulation is
insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 2013, 9, 709. [CrossRef]

44. Monk, J.M. Genome-scale metabolic network reconstructions of diverse Escherichia strains reveal strain-specific adaptations.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210236. [CrossRef]

45. Itaya, M.; Tsuge, K.; Koizumi, M.; Fujita, K. Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803
genome in the Bacillus subtilis 168 genome. Proc. Natl. Acad. Sci. USA 2005, 102, 15971–15976. [CrossRef] [PubMed]

46. Reuß, D.R.; Altenbuchner, J.; Mäder, U.; Rath, H.; Ischebeck, T.; Sappa, P.K.; Thürmer, A.; Guérin, C.; Nicolas, P.; Steil, L.; et al.
Large-scale reduction of the Bacillus subtilis genome: Consequences for the transcriptional network, resource allocation, and
metabolism. Genome Res. 2017, 27, 289–299. [CrossRef] [PubMed]

47. Oftadeh, O.; Salvy, P.; Masid, M.; Curvat, M.; Miskovic, L.; Hatzimanikatis, V. A genome-scale metabolic model of Saccharomyces
cerevisiae that integrates expression constraints and reaction thermodynamics. Nat. Commun. 2021, 12, 4790. [CrossRef] [PubMed]

48. Belbahri, L.; Bouket, A.C.; Rekik, I.; Alenezi, F.N.; Vallat, A.; Luptakova, L.; Petrovova, E.; Oszako, T.; Cherrad, S.; Vacher, S.;
et al. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a
secondary metabolites rich accessory genome. Front. Microbiol. 2017, 8, 1438. [CrossRef]

49. Monk, J.; Nogales, J.; Palsson, B.O. Optimizing genome-scale network reconstructions. Nat. Biotechnol. 2014, 32, 447–452.
[CrossRef]

50. Moretti, S.; Tran, V.D.T.; Mehl, F.; Ibberson, M.; Pagni, M. MetaNetX/MNXref: Unified namespace for metabolites and biochemical
reactions in the context of metabolic models. Nucleic Acids Res. 2021, 49, D570–D574. [CrossRef]

51. King, Z.A.; Lu, J.; Dräger, A.; Miller, P.; Federowicz, S.; Lerman, J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG Models: A
platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016, 44, D515–D522. [CrossRef]

52. Elbourne, L.D.H.; Tetu, S.G.; Hassan, K.A.; Paulsen, I.T. TransportDB 2.0: A database for exploring membrane transporters in
sequenced genomes from all domains of life. Nucleic Acids Res. 2017, 45, D320–D324. [CrossRef]

53. Song, L.; Langfelder, P.; Horvath, S. Comparison of co-expression measures: Mutual information, correlation, and model based
indices. BMC Bioinform. 2012, 13, 328. [CrossRef]

54. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

55. Kassambara, A. ggpubr: Publication Ready Plots—Articles—STHDA. Available online: http://www.sthda.com/english/articles/
24-ggpubr-publication-ready-plots/ (accessed on 24 January 2022).

https://doi.org/10.1111/1462-2920.14843
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1093/nar/gkw952
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1038/nprot.2009.203
https://www.ncbi.nlm.nih.gov/pubmed/20057383
https://doi.org/10.1186/1475-2859-7-19
https://www.ncbi.nlm.nih.gov/pubmed/18564406
https://doi.org/10.1099/mic.0.064691-0
https://www.ncbi.nlm.nih.gov/pubmed/23429746
https://doi.org/10.1002/bit.1153
https://www.ncbi.nlm.nih.gov/pubmed/11505383
https://doi.org/10.1128/AEM.68.4.1760-1771.2002
https://doi.org/10.1007/BF02879762
https://www.ncbi.nlm.nih.gov/pubmed/6806159
https://doi.org/10.1128/jb.184.4.983-991.2002
https://doi.org/10.1038/msb.2013.66
https://doi.org/10.1098/rstb.2021.0236
https://doi.org/10.1073/pnas.0503868102
https://www.ncbi.nlm.nih.gov/pubmed/16236728
https://doi.org/10.1101/gr.215293.116
https://www.ncbi.nlm.nih.gov/pubmed/27965289
https://doi.org/10.1038/s41467-021-25158-6
https://www.ncbi.nlm.nih.gov/pubmed/34373465
https://doi.org/10.3389/fmicb.2017.01438
https://doi.org/10.1038/nbt.2870
https://doi.org/10.1093/nar/gkaa992
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/nar/gkw1068
https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/


Int. J. Mol. Sci. 2023, 24, 7091 15 of 15

56. Orth, J.D.; Thiele, I.; Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef] [PubMed]
57. Heirendt, L.; Arreckx, S.; Pfau, T.; Mendoza, S.N.; Richelle, A.; Heinken, A.; Haraldsdóttir, H.S.; Wachowiak, J.; Keating, S.M.;

Vlasov, V.; et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 2019,
14, 639–702. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nbt.1614
https://www.ncbi.nlm.nih.gov/pubmed/20212490
https://doi.org/10.1038/s41596-018-0098-2
https://www.ncbi.nlm.nih.gov/pubmed/30787451

	Introduction 
	Results 
	Genome-Scale Metabolic Reconstruction 
	Growth Rate Performance of iBB1018 Is in Agreement with Several In Vivo Nutritional Scenarios 
	iBB1018 Exhibits Superior Performance Predicting Carbon Flux Distribution Than Previous Models 
	Multistrain Modeling of B. subtilis as Species 

	Discussion 
	Materials and Methods 
	Model Reconstruction and Analysis 
	Flux Balance Analysis (FBA) 
	Multistrain 

	References

