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Abstract: Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an
oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors,
such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease
will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding
how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies
to overcome the emergence of resistance. Several mechanisms have been broadly implicated in
the resistance to imatinib anti-tumoral effects, including the reactivation of MAPK signaling upon
KIT/PDGFRA targeted inhibition. This study provides evidence that LImb eXpression 1 (LIX1), a
protein we identified as a regulator of the Hippo transducers YAP1 and TAZ, is upregulated upon
imatinib or sunitinib treatment. LIX1 silencing in GIST-T1 cells impaired imatinib-induced MAPK
signaling reactivation and enhanced imatinib anti-tumor effect. Our findings identified LIX1 as a key
regulator of the early adaptative response of GIST cells to targeted therapies.
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1. Introduction

A gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm
of the gastrointestinal tract, originates from interstitial cells of Cajal (ICC) or related mes-
enchymal progenitors that require an elevated KIT expression for lineage specification
and survival [1-4]. A GIST occurs predominantly in the stomach (50-60%) and small
intestine (30-35%) and is mainly driven by activating mutations (present in 85-90% of
patients) in the receptor tyrosine kinases KIT and platelet-derived growth factor receptor A
(PDGFRA). Oncogenic KIT mutations are found in approximately 80% of sporadic GISTs [5],
but familial syndromes harboring germline-activating KIT mutations have been described.
These patients develop diffuse ICC hyperplasia that eventually progresses to GIST [6].
The KIT proto-oncogene encodes a class III receptor-type tyrosine kinase that is activated
upon binding to its cognate ligand, stem cell factor, via its extracellular domain [7]. This
leads to receptor homo-dimerization and activation of the intracellular kinase domain
that consequently initializes downstream signaling, such as the PI3BK-AKT-mTOR and
RAS-MAPK pathways. These pathways are implicated in regulating cellular functions,
especially in ICCs where KIT physiologic activity is indispensable for cell proliferation,
differentiation, and apoptosis [8]. Primary KIT mutations mainly occur in exon 11 (70-80%)
that encodes the juxtamembrane domain. This leads to disruption of the auto-inhibitory
function, resulting in constitutive, ligand-independent kinase KIT activity and constitutive
activation of downstream KlT-activated AKT and MAPK signaling. Both pathways are
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crucial for GIST initiation and tumor development by exerting a critical regulation of cancer
cell proliferation and apoptosis evasion [9-11].

Tyrosine kinase inhibitors (TKI), such as imatinib, inhibit KIT-downstream PI3K and
MAPK signaling and consequently impair the viability of GIST cells in which KIT signaling
is constitutively activated [12]. Patients with unresectable or metastatic GIST show very
good clinical responses to TKI [13]. However, despite the early clinical success, complete
response in patients treated with first-line imatinib is rarely achieved, and prolonged
treatment is required to avoid disease progression. This often leads to the appearance of
secondary resistance mutations in KIT after approximately 18-24 months of treatment [9,14].
Most frequently, disease progression is explained by the emergence of polyclonal subpop-
ulations with secondary KIT kinase-domain mutations that decrease imatinib binding
affinity [15-17]. Therefore, other TKIs, such as sunitinib and regorafenib, are used as a
second- and third-line treatment, respectively, after imatinib failure [18,19]. However, the
clinical benefit achieved by these treatments is modest, with progression-free survival of
<6 months and response rates <10% [18-22]. Several mechanisms have been implicated
in the adaptative response of GIST cells to targeted therapies, including the reactivation
of pathways downstream of KIT. For instance, reactivation of MAPK signaling, through
activation of fibroblast growth factor receptor (FGFR) 1 and 2 signaling or through re-
ceptor tyrosine-kinase switch, decreases the imatinib anti-tumor effect [23-25]. Given
the importance of MAPK signaling in the early adaptation of GIST cells to imatinib, a
potential treatment strategy would be the combined inhibition of KIT and MAPK pathways
to prevent the emergence of imatinib-resistant clones in patients with GIST [26,27].

In this study, we focused on LImb eXpression 1 (LIX1), a protein that we previously
identified as a regulator of digestive mesenchymal progenitor proliferation upstream of the
Hippo transducers YAP1 and TAZ [28]. In GIST, LIX1 controls mitochondrial function, KIT
protein level, ICC lineage specification through YAP1/TAZ, and cell proliferation [29,30].
Importantly, LIX1 expression is higher in patients with relapsed GIST [23]. This finding
prompted us to examine LIX1 contribution to TKI resistance in GIST. We found that the
LIX1 level was upregulated in GIST cell lines upon incubation with imatinib or suni-
tinib. Mechanistically, we found that LIX1 promoted a rebound of MAPK activation upon
KIT/PDGFRA-targeted inhibition that leads to a reduction of the TKI effect. We then
inhibited KIT (with imatinib) and/or LIX1 (by silencing) in an imatinib-sensitive GIST
cell line and found that their combined inhibition further impaired cancer cell viability
compared with cells incubated with imatinib alone. Thus, our study identified LIX1 as a
new therapeutic target to prevent MAPK reactivation and overcome therapeutic adaptation
in GIST.

2. Results
2.1. KIT-Signaling Abrogation Results in a Significant Increase in LIX1 Expression in
GIST-T1 Cells

LIX1 is normally expressed in digestive mesenchymal progenitors only during fetal
life, but its expression is high in GIST samples. When we analyzed the recurrence-free sur-
vival in the function of LIX1 expression, we found the highest LIX1 expression in relapsed
tumors [29]. This prompted us to investigate LIX1’s contribution to the mechanisms of drug
resistance. We first analyzed LIX1 expression in imatinib /sunitinib-sensitive (GIST-T1)
and imatinib-resistant (GIST-T1/670) GIST cell lines upon blockade of KIT signaling using
TKIs. The GIST-T1/670 cell line is a GIST-T1 clone isolated after continuous culture in 5 uM
imatinib and acquired a secondary KIT kinase domain missense mutation (T670I in exon
14, leading to resistance to imatinib) in addition to the primary KIT exon 11 deletion [31,32].
GIST-T1/670 cells are resistant to imatinib but sensitive to sunitinib [33,34]. In GIST-T1
cells, the LIX1 mRNA level was significantly increased after 48 h exposure to imatinib
and sunitinib (Figure 1A,B). The LIX1 protein level was also significantly increased upon
inhibition of KIT signaling with imatinib (confirmed by the downregulation of phospho-
rylated KIT) (Figure 1C,D). Moreover, the baseline LIX1 expression (mRNA and protein)
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was higher in GIST-T1/670 cells than in GIST-T1 cells (Figure 1E-G), and its expression
further increased when we cultured GIST-T1/670 cells in the presence of sunitinib for 48 h
(Figure 1H). Thus, LIX1 expression increases in GIST-T1 cells upon KIT-signaling blockade
using imatinib and sunitinib (first- and second-line TKI for GIST, respectively).
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Figure 1. LIX1 expression is increased in GIST cells upon KIT-signaling inhibition using TKI.
(A,B) RT-qPCR analysis of LIX1 transcript levels in GIST-T1 cells cultured in the presence of 0.5 tM
imatinib (A) or 0.5 uM sunitinib for 48 h (B). Data were normalized to the mean HMBS and YWHAZ
expression and converted to fold change. Values are the mean + SEM of four independent experi-
ments; * p < 0.05 (two-tailed Mann-Whitney test). (C) Representative western blot showing LIX1,
phosphorylated KIT (pKIT), and KIT levels in GIST-T1 cells cultured with 0.5 uM imatinib for 48 h.
Equal loading was verified by GAPDH expression. (D) Quantification of LIX1 level normalized to
GAPDH level. Normalized expression levels were converted into fold change. Values are the mean
=+ SEM of four independent experiments; * p < 0.05 (two-tailed Mann—-Whitney test). (E) RT-qPCR
analysis of LIX1 transcript levels in GIST-T1 and imatinib-resistant GIST-T1/670 cells. Data were
normalized to the mean HMBS and YWHAZ expression and converted to fold changes. Values are the
mean + SEM of four independent experiments; * p < 0.05 (two-tailed Mann-Whitney test). (F) Western
blot analysis of endogenous LIX1 levels in GIST-T1 and GIST-T1/670 cells. (G) Quantification of
LIX1 level normalized to GAPDH level. Normalized expression levels were converted into fold
change. Values are the mean £ SEM of four independent experiments; * p < 0.05 (two-tailed Mann—
Whitney test). (H) RT-qPCR analysis of LIX1 transcript levels in GIST-T1 cells, GIST-T1/670 cells, and
GIST-T1/670 cells cultured in the presence of sunitinib for 48 h. Data were normalized to the mean
HBMS and YWHAZ expression and converted to fold change. Values are the mean + SEM of five
independent experiments; * p < 0.05; **** p < 0.0001 (one-way ANOVA test followed by Dunnett’s
multiple comparisons test).
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2.2. LIX1 Expression and MAPK Signaling Changes Following Incubation with Imatinib

Understanding how GIST responds to imatinib at the beginning of treatment should
guide the selection of appropriate strategies to overcome the later emergence of secondary
KIT mutations. Therefore, we determined to what extent LIX1 was involved in the early
adaptative response to imatinib. Indeed, tumors adapt to targeted therapies in a relatively
short period of time [23]. To this aim, we monitored LIX1 expression in GIST-T1 cells
incubated or not with imatinib at 4, 24, and 48 h of incubation. We observed a significant
increase in LIX1 (mRNA and protein) expression at 24 h (Figure 2A,B,D). This was associ-
ated with a marked increase in YAP1/TAZ expression (Figure 2C,E). Several mechanisms
have been broadly involved in the attenuation of imatinib anti-tumoral effect, including
the reactivation of pathways downstream of KIT. Therefore, we evaluated the activity of
the KIT, MAPK, and PI3K pathways by measuring the levels of total and phosphorylated
KIT, ERK1/2, and AKT, respectively, by western blotting. Imatinib led to a decrease in KIT
activity and consequently of the downstream MAPK and PI3K signaling at 4 h, as previ-
ously reported ([23]; Figure 2F-H). MAPK-signaling inhibition was further confirmed by
the downregulation of the ERK-dependent genes SPROUTY?2 and SPROUTY4 (Figure 21,]).
Unlike KIT-signaling inhibition, MAPK inhibition was not sustained in GIST-T1 cells in-
cubated with imatinib. Indeed, ERK1/2 phosphorylation and activity (phosphorylated
ERK/total ERK ratio) were significantly increased at 48 h of incubation (Figure 2EH).
MAPK-signaling reactivation was further confirmed by the significant increase in the ex-
pression of SPROUTY?2 and SPROUTY4 at 48 h of incubation (Figure 2I,]). Thus, the LIX1
expression increase is an early event in GIST cell response to KIT inhibition.

2.3. LIX1 Promotes MAPK-Signaling Reactivation Following KIT Inhibition

To determine whether MAPK-signaling reactivation in imatinib-treated cells requires
LIX1, we used GIST-T1 cell lines that stably express negative control shRNA (GIST-
T1-Scramble) or two different shRNAs against LIX1 (GIST-T1-ShLIX1#1 and GIST-T1-
ShLIX1#2) [29]. We then quantified LIX1 expression at different time points by RT-qPCR
analysis in GIST-T1-Scramble and GIST-T1-ShLIX1 cells incubated or not with 0.5 pM
imatinib. We confirmed LIX1 downregulation in GIST-T1-ShLIX1 compared with GIST-
T1-Scramble cells before the addition of imatinib (Figure 3A). Incubation with imatinib
significantly increased LIX1 expression level starting at 24 h, in GIST-T1-Scramble and
also in GIST-T1-ShLIX1 cells (Figure 3A). Nevertheless, the LIX1 mRNA level remained
low in treated GIST-T1-ShLIX1 cells, at a level comparable to that of untreated GIST-T1-
Scramble cells. In addition, we observed a marked increase of YAP1/TAZ expression in
GIST-T1-Scramble cells from the 24-h time point but not in GIST-T1-ShLIX1 cells (Figure 3B;
Supplemental Figure S1). Moreover, ERK1/2 activity (western blot analysis) increased
again at 48 h in treated GIST-T1-Scramble cells but not in GIST-T1-ShLIX1 cells (Figure 3B,C).
MAPK inhibition was maintained in GIST-T1 cells in which LIX1 was silenced, as demon-
strated by the similar expression levels of SPROUTY?2 and SPROUTY4 at the 4 h and 48 h
time points (Figure 3D,E). Thus, LIX1 is implicated in imatinib-induced MAPK-signaling
reactivation in GIST-T1 cells.

2.4. LIX1 Blockade Re-Sensitizes GIST-T1 Cells to Imatinib

As MAPK-signaling reactivation upon KIT/PDGFRA inhibition decreases imatinib
anti-tumoral effect [23], we asked whether silencing LIX1 in GIST-T1 cell lines exposed to
imatinib may overcome this effect. Incubation with imatinib for 48 and 72 h decreased the
viability of GIST-T1-Scramble cells and even more of GIST-T1-ShLIX1 cells (Figure 4A-D).
This indicated that the combination of LIX1 and KIT inhibition was more cytotoxic than KIT
inhibition alone. We then exposed GIST-T1-Scramble and GIST-T1-ShLIX1 cells to increasing
concentrations of imatinib. Imatinib half-maximal inhibitory concentration (ICsy) values
were 54.95 nM in GIST-T1-Scramble cells and 26.81 nM and 15.74 nM in GIST-T1-ShLIX1#1
and GIST-T1-ShLIX1#2 cells (Figure 4E). Thus, LIX1 silencing potentiates the anti-tumor
effect of imatinib.
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Figure 2. LIX1 expression at different time points after KIT inhibition with imatinib. GIST-T1 cells
were cultured in the absence or presence of 0.5 uM imatinib (IM) and collected at 4, 24, and 48 h.
Normalized expression levels were converted into fold change relative to control untreated cells
(-). (A) RT-qPCR analysis of LIX1 transcript levels. Data were normalized to the mean HMBS and
YWHAZ expression. Values are the mean & SEM of eight independent experiments; **** p < 0.0001; ns,
non-significant (one-way ANOVA followed by Dunnett’s multiple comparisons test). (B,C) Western
blot analysis of endogenous LIX1 (B) and YAP1/TAZ protein levels (C). Equal loading was verified
by GAPDH expression. (D,E) Quantification of LIX1 (D) and TAZ (E) protein levels normalized to
GAPDH level. Values are the mean £ SEM of four independent experiments. * p < 0.05, ** p < 0.01,
2+ p < 0.001, *** p < 0.0001, ns, non-significant (one-way ANOVA followed by Dunnett’s multiple
comparisons test). (F) Western blot analysis. Membranes were probed with antibodies against KIT,
ERK, and AKT and their phosphorylated (p) forms, representative of KIT, MAPK, and PI3K pathway
activities. Equal loading was verified by GAPDH expression. (G,H) Quantification of KIT (G) and
MAPK (ERK) (H) signaling activity. Values were calculated as the phosphorylated/total protein ratio
after normalization to the GAPDH level. For (G,H), values are the mean 4 SEM of four independent
experiments; * p < 0.05, ** p < 0.01, *** p < 0.001; ns, non-significant (one-way ANOVA followed
by Tukey’s multiple comparisons test). (I,J) RT-qPCR analysis of SPROUTY2 (I) and SPROUTY4
(J) transcript levels. Data were normalized to the mean HMBS and YWHAZ expression. Values
are the mean + SEM of four independent experiments; * p < 0.05, ** p < 0.01, **** p < 0.0001; ns,
non-significant (one-way ANOVA followed by Tukey’s multiple comparisons test).
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Figure 3. LIX1 promotes MAPK-signaling reactivation in imatinib-treated GIST cells. Control (GIST-
T1-Scramble) or GIST-T1 cells in which LIX1 was silenced with shRNAs (GIST-T1-ShLIX1#2) were
cultured in the absence (-) or the presence of 0.5 M imatinib (IM) and collected after 4, 24, and 48 h.
(A) RT-qPCR analysis of LIX1 transcript levels. Data were normalized to the mean HMBS and YWHAZ
expression. Values are the mean + SEM of seven independent experiments. ** p < 0.01, **** p < 0.0001;
ns, non-significant (one-way ANOVA followed by Tukey’s multiple comparisons test). (B) Western
blot analysis. Membranes were probed with antibodies against KIT, ERK, and AKT proteins and
their phosphorylated forms. Equal loading was verified by GAPDH expression. (C) Quantification
of MAPK-signaling activity. Values were calculated as the ratio between phosphorylated and total
ERK signals after normalization to GAPDH levels. Values are the mean + SEM of four independent
experiments. * p < 0.05, **** p < 0.0001; ns, non-significant (one-way ANOVA followed by Tukey’s
multiple comparisons test). (D,E) RT-qPCR analysis of SPROUTY?2 (D) and SPROUTY4 (E) transcript
levels in GIST-T1-Scramble and GIST-T1-ShLIX1#2 cells cultured in the absence (-) or presence of
0.5 uM imatinib. Data were normalized to the mean HMBS and YWHAZ expression. Values are
the mean + SEM of seven independent experiments. * p < 0.05, *** p < 0.0001; ns, non-significant
(one-way ANOVA followed by Tukey’s multiple comparisons test).
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Figure 4. LIX1 silencing enhances imatinib anti-tumor in GIST cells. (A,B) Crystal violet staining of
GIST-T1-Scramble, GIST-T1-ShLIX1#1, and GIST-T1-ShLIX1#2 cells incubated (+IM) or not (-IM) with
0.5 uM imatinib. All plates were fixed, stained, and imaged after 48 h (A) or 72 h of treatment (B).
(C,D) Quantification of cell viability in the different GIST-T1 cell lines at 48 h (C) and 72 h (D) of
treatment. Values are the mean £ SEM of eight independent experiments; **** p < 0.0001 (one-way
ANOVA). (F) Imatinib IC5y shows the potentiation of the imatinib effect upon LIX1 silencing in
GIST-T1 cells.
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3. Discussion

Although imatinib is a highly effective therapy against GIST, metastatic disease re-
mains incurable. However, the majority of patients with GIST will eventually relapse. This,
in turn, prompts the interest in understanding the biological mechanisms behind therapeu-
tic adaptation to targeted inhibition of KIT in order to develop new treatment strategies for
GIST cell eradication. GIST cells undergo cytostatic response to KIT inhibitors, which will
eventually lead to the development of resistance in patients [31,33]. Imatinib induces GIST
cell quiescence [31,33]. Its withdrawal leads to the cell cycle re-entry of residual quiescent
cancer cells that start to proliferate, which is a major cause of disease progression. On
the other hand, continuous imatinib treatment will lead to the emergence of polyclonal
subpopulations harboring secondary KIT kinase-domain mutations that decrease imatinib
binding affinity for this kinase [31,33]. Therefore, understanding how GIST cells adapt to
KIT inhibition should allow the development of novel therapeutic strategies to overcome
the appearance of secondary KIT mutations.

Imatinib treatment leads to KIT-signaling inhibition and consequently to MAPK down-
regulation ([23]; Figure 2F,H). Unlike KIT-signaling inhibition, MAPK inhibition is not
sustained in GIST cells exposed to imatinib, and a rebound of ERK activity occurs shortly
thereafter, thus hindering GIST cell eradication ([23]; Figure 2F H). Feedback activation
of FGF signaling could explain ERK rebound [23]. Indeed, the combination of BGJ398 (a
pan-FGF receptor inhibitor) and imatinib represses ERK reactivation and enhances imatinib
anti-tumor activity in GIST. However, this combination strategy exhibited high toxicity and
limited its use in the clinic [35]. Therefore, the discovery of novel potential drivers remains
an unmet clinical need.

In this study, we examined LIX1’s contribution to the therapeutic adaptation of GIST
cells to imatinib. Human LIX1 is a highly conserved gene that encodes a 282-amino acid
protein. In physiological conditions, LIX1 is expressed only during fetal life and controls
the commitment of digestive mesenchymal progenitors and their plasticity [28]. Plasticity
is often associated with higher cancer risk, as observed in GIST [3,4,36]. In GIST, LIX1 is
overexpressed and is associated with poor prognosis. We previously demonstrated that
LIX1 is a critical regulator of GIST development [29]. Here, we provide evidence that LIX1
promotes MAPK reactivation in GIST-T1 cells during treatment with imatinib. Accordingly,
LIX1 silencing mimics the effects induced by MAPK inhibitors and enhances the imatinib
anti-tumor effect. Thus, our work suggests that LIX1 could be a new therapeutic target to
prevent MAPK reactivation and overcome TKI resistance in GIST. This research, however,
is subject to the main limitation of having evaluated LIX1 only in GIST-T1 cells. It remains
to understand how LIX1 controls MAPK reactivation in the presence of imatinib. LIX1 is
localized in mitochondria, where it controls the shape of mitochondrial cristae and redox
signaling [30]. It is well known that metabolic reprogramming is a hallmark of cancer
cells to adapt to targeted therapy. Cells use two major metabolic pathways to produce
the energy needed for their functions: (i) aerobic glycolysis, in which glucose is converted
into pyruvate and lactate, and (ii) the mitochondrial oxidative phosphorylation (OXPHOS)
machinery. This machinery is a key functional unit in mitochondria, and it combines
electron transport with cell respiration and ATP synthesis. A consequence of mitochondrial
oxidative metabolism is the generation of copious amounts of reactive oxygen species (ROS)
by the electron transport chain. ROS activate signaling pathways that promote cancer cell
proliferation and participate in genomic instability by inducing oxidative DNA damage
leading to genomic mutations [37,38]. GIST cells display high glycolysis activity; however,
upon incubation with imatinib, they shift to the OXPHOS machinery [39,40]. Interestingly,
inhibition of mitochondria activity in the presence of imatinib forces a return to a glycolytic
phenotype, a strategy that re-sensitizes GIST cells to imatinib [40]. Future experiments
will determine whether LIX1 controls MAPK reactivation by modulating the metabolic
phenotype of GIST cells in response to imatinib.
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In conclusion, this work identified LIX1 as a key regulator of one of the early mecha-
nisms leading to the adaptative response of GIST cells to target therapies. LIX1 inhibition
could maximize the therapeutic response to imatinib treatment.

4. Materials and Methods
4.1. Cell Culture and Reagents

The GIST-T1 cell line, obtained from Cosmo Bio (Japan), was established from a
metastatic human GIST that harbors a heterozygous deletion of 57 bases in exon 11 of
KIT [41]. The imatinib-resistant GIST-T1/670 cell clone was derived from GIST-T1 cells
upon culture in the presence of 5 uM imatinib and acquired a secondary missense T6701
mutation in exon 14 of KIT [11,31,32]. GIST-T1 cell lines that stably express control shRNA
(GIST-T1-Scramble) or shRNAs targeting two distinct regions of LIX1 (GIST-T1-ShLIX1#1
and GIST-T1-ShLIX1#2) were previously developed [29]. Their characterization by RT-qPCR
analysis has confirmed LIX1 downregulation in GIST-T1-ShLIX1 cells with a higher efficacy
of ShLIX1#2 than ShLIX1#1 [29]. All cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, Lonza, France) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin and routinely tested for the absence of mycoplasma contamination
(Venor-GeM OneStep Test, BioValley). GIST cell lines were incubated with imatinib mesy-
late (STI571, Euromedex, France) and sunitinib (SU11248) malate (SE-S51042, Euromedex,
France) at the concentrations indicated in the figure legends.

4.2. Immunoblot Analysis

Cell lysates were prepared as described previously (Guérin et al., 2020). Electrophore-
sis was carried out using 10 pg of extracts, loaded on 10% polyacrylamide gels, and
transferred to nitrocellulose membranes. Primary antibodies used for immunoblot analysis
are listed in Supplementary Table S1.

4.3. Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-gPCR)

Total RNA extraction, reverse transcription, and qPCR analysis were performed as
previously described [29]. PCR primers (listed in Supplementary Table 52) were designed
using the LightCycler Probe Design 2.0 software. Expression levels were determined with
the LightCycler analysis software (version 3.5) relative to standard curves. Data are the
mean level of gene expression relative to the expression of the reference genes HMBS and
YWHAZ calculated using the 2-42¢T method.

4.4. Cell Viability Measurement

Cell viability was analyzed 48 h and 72 h after TKI treatment by crystal violet staining
(C6158, Sigma, France), as previously described [42]. Plated cells were washed with 1 x
PBS and incubated min with 0.1% crystal violet solution for 20 min. After several washes,
10% acetic acid solution was added to lyse-stained cells. Absorbance was measured at 595
nm using an Infinite 200 Pro Microplate Luminometer (Tecan Trading AG).

4.5. Statistical Analysis

Data were analyzed with the GraphPad Prism 9 software (GraphPad Software, Inc.).
Statistical significance was calculated with the two-tailed Mann—-Whitney test or, when
appropriate, one-way ANOVA followed by Tukey’s multiple comparisons test (compar-
ison between every mean value with all the other mean values) or Dunnett’s multiple
comparisons test (comparison between every mean value with the control mean value), as
indicated in the legends to figures. Results were considered significant when p < 0.05.
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