Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications
Abstract
:1. Introduction
1.1. Al Sources and Elimination
1.2. Mechanisms of Aluminium Toxic Effects
- Pulmonary lesions—Al has been connected with disorders such as granulomatosis and fibrosis of the lungs, pneumonia, pulmonary edema, and pulmonary alveolar proteinosis. Possibly it is also connected with asthma;
- Cardiovascular effects—in the case of Al phosphide intoxication, myocarditis, hypokinesia, left ventricular thrombosis, and stroke were reported. Among pregnant women, greater Al hair concentration correlated with a higher incidence of congenital heart defects in their offspring;
- Hematologic effects—include depressed erythropoiesis and subsequent anemia;
- Musculoskeletal effects—exposure to Al can cause macrophagic myofasciitis associated with arthromyalgia and chronic fatigue syndrome. Osteoporosis, rickets, exostosis, osteodystrophy, and osteitis fibrosa are also triggered by this metal;
2. Alzheimer’s Disease
Disease | Tissue | Level/Concentration in Tissue of the Patients | Level/Concentration in Tissue of Control Group | Additional Information | Reference |
---|---|---|---|---|---|
AD | hippocampus | 0.000357 mg/g | 0.00009 mg/g | The differences in the concentration of Al between patients with AD and the control group were statistically significant. | [63] |
AD | the temporal lobe of the brain | 0.0019–0.0168 mg/g | 0.00016–0.0018 mg/g | The differences in the concentration of Al between patients with AD and the control group were statistically significant. | [64] |
ASD | occipital lobe; frontal lobe; temporal lobe; parietal lobe; | 0.00382 mg/g; 0.00230 μg/g; 0.00279 mg/g; 0.00382 mg/g; | N/A | - | [76] |
ASD | the temporal lobe of the brain | 0.0009–0.0016 mg/g | 0.00016–0.0018 mg/g | The authors found no association between ASD and Al concentration in temporal gyri. | [64] |
AUD | total brain content; thalamus; inferior longitudinal fasciculus; insula; superior longitudinal fasciculus; | 0.00159 mg/g; 0.00405 mg/g; 0.00348 mg/g; 0.00241 mg/g; 0.00108 mg/g; | All control samples displayed Al content below detection limits. | In this research, authors also showed that the Al levels in the liver displayed no significant difference between AUD and control subjects. | [77] |
MS | brain | 0.0012 mg/g | 0.0006 mg/g | The differences in the concentration of Al between patients with MS and the control group were statistically significant. | [78] |
MS | scalp hair samples | 0.00376 mg/g | 0.00449 mg/g | The differences in the concentration of Al between patients with MS and the control group were statistically significant. | [79] |
MS | urine | 7.51 μM | 0.35 μM | The differences in the level of Al between patients with MS and the control group were statistically significant. | [80] |
DE | brain | 0.00159 mg/g | 0.0044 mg/g; 0.0027 mg/g; | Mean brain concentrations of Al were 0,00159 mg/g, 0,0044 mg/g, and 0,0027 mg/g among patients dying from dialysis encephalopathy, among the dialyzed control group, and among uraemic patients who were not dialyzed, respectively. The differences in the concentration of Al between patients with DE and the control groups were statistically significant. | [81] |
DE | muscle | 14.8 ppm | 1.2 ppm | The differences in the concentration of Al between patients with DE and the control group were statistically significant. | [82] |
DE | trabecular-bone | 98.5 ppm | 2.4 ppm | The differences in the concentration of Al between patients with DE and the control group were statistically significant. | [82] |
DE | brain grey-matter | 25 ppm 6.5 ppm | 2.2 ppm | Mean brain concentrations of Al were 25 ppm, 6.5 ppm, and 2.2 ppm among uremic patients on dialysis who died of a neurologic syndrome of unknown cause, among uremic patients on dialysis who died of other causes, and among control subjects, respectively. Mean brain concentrations of Al were significantly higher in both uraemic groups as compared to controls. | [82] |
3. Autism Spectrum Disorder
4. Alcohol Use Disorder
5. Multiple Sclerosis
6. Parkinson’s Disease
7. Dialysis Encephalopathy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
AD | Alzheimer’s disease |
Al | Aluminium |
ALS | Amyotrophic lateral sclerosis |
ANN | Artificial neuronal network |
ASD | Autism spectrum disorder |
ATSDR | Agency for Toxic Substances and Disease Registry |
AUD | Alcohol use disorder |
Bax | Bcl-2-associated X protein |
BBB | Blood-brain barrier |
Bcl-2 | B-cell lymphoma 2 |
BMP-2 | Bone morphogenic protein 2 |
Bw | Body weight |
CAE | Ethanolic extract of Centella asiatica |
Cal/OSHA | California’s Division of Occupational Safety and Health |
CAT | Catalase |
CCC | Criteria chronic concentration; |
CMC | Criteria maximum concentration |
CSF | Cerebro-spinal fluid |
CSN | Central nervous system |
Cu | Copper |
CuZnSOD | Copper-zinc SOD |
cyt c | cytochrome c |
DA | Dopamine |
Daergic | dopaminergic |
DE | Dialysis encephalopathy |
DFO | Deferoxamine |
EDTA | Ethylenediaminetetraacetic acid |
EFSA | European Food Safety Authority |
EPA | Environmental Protection Agency |
Fe | Iron |
GPx | glutathione peroxidase |
Hg | Mercury |
LOAEL | Lowest-observed-adverse-effect level |
MDA | Malondialdehyde |
Mn | Manganese |
MnSOD | Manganese SOD |
MS | Multiple sclerosis |
NFTs | Neurofibrillary tangles |
NIOSH | The National Institute for Occupational Safety and Health |
NOAEL | No-observed-adverse-effect level |
NOS | Not otherwise specified |
OSHA | Occupational Safety and Health Administration |
p53 | Tumor protein 53 |
Pb | Lead |
PD | Parkinson’s disease |
PEL | Permissible exposure limit |
PTWI | provisional tolerable weekly intake |
REL | recommended exposure limit |
SCCS | Scientific Committee on Consumer Safety |
SCHEER | Scientific Committee on Health, Environmental and Emerging Risks |
Si | Silicon |
SNc | Substantia nigra pars compact |
SOD | Superoxide dismutase |
TBARS | Thiobarbituric acid reactive substances |
Tf | Transferrin |
TfR | Transferrin receptor |
TGF-ꞵ1 | Transforming grow factor beta 1 |
TH | Tyrosine hydroxylase |
TNFα | Tumor necrosis factor alpha |
TWA | Time weighted average |
TWI | Tolerable weekly intake |
VTA | Ventral tegmental area |
WHO | World Health Organization |
Zn | Zinc |
References
- Ingerman, L.; Jones, D.G.; Keith, S.; Rosemond, Z.A. ATSDR Toxicological Profile for Aluminum. In ATSDR’s Toxicological Profiles; ATSDR: Atlanta, GA, USA, 2008. [Google Scholar]
- Capriello, T.; Di Meglio, G.; De Maio, A.; Scudiero, R.; Bianchi, A.R.; Trifuoggi, M.; Toscanesi, M.; Giarra, A.; Ferrandino, I. Aluminium Exposure Leads to Neurodegeneration and Alters the Expression of Marker Genes Involved to Parkinsonism in Zebrafish Brain. Chemosphere 2022, 307, 135752. [Google Scholar] [CrossRef] [PubMed]
- Exley, C.; House, E.R. Aluminium in the Human Brain. Mon. Chem. 2011, 142, 357–363. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium Toxicosis: A Review of Toxic Actions and Effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef] [Green Version]
- Inan-Eroglu, E.; Ayaz, A. Is Aluminum Exposure a Risk Factor for Neurological Disorders? J. Res. Med. Sci. 2018, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. Human Exposure to Aluminium. Environ. Sci. Process. Impacts 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q. Overview of the Relationship between Aluminum Exposure and Health of Human Being. Adv. Exp. Med. Biol. 2018, 1091, 1–31. [Google Scholar]
- Alasfar, R.H.; Isaifan, R.J. Aluminum Environmental Pollution: The Silent Killer. Environ. Sci. Pollut. Res. Int. 2021, 28, 44587–44597. [Google Scholar] [CrossRef]
- Krupińska, I. Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health. Molecules 2020, 25, 641. [Google Scholar] [CrossRef]
- Crisponi, G.; Fanni, D.; Gerosa, C.; Nemolato, S.; Nurchi, V.M.; Crespo-Alonso, M.; Lachowicz, J.I.; Faa, G. The Meaning of Aluminium Exposure on Human Health and Aluminium-Related Diseases. Biomol. Concepts 2013, 4, 77–87. [Google Scholar] [CrossRef]
- Riihimäki, V.; Aitio, A. Occupational Exposure to Aluminum and Its Biomonitoring in Perspective. Crit. Rev. Toxicol. 2012, 42, 827–853. [Google Scholar] [CrossRef]
- Tietz, T.; Lenzner, A.; Kolbaum, A.E.; Zellmer, S.; Riebeling, C.; Gürtler, R.; Jung, C.; Kappenstein, O.; Tentschert, J.; Giulbudagian, M.; et al. Aggregated Aluminium Exposure: Risk Assessment for the General Population. Arch. Toxicol. 2019, 93, 3503–3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, S. Aluminium Exposure Through the Diet. Food Sci. Nutr. 2017, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Labor, Occupational Safety and Health Administration Webpage. Permissible Exposure Limits—OSHA Annotated Table Z-1. Available online: https://www.osha.gov/annotated-pels/table-z-1 (accessed on 11 March 2023).
- California Division of Occupational Safety and Health Webpage. Permissible Exposure Limits for Chemical Contaminants Table AC-1. Available online: http://www.dir.ca.gov/title8/5155table_ac1.html (accessed on 11 March 2023).
- Centers for Disease Control and Prevention (CDC), The National Institute for Occupational Safety and Health (NIOSH) Webpage. NIOSH Pocket Guide to Chemical Hazards—Aluminum. Available online: https://www.cdc.gov/niosh/npg/npgd0022.html#print (accessed on 9 March 2023).
- European Food Safety Authority (EFSA). Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials on a Request from European Commission on Safety of Aluminium from Dietary Intake. EFSA J. 2008, 754, 1–34. [Google Scholar] [CrossRef]
- World Health Organisation; Food and Agriculture Organization of the United Nations & Joint FAO/WHO Expert Committee on Food Additives. Meeting (74th: 2011: Rome, I. (2011). Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth [74th] Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://apps.who.int/iris/handle/10665/44788 (accessed on 12 March 2023).
- World Health Organisation World Health Organization. Aluminium in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. World Health Organization. 2003. Available online: https://apps.who.int/iris/handle/10665/75362 (accessed on 12 March 2023).
- United States Environmental Protection Agency Webpage, Drinking Water Regulations and Contaminants. Available online: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants#List (accessed on 11 March 2023).
- Wildeman, A.J. Final Aquatic Life Criteria for Aluminum in Freshwater. Fed. Regist. 2018, 83, 65663–65665. [Google Scholar]
- European Commission; Directorate-General for Health and Food Safety. Final Opinion on Tolerable Intake of Aluminium with Regards to Adapting the Migration Limits for Aluminium in Toys; European Commission: Brussels, Belgium, 2018. [CrossRef]
- Saiyed, S.M.; Yokel, R.A. Aluminium Content of Some Foods and Food Products in the USA, with Aluminium Food Additives. Food Addit. Contam. 2005, 22, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Taschan, H.; Brunn, H. Aluminium Content of Selected Foods and Food Products. Environ. Sci. Eur. 2011, 23, 37. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017.
- Reinke, C.M.; Breitkreutz, J.; Leuenberger, H. Aluminium in Over-the-Counter Drugs: Risks Outweigh Benefits? Drug Saf. 2003, 26, 1011–1025. [Google Scholar] [CrossRef]
- Weberg, R.; Berstad, A. Gastrointestinal Absorption of Aluminium from Single Doses of Aluminium Containing Antacids in Man. Eur. J. Clin. Investig. 1986, 16, 428–432. [Google Scholar] [CrossRef]
- Sanajou, S.; Şahin, G.; Baydar, T. Aluminium in Cosmetics and Personal Care Products. J. Appl. Toxicol. 2021, 41, 1704–1718. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety (SCCS). Preliminary Version of Opinion on the Safety of Aluminium in Cosmetic Products; SCCS: Brussels, Belgium, 2022. [Google Scholar]
- Löffler, P. Review: Vaccine Myth-Buster—Cleaning Up With Prejudices and Dangerous Misinformation. Front. Immunol. 2021, 12, 2220. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Aluminum in Vaccines: Does It Create a Safety Problem? Vaccine 2018, 36, 5825–5831. [Google Scholar] [CrossRef] [PubMed]
- Qunibi, W.Y. Aluminum Toxicity in Chronic Kidney Disease; Berns, J.S., Taylor, E.N., Eds.; UpToDate: Wellesley, MA, USA, 2022. [Google Scholar]
- Tomljenovic, L. Aluminum and Alzheimer’s Disease: After a Century of Controversy, Is There a Plausible Link? J. Alzheimer’s Dis. 2011, 23, 567–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinrinade, I.D.; Memudu, A.E.; Ogundele, O.M. Fluoride and Aluminium Disturb Neuronal Morphology, Transport Functions, Cholinesterase, Lysosomal and Cell Cycle Activities. Pathophysiology 2015, 22, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Caito, S.; Aschner, M. Neurotoxicity of Metals, 1st ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2015; Volume 131. [Google Scholar]
- Duckett, S. Aluminum and Alzheimer Disease. Arch. Neurol. 1976, 33, 730–731. [Google Scholar] [CrossRef]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding Aspects of Aluminum Exposure in Alzheimer’s Disease Development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Zhao, Y.; Hill, J.M.; Culicchia, F.; Kruck, T.P.; Percy, M.E.; Pogue, A.I.; Walton, J.R.; Lukiw, W.J. Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). J. Inorg. Biochem. 2013, 126, 35–37. [Google Scholar] [CrossRef] [Green Version]
- Colomina, M.T.; Peris-Sampedro, F. Aluminum and Alzheimer’s Disease. Adv. Neurobiol. 2017, 18, 183–197. [Google Scholar] [CrossRef]
- Savory, J.; Huang, Y.; Herman, M.M.; Reyes, M.R.; Wills, M.R. Tau Immunoreactivity Associated with Aluminum Maltolate-Induced Neurofibrillary Degeneration in Rabbits. Brain Res. 1995, 669, 325–329. [Google Scholar] [CrossRef]
- Kihira, T.; Yoshida, S.; Yase, Y.; Ono, S.; Kondo, T. Chronic Low-Ca/Mg High-Al Diet Induces Neuronal Loss. Neuropathology 2002, 22, 171–179. [Google Scholar] [CrossRef]
- Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [Google Scholar] [CrossRef]
- Oshima, E.; Ishihara, T.; Yokota, O.; Nakashima-Yasuda, H.; Nagao, S.; Ikeda, C.; Naohara, J.; Terada, S.; Uchitomi, Y. Accelerated Tau Aggregation, Apoptosis and Neurological Dysfunction Caused by Chronic Oral Administration of Aluminum in a Mouse Model of Tauopathies. Brain Pathol. 2013, 23, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Saito, H.; Ishii, K.; Takahashi, H.; Tanabe, S.; Ogasawara, Y. Aluminum Inhibits Proteolytic Degradation of Amyloid Beta Peptide by Cathepsin D: A Potential Link between Aluminum Accumulation and Neuritic Plaque Deposition. FEBS Lett. 2006, 580, 6543–6549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricchelli, F.; Drago, D.; Filippi, B.; Tognon, G.; Zatta, P. Aluminum-Triggered Structural Modifications and Aggregation of β-Amyloids. Cell. Mol. Life Sci. 2005, 62, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Bolognin, S.; Messori, L.; Drago, D.; Gabbiani, C.; Cendron, L.; Zatta, P. Aluminum, Copper, Iron and Zinc Differentially Alter Amyloid-Aβ 1-42 Aggregation and Toxicity. Int. J. Biochem. Cell Biol. 2011, 43, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Niehoff, M.L.; Drago, D.; Zatta, P. Aluminum Complexing Enhances Amyloid β Protein Penetration of Blood-Brain Barrier. Brain Res. 2006, 1116, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Zhang, Z.Y.; Yin, L.H.; Schluesener, H.J. The Profile of β-Amyloid Precursor Protein Expression of Rats Induced by Aluminum. Environ. Toxicol. Pharmacol. 2012, 33, 135–140. [Google Scholar] [CrossRef]
- Praticò, D.; Uryu, K.; Sung, S.; Tang, S.; Trojanowski, J.Q.; Lee, V.M.Y. Aluminum Modulates Brain Amyloidosis through Oxidative Stress in APP Transgenic Mice. FASEB J. 2002, 16, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Platt, B.; Drysdale, A.J.; Nday, C.; Roloff, E.v.L.; Drever, B.D.; Salifoglou, A. Differential Toxicity of Novel Aluminium Compounds in Hippocampal Culture. Neurotoxicology 2007, 28, 576–586. [Google Scholar] [CrossRef]
- Akiyama, H.; Hosokawa, M.; Kametani, F.; Kondo, H.; Chiba, M.; Fukushima, M.; Tabira, T. Long-Term Oral Intake of Aluminium or Zinc Does Not Accelerate Alzheimer Pathology in AβPP and AβPP/Tau Transgenic Mice. Neuropathology 2012, 32, 390–397. [Google Scholar] [CrossRef]
- Ribes, D.; Colomina, M.T.; Vicens, P.; Domingo, J.L. Impaired Spatial Learning and Unaltered Neurogenesis in a Transgenic Model of Alzheimer’s Disease after Oral Aluminum Exposure. Curr. Alzheimer Res. 2010, 7, 401–408. [Google Scholar] [CrossRef]
- Song, J. Animal Model of Aluminum-Induced Alzheimer’s Disease. Adv. Exp. Med. Biol. 2018, 1091, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, P. Critical Review of the Publications on the Genotoxicology of Aluminium Salts: 1990–2018. Mutagenesis 2021, 36, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Aluminium and the Human Breast. Morphologie 2016, 100, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Coulson, J.M.; Hughes, B.W. Dose-Response Relationships in Aluminium Toxicity in Humans. Clin. Toxicol. 2022, 60, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Lukiw, W.J.; Percy, M.E.; Kruck, T.P. Nanomolar Aluminum Induces Pro-Inflammatory and pro-Apoptotic Gene Expression in Human Brain Cells in Primary Culture. J. Inorg. Biochem. 2005, 99, 1895–1898. [Google Scholar] [CrossRef]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; Van Thriel, C.; Drexler, H. The Health Effects of Aluminum Exposure. Dtsch. Arztebl. Int. 2017, 114, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L. Aluminum Toxicity to Bone: A Multisystem Effect? Osteoporos. Sarcopenia 2019, 5, 2–5. [Google Scholar] [CrossRef]
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 7 December 2022).
- Barnes, D.E.; Yaffe, K. The Projected Effect of Risk Factor Reduction on Alzheimer’s Disease Prevalence. Lancet. Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Yumoto, S.; Kakimi, S.; Ohsaki, A.; Ishikawa, A. Demonstration of Aluminum in Amyloid Fibers in the Cores of Senile Plaques in the Brains of Patients with Alzheimer’s Disease. J. Inorg. Biochem. 2009, 103, 1579–1584. [Google Scholar] [CrossRef]
- Rusina, R.; Matěj, R.; Kašparová, L.; Kukal, J.; Urban, P. Higher Aluminum Concentration in Alzheimer’s Disease after Box-Cox Data Transformation. Neurotox. Res. 2011, 20, 329–333. [Google Scholar] [CrossRef]
- Lukiw, W.J.; Kruck, T.P.; Percy, M.E.; Pogue, A.I.; Alexandrov, P.N.; Walsh, W.J.; Sharfman, N.M.; Jaber, V.R.; Zhao, Y.; Li, W.; et al. Aluminum in Neurological Disease—A 36 Year Multicenter Study. J. Alzheimer’s Dis. Park. 2018, 08, 6–10. [Google Scholar] [CrossRef]
- Akatsu, H.; Hori, A.; Yamamoto, T.; Yoshida, M.; Mimuro, M.; Hashizume, Y.; Tooyama, I.; Yezdimer, E.M. Transition Metal Abnormalities in Progressive Dementias. Biometals 2012, 25, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Virk, S.A.; Eslick, G.D. Aluminum Levels in Brain, Serum, and Cerebrospinal Fluid Are Higher in Alzheimer’s Disease Cases than in Controls: A Series of Meta-Analyses. J. Alzheimer’s Dis. 2015, 47, 629–638. [Google Scholar] [CrossRef]
- Virk, S.A.; Eslick, G.D. Brief Report: Meta-Analysis of Antacid Use and Alzheimer’s Disease: Implications for the Aluminum Hypothesis. Epidemiology 2015, 26, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, X.; Yang, J.; Suo, J.; Chen, J.; Liu, X.; Zhao, X. Chronic Exposure to Aluminum and Risk of Alzheimer’s Disease: A Meta-Analysis. Neurosci. Lett. 2016, 610, 200–206. [Google Scholar] [CrossRef]
- Virk, S.A.; Eslick, G.D. Occupational Exposure to Aluminum and Alzheimer Disease a Meta-Analysis. J. Occup. Environ. Med. 2015, 57, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Rondeau, V.; Commenges, D.; Jacqmin-Gadda, H.; Dartigues, J.F. Relation between Aluminum Concentrations in Drinking Water and Alzheimer’s Disease: An 8-Year Follow-up Study. Am. J. Epidemiol. 2000, 152, 59. [Google Scholar] [CrossRef] [Green Version]
- Rondeau, V.; Jacqmin-Gadda, H.; Commenges, D.; Helmer, C.; Dartigues, J.F. Aluminum and Silica in Drinking Water and the Risk of Alzheimer’s Disease or Cognitive Decline: Findings from 15-Year Follow-up of the PAQUID Cohort. Am. J. Epidemiol. 2009, 169, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Yoke, R.A. Aluminum Chelation: Chemistry, Clinical, and Experimental Studies and the Search for Alternatives to Desferrioxamine. J. Toxicol. Environ. Health 1994, 41, 131–174. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-Brain Drug Delivery: An Update on Clinical Challenges and Progress towards Approval of Anti-Alzheimer Drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef]
- Davenward, S.; Bentham, P.; Wright, J.; Crome, P.; Job, D.; Polwart, A.; Exley, C. Silicon-Rich Mineral Water as a Non-Invasive Test of the “Aluminum Hypothesis” in Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 33, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Exley, C.; Korchazhkina, O.; Job, D.; Strekopytov, S.; Polwart, A.; Crome, P. Non-Invasive Therapy to Reduce the Body Burden of Aluminium in Alzheimer’s Disease. J. Alzheimer’s Dis. 2006, 10, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Mold, M.; Umar, D.; King, A.; Exley, C. Aluminium in Brain Tissue in Autism. J. Trace Elem. Med. Biol. 2018, 46, 76–82. [Google Scholar] [CrossRef]
- Grochowski, C.; Blicharska, E.; Bogucki, J.; Proch, J.; Mierzwińska, A.; Baj, J.; Litak, J.; Podkowiński, A.; Flieger, J.; Teresiński, G.; et al. Increased Aluminum Content in Certain Brain Structures Is Correlated with Higher Silicon Concentration in Alcoholic Use Disorder. Molecules 2019, 24, 1721. [Google Scholar] [CrossRef] [Green Version]
- Exley, C.; Clarkson, E. Aluminium in Human Brain Tissue from Donors without Neurodegenerative Disease: A Comparison with Alzheimer’s Disease, Multiple Sclerosis and Autism. Sci. Rep. 2020, 10, 7770. [Google Scholar] [CrossRef]
- Tamburo, E.; Varrica, D.; Dongarrà, G.; Grimaldi, L.M.E. Trace Elements in Scalp Hair Samples from Patients with Relapsing-Remitting Multiple Sclerosis. PLoS ONE 2015, 10, e0122142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exley, C.; Mamutse, G.; Korchazhkina, O.; Pye, E.; Strekopytov, S.; Polwart, A.; Hawkins, C. Elevated Urinary Excretion of Aluminium and Iron in Multiple Sclerosis. Mult. Scler. 2006, 12, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Mcdermott, J.R.; Smith, A.I.; Ward, M.K.; Parkinson, I.S.; Kerr, D.N.S. Brain-Aluminium Concentration in Dialysis Encephalopathy. Lancet (Lond. Engl.) 1978, 1, 901–904. [Google Scholar] [CrossRef]
- Alfrey, A.C.; LeGendre, G.R.; Kaehny, W.D. The Dialysis Encephalopathy Syndrome. Possible Aluminum Intoxication. N. Engl. J. Med. 1976, 294, 184–188. [Google Scholar] [CrossRef]
- Autism Spectrum Disorder in children and adolescents: Terminology, Epidemiology, and Pathogenesis—UpToDate. Available online: https://www.uptodate.com/contents/autism-spectrum-disorder-terminology-epidemiology-and-pathogenesis?search=aluminum&and&autism&spectrum&disorder&source=search_result&selectedTitle=6~150&usage_type=default&display_rank=6 (accessed on 10 December 2022).
- Nevison, C.D. A Comparison of Temporal Trends in United States Autism Prevalence to Trends in Suspected Environmental Factors. Environ. Health 2014, 13, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, R.; Wang, M.; Ren, X. Exposure to Aluminum, Cadmium, and Mercury and Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. Chem. Res. Toxicol. 2020, 33, 2699–2718. [Google Scholar] [CrossRef] [PubMed]
- Amadi, C.N.; Orish, C.N.; Frazzoli, C.; Orisakwe, O.E. Association of Autism with Toxic Metals: A Systematic Review of Case-Control Studies. Pharmacol. Biochem. Behav. 2022, 212, 173313. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem. 2018, 25, 2198–2214. [Google Scholar] [CrossRef] [PubMed]
- Tomljenovic, L.; Shaw, C.A. Do Aluminum Vaccine Adjuvants Contribute to the Rising Prevalence of Autism? J. Inorg. Biochem. 2011, 105, 1489–1499. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism Spectrum Disorder: Trace Elements Imbalances and the Pathogenesis and Severity of Autistic Symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P. Developmental Neurotoxicity of Industrial Chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Landrigan, P.J. What Causes Autism? Exploring the Environmental Contribution. Curr. Opin. Pediatr. 2010, 22, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Corkins, M.R. Aluminum Effects in Infants and Children. Pediatrics 2019, 144, e20193148. [Google Scholar] [CrossRef] [Green Version]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef]
- Mitkus, R.J.; King, D.B.; Hess, M.A.; Forshee, R.A.; Walderhaug, M.O. Updated Aluminum Pharmacokinetics Following Infant Exposures through Diet and Vaccination. Vaccine 2011, 29, 9538–9543. [Google Scholar] [CrossRef]
- Minimal Risk Levels for Hazardous Substances|ATSDR. Available online: https://wwwn.cdc.gov/TSP/MRLS/mrlslisting.aspx (accessed on 12 December 2022).
- Karwowski, M.P.; Stamoulis, C.; Wenren, L.M.; Faboyede, G.M.; Quinn, N.; Gura, K.M.; Bellinger, D.C.; Woolf, A.D. Blood and Hair Aluminum Levels, Vaccine History, and Early Infant Development: A Cross-Sectional Study. Acad. Pediatr. 2018, 18, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, I.; Behl, T.; Aleya, L.; Rahman, M.H.; Kumar, A.; Arora, S.; Akter, R. Role of Metallic Pollutants in Neurodegeneration: Effects of Aluminum, Lead, Mercury, and Arsenic in Mediating Brain Impairment Events and Autism Spectrum Disorder. Environ. Sci. Pollut. Res. Int. 2021, 28, 8989–9001. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol Use Disorders. Lancet 2019, 394, 781–792. [Google Scholar] [CrossRef]
- Davis, W.M. Is Aluminium an Etiologic Contributor to Alcoholic Amnesia and Dementia? Med. Hypotheses 1993, 41, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, F.R.; Vobe, R.A.; Williams, D.R. Chemical Speciation of Aluminium in Beers. Chem. Speciat. Bioavailab. 1995, 7, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.A.; Sancho, D.; Caballero, I. Aluminium Content in Beers and Silicon Sequestering Effects. Food Res. Int. 2010, 43, 2432–2436. [Google Scholar] [CrossRef]
- Granero, S.; Vicente, M.; Aguilar, V.; Martinez-Para, M.C.; Domingo, J.L. Effects of Beer as a Source of Dietary Silicon on Aluminum Absorption and Retention in Mice. Trace Elem. Electrolytes 2004, 21, 28–32. [Google Scholar] [CrossRef]
- Schultz, A.; Oliver, R.; Bautista, M.; Gonzalez-Muñoz, M.J.; Meseguer, I.; Peña, A.; Sanchez-Reus, M.I.; Benedí, J.; Sánchez-Muniz, F.J. Moderate Ingestion of Beer Reduces Inflammatory and Oxidative Brain Events Induced by Aluminium in Mice. Proc. Nutr. Soc. 2008, 67, E69. [Google Scholar] [CrossRef] [Green Version]
- González-Muñoz, M.J.; Peña, A.; Meseguer, I. Role of Beer as a Possible Protective Factor in Preventing Alzheimer’s Disease. Food Chem. Toxicol. 2008, 46, 49–56. [Google Scholar] [CrossRef]
- Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartin, A.; Santos-López, J.A.; Benedi, J.; Bastida, S.; Gonzsez-Munoz, M.J. The Nutritional Components of Beer and Its Relationship with Neurodegeneration and Alzheimer’s Disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [Green Version]
- González-Muñoz, M.J.; Garcimartán, A.; Meseguer, I.; Mateos-Vega, C.J.; Orellana, J.M.; Peña-Fernández, A.; Benedí, J.; Sánchez-Muniz, F.J. Silicic Acid and Beer Consumption Reverses the Metal Imbalance and the Prooxidant Status Induced by Aluminum Nitrate in Mouse Brain. J. Alzheimer’s Dis. 2017, 56, 917–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Muñoz, M.J.; Meseguer, I.; Sanchez-Reus, M.I.; Schultz, A.; Olivero, R.; Benedí, J.; Sánchez-Muniz, F.J. Beer Consumption Reduces Cerebral Oxidation Caused by Aluminum Toxicity by Normalizing Gene Expression of Tumor Necrotic Factor Alpha and Several Antioxidant Enzymes. Food Chem. Toxicol. 2008, 46, 1111–1118. [Google Scholar] [CrossRef]
- Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin Attenuates Neuronal Death against Aluminum-Induced Neurodegeneration in the Rat Hippocampus. Neuroscience 2016, 324, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Laabbar, W.; Elgot, A.; Elhiba, O.; Gamrani, H. Curcumin Prevents the Midbrain Dopaminergic Innervations and Locomotor Performance Deficiencies Resulting from Chronic Aluminum Exposure in Rat. J. Chem. Neuroanat. 2019, 100, 101654. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, Z.; Kumar, D.; Singh, S.K.; Singh, T.D. Centella Asiatica Alleviates AlCl3-Induced Cognitive Impairment, Oxidative Stress, and Neurodegeneration by Modulating Cholinergic Activity and Oxidative Burden in Rat Brain. Biol. Trace Elem. Res. 2022, 200, 5115–5126. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Mold, M.; Chmielecka, A.; Rodriguez, M.R.R.; Thom, F.; Linhart, C.; King, A.; Exley, C. Aluminium in Brain Tissue in Multiple Sclerosis. Int. J. Environ. Res. Public Health 2018, 15, 1777. [Google Scholar] [CrossRef] [Green Version]
- Linhart, C.; Davidson, D.; Pathmanathan, S.; Kamaladas, T.; Exley, C. Aluminium in Brain Tissue in Non-Neurodegenerative/Non-Neurodevelopmental Disease: A Comparison with Multiple Sclerosis. Expo. Health 2020, 12, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; Linhart, C.; Hawkins, C.; Exley, C. Urinary Excretion of Aluminium and Silicon in Secondary Progressive Multiple Sclerosis. EBioMedicine 2017, 26, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Fulgenzi, A.; Vietti, D.; Ferrero, M.E. Aluminium Involvement in Neurotoxicity. Biomed Res. Int. 2014, 2014, 758323. [Google Scholar] [CrossRef] [Green Version]
- Fulgenzi, A.; Zanella, S.G.; Mariani, M.M.; Vietti, D.; Ferrero, M.E. A Case of Multiple Sclerosis Improvement Following Removal of Heavy Metal Intoxication. BioMetals 2012, 25, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, D.M.; Goyal, V. Parkinson’s Disease: A Review. Neurol. India 2018, 66, S26–S35. [Google Scholar] [CrossRef] [PubMed]
- Beitz, J.M. Parkinson’s Disease: A Review. Front. Biosci. (Sch. Ed.) 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Hirsch, E.C.; Brandel, J.-P.; Galle, P.; Javoy-Agid, F.; Agid, Y. Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson’s Disease: An X-ray Microanalysis. J. Neurochem. 1991, 56, 446–451. [Google Scholar] [CrossRef]
- Erazi, H.; Ahboucha, S.; Gamrani, H. Chronic Exposure to Aluminum Reduces Tyrosine Hydroxylase Expression in the Substantia Nigra and Locomotor Performance in Rats. Neurosci. Lett. 2011, 487, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Macleod, J.; Berriault, C.; Debono, N.L.; Arrandale, V.H.; Harris, A.M.; Demers, P.A. Aluminum Dust Exposure and Risk of Neurodegenerative Diseases in a Cohort of Male Miners in Ontario, Canada. Scand. J. Work. Environ. Health 2021, 47, 531–539. [Google Scholar] [CrossRef]
- Martell, J.; Guidotti, T.L. Trading One Risk for Another: Consequences of the Unauthenticated Treatment and Prevention of Silicosis in Ontario Miners in the McIntyre Powder Aluminum Inhalation Program. New Solut. 2022, 31, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Gorell, J.M.; Rybicki, B.A.; Johnson, C.C.; Peterson, E.L. Occupational Metal Exposures and the Risk of Parkinson’s Disease. Neuroepidemiology 1999, 18, 303–308. [Google Scholar] [CrossRef]
- Uversky, V.N.; Li, J.; Bower, K.; Fink, A.L. Synergistic Effects of Pesticides and Metals on the Fibrillation of Alpha-Synuclein: Implications for Parkinson’s Disease. Neurotoxicology 2002, 23, 527–536. [Google Scholar] [CrossRef]
- Altschuler, E. Aluminum-Containing Antacids as a Cause of Idiopathic Parkinson’s Disease. Med. Hypotheses 1999, 53, 22–23. [Google Scholar] [CrossRef]
- Ahmed, S.S.S.J.; Santosh, W. Metallomic Profiling and Linkage Map Analysis of Early Parkinson’s Disease: A New Insight to Aluminum Marker for the Possible Diagnosis. PLoS ONE 2010, 5, e11252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Tian, X.; Wang, X. Advances in Dialysis Encephalopathy Research: A Review. Neurol. Sci. 2018, 39, 1151–1159. [Google Scholar] [CrossRef]
- Dryburgh, F.; Fell, G.S.; Sabet, S. Aluminium Toxicity during Regular Haemodialysis. Br. Med. J. 1978, 1, 1101–1103. [Google Scholar] [CrossRef] [Green Version]
- Ritz, E.; Hergesell, O. Compounds in Development to Combat Hyperphosphataemia. Expert Opin. Investig. Drugs 2001, 10, 2185–2190. [Google Scholar] [CrossRef] [PubMed]
- Canavese, C.; Mereu, C.; Nordio, M.; Sabbioni, E.; Aime, S. Blast from the Past: The Aluminum’s Ghost on the Lanthanum Salts. Curr. Med. Chem. 2005, 12, 1631–1636. [Google Scholar] [CrossRef]
- Winkelman, M.D.; Ricanati, E.S. Dialysis Encephalopathy: Neuropathologic Aspects. Hum. Pathol. 1986, 17, 823–833. [Google Scholar] [CrossRef]
- Wills, M.R.; Savory, J. Aluminum and Chronic Renal Failure: Sources, Absorption, Transport, and Toxicity. Crit. Rev. Clin. Lab. Sci. 1989, 27, 59–107. [Google Scholar] [CrossRef]
- Walton, J.R. Bioavailable Aluminum: Its Effects on Human Health. In Encyclopedia of Environmental Health; Elsevier B.V.: Amsterdam, The Netherlands, 2011; pp. 331–342. [Google Scholar] [CrossRef]
- Chen, M.Y.; Ou, S.H.; Chen, N.C.; Yin, C.H.; Chen, C.L. Aluminum Overload in the Reverse Osmosis Dialysis Era: Does It Exist? Ren. Fail. 2022, 44, 1595–1603. [Google Scholar] [CrossRef]
- Sherrard, D.J.; Walker, J.V.; Boykin, J.L. Precipitation of Dialysis Dementia by Deferoxamine Treatment of Aluminum-Related Bone Disease. Am. J. Kidney Dis. 1988, 12, 126–130. [Google Scholar] [CrossRef]
Source of Exposure to Al | Exposure to Al Limits | Comments | Organization, References |
---|---|---|---|
Occupational exposure limits | Al alkyls, NOS—PEL of 2 mg/m3; Al soluble salts—PEL of 2 mg/m3; Al metal and oxide (total dust)—PEL of 10 mg/m3; Al metal and oxide (respiratory fraction)—PEL of 5 mg/m3; Al pyro powders—PEL of 5 mg/m3; Al welding fumes—PEL of 5 mg/m3; Al stearate—PEL of 10 mg/m3; Al distearate—PEL of 10 mg/m3; Al tristearate—PEL of 10 mg/m3. | 8-h TWA was used in this document. | Cal/OSHA [14,15] |
Al (total dust)—PEL of 15 mg/m3 Al (respirable fraction)—PEL of 5 mg/m3 | - | OSHA [14] | |
Al (total dust)—REL of 10 mg/m3; Al (respiratory fraction)—REL of 5 mg/m3; | Up-to-10-h TWA was used in this document. | NIOSH [14,16] | |
Oral exposure | TWI of 1 mg/kg bw/week | EFSA [17] | |
NOAEL of 30 mg/kg bw/day; LOAEL of 50–75 mg/kg bw/day; PTWI of 2 mg/kg bw. | Major contributors to the total oral Al exposure were cereals and cereal-based products, accounting for 20–90% of total dietary Al exposure. | WHO [18] | |
Drinking water | For small water treatment facilities—0.2 mg/L For large water treatment facilities—0.1 mg/L | - | WHO [19] |
0.05 to 0.2 mg/L | Al level belongs to secondary standards, regarding substances that could cause “cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color)”. | EPA [20] | |
Freshwater (regarding aquatic life) | CMC of 1–4800 μg/L CCC of 0.63–3200 μg/L | Wide range of Al CMC and CCC is caused by significant dependence of Al–bioavailability and certain factors (mostly important ones are total hardness, pH, and dissolved organic carbon). | EPA [21] |
Toys | “Dry, brittle, powder-like or pliable toy material”—2250 mg/kg; “Liquid or sticky toy material”—560 mg/kg; “Scraped-off toy material”—28130 mg/kg. | SCHEER suggests that additional exposure from toys should be minimized due to high exposure to Al from other sources. | SCHEER [22] |
Product | Mean Al Content | Reference |
---|---|---|
Cheddar cheese, sharp | 3.9 ± 3.9 mg/kg | [23] |
Beer a | 0.4–4.2 mg/L | [24] |
Bread | 1–14 mg/kg | [24] |
Cocoa powder | 80–312 mg/kg | [24] |
Doughnut | 9 ± 6 mg/kg | [23] |
Flour | 1–19 mg/kg | [24] |
Fruit juice b | 0.4–47 mg/L | [24] |
Herb-teas | 14–67 mg/kg | [24] |
Pancake mix | 620 ± 460 mg/kg | [23] |
Pasta | 1–76 mg/kg | [24] |
Wine c | 0.4–15 mg/L | [24] |
Higher Absorption | Lower Absorption | Reference | |
---|---|---|---|
pH | Acidic or alkaline | Neutral | [9] |
Al compound | Al chloride, nitrate, citrate, lactate | Al hydroxide | [7] |
Presence of other substances | Citrate, fluoride, maltol, lactate | Silicate, phosphate, polyphenol, sialic acid | [4] |
Other factors | Larger amount of ingested Al | - | [12] |
iron deficiency in the diet | [7] |
Disease | Animal Species | Neuro-Protective Agent | Neuroprotective Effect | Additional Information | Reference |
---|---|---|---|---|---|
AUD | mouse | Beer (Si) | Inhibition of Al-induced prooxidant and proinflammatory actions by decreasing TBARS levels and the expressions of GPx and TNFα and increasing the expressions of SOD (MnSOD and CuZnSOD) and CAT. | Other beer components possibly involved: alcohol, hop, polyphenols, and folic acid. Further studies considering the similar effects of non-alcoholic beer are needed. Harmful effects of alcohol consumption must be taken into account. | [107] |
AD, PD | rat | Quercetin | Attenuation of neuronal death against Al-induced neurodegeneration by:
| “Quercetin may be used as a prophylactic in order to slow down the progression of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease”. | [108] |
PD | rat | Curcumin | Prevention of Al-induced DAergic neurotoxicity and related locomotor deficiencies (displayed by restored immunoreactivity of TH in SNc and VTA). | Curcumin could be considered as “a natural drug conferring the protection of the brain from heavy metals induced neurotoxicity”. | [109] |
PD | rat | CAE | Alleviation of cognitive impairment, cellular damage, neurodegeneration, and cholinergic activity through attenuation of:
| CAE not only prevents but also reverses the aforementioned Al-induced negative effects. “CAE could be used as an antioxidant, anti-cholinesterase, memory enhancer, and neuroprotective agent”. | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryliński, Ł.; Kostelecka, K.; Woliński, F.; Duda, P.; Góra, J.; Granat, M.; Flieger, J.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; et al. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int. J. Mol. Sci. 2023, 24, 7228. https://doi.org/10.3390/ijms24087228
Bryliński Ł, Kostelecka K, Woliński F, Duda P, Góra J, Granat M, Flieger J, Teresiński G, Buszewicz G, Sitarz R, et al. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. International Journal of Molecular Sciences. 2023; 24(8):7228. https://doi.org/10.3390/ijms24087228
Chicago/Turabian StyleBryliński, Łukasz, Katarzyna Kostelecka, Filip Woliński, Piotr Duda, Joanna Góra, Michał Granat, Jolanta Flieger, Grzegorz Teresiński, Grzegorz Buszewicz, Ryszard Sitarz, and et al. 2023. "Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications" International Journal of Molecular Sciences 24, no. 8: 7228. https://doi.org/10.3390/ijms24087228
APA StyleBryliński, Ł., Kostelecka, K., Woliński, F., Duda, P., Góra, J., Granat, M., Flieger, J., Teresiński, G., Buszewicz, G., Sitarz, R., & Baj, J. (2023). Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. International Journal of Molecular Sciences, 24(8), 7228. https://doi.org/10.3390/ijms24087228