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Abstract: Under climate change, drought is one of the most limiting factors that influences wheat
(Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To
identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366
(ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length
under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer
than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15%
PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single
nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment
analysis revealed that the upregulated genes were mainly related to the response to water, acidic
chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the
DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-
6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.)
of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment.
Altogether, the drought stress genes identified in this study represent useful gene resources for
wheat breeding.
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1. Introduction

As one of the most important Triticeae crops, common wheat (Triticum aestivum L.)
has accompanied human civilizations for more than 10,000 years [1]. Wheat has a complex
genome with a very large size and three subgenomes (AABBDD) [2]. Wheat production
is seriously restricted by high salinity and drought [3]. With the continuous destruction
of the environment, decreases in arable land, the continuous warming of the global cli-
mate, and reductions in water resources, the use of biological means to create and select
superior drought-tolerant wheat varieties to solve the food crisis has become particularly
important [4].

Salinity and drought are major constraints on crop growth and productivity, limiting
sustainable agriculture in arid regions [5]. Drought tolerance has a significant impact on
agriculture worldwide and is expected to continue to increase in the future [4]. Plants
respond to drought tolerance via physiological, biochemical, morphological, and molecular
mechanisms [4]. Understanding the physiology and molecular mechanisms of drought
tolerance in crops is of vital importance for improving stress tolerance and promoting
cultivation [4].
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Compared with studies in model plants such as Arabidopsis, rice, and tomatoes, the
application of traditional methods for mapping key genes and cultivating wheat varieties
is very difficult. With the development of genome sequencing technology, omics methods
have become an important approach for identifying key genes that encode important
agricultural traits in wheat [6–10]. Among these methods, RNA-seq has been extensively
utilized to map relevant genes, and it has become a commonly used and effective method
for researchers. For example, the 15 calmodulin (TaCAM) and 113 calmodulin-like (TaCML)
genes were identified based on the wheat reference genome, and the expression level of
the TaCAM2-D gene was shown to be significantly upregulated under drought and salt
stress [11]. To study the response of rice seedlings to high temperatures, RNA-seq was
performed in two rice varieties, Annapurna (heat tolerant) and IR64 (heat sensitive); it
revealed a unique set of regulatory genes and related pathways in the red rice variety
Annapurna, including genes related to auxin and abscisic acid (ABA) in the rice heat-stress
response [12]. OsSPL10, a gene regulating drought tolerance in rice, was cloned using
forward genetics [13]. The molecular mechanism of an NF-Y-PYR module regulating
drought and salt stress in soybeans was analyzed, and the results were of great significance
for the development of tolerant soybean varieties [14]. An analysis of the transcriptome
of developing wheat grains identified genes that can improve breeding efficiency and
adaptation to climate change [15]. The drought-responsive gene TaSNAC8-6A was cloned
by combining GWAS and RNA-seq techniques [16]. RNA-seq was also used to map the key
gene TaERF87, which plays an important role in the PEG-6000-induced dehydration stress
response [17]. Overall, drought stress has been studied in several crops, but there are only
a few genes related to drought stress available in wheat, and further enrichment of such
genetic resources is needed to adapt this crop to ecological changes in the environment.

Here, to study genes related to drought stress, RNA-seq analysis was used to identify
differentially expressed genes (DEGs) in ZM366 and CM42 roots under 15% PEG-6000
treatment (to simulate drought), and the phenotypic differences between the two wheat
cultivars were measured. Furthermore, the expression differences in 16 DEGs were ana-
lyzed among four Kronos mutants and the wild type. Overall, the results confirmed that
these genes are novel stress-related genes of wheat that can be diligently used in a breeding
process for drought-tolerant wheat cultivars; they will accelerate wheat molecular breeding
for better crop production.

2. Results
2.1. Generation of RNA-Seq Data

Two ecologically differentiated wheat cultivars were selected based on their obvious
difference in root length under 15% PEG-6000 treatment and wellwatered conditions
(hydroponics) as a control. Estimation of root length and phenotypic analysis showed minor
differences between the root length of the two cultivars under well-watered conditions;
there was little difference in root growth between the two materials under hydroponics
(Figures 1A,B and 2A). However, the root length of the cultivar ZM366 was notably longer
than that of CM42 under the 15% PEG-6000 treatment (Figures 1C,D and 2A). In view of
the above results, we believe that some important drought-tolerant genes are contained
in ZM366. Furthermore, we collected the root tissues of the above plant material that
had grown for seven days and proceeded with RNA-seq to explore the key drought-
tolerant genes.
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Figure 1. Root growth of CM42 and ZM366. (A) CM42 root growth under hydroponic conditions. 
(B) ZM366 root growth under hydroponic conditions. (C) CM42 root growth under the 15% PEG-
6000 treatment. (D) ZM366 root growth under the 15% PEG-6000 treatment. Root growth was meas-
ured on days 2, 4, 5, and 7. 

Figure 1. Root growth of CM42 and ZM366. (A) CM42 root growth under hydroponic conditions.
(B) ZM366 root growth under hydroponic conditions. (C) CM42 root growth under the 15% PEG-6000
treatment. (D) ZM366 root growth under the 15% PEG-6000 treatment. Root growth was measured
on days 2, 4, 5, and 7.
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Figure 2. Root growth length statistics. (A) Statistics of CM42 and ZM366 under hydroponics and 
the 15% PEG-6000 treatment. (B) Statistics of Kronos and 4 EMS-induced mutants under the 15% 
PEG-6000 treatment. Growth was measured on days 2, 4, 5, and 7. The experiment was repeated 
three times, and the error bar represents the SD of the means (n = 3). ** represents p < 0.01. ns indi-
cates not significant. 

Twelve RNA-Seq libraries were constructed, with three biological repeats: 
ZM366_root_15%PEG_6000_1, ZM366_root_15%PEG_6000_2, 
ZM366_root_15%PEG_6000_3, CM42_root_15%PEG_6000_1, 
CM42_root_15%PEG_6000_2, CM42_root_15%PEG_6000_3, ZM366_root_hydroponics_1, 
ZM366_root_hydroponics_2, ZM366_root_hydroponics_3, CM42_root_hydroponics_1, 
CM42_root_hydroponics2, and CM42-root-hydroponics-3. We definitively compared 

Figure 2. Root growth length statistics. (A) Statistics of CM42 and ZM366 under hydroponics and
the 15% PEG-6000 treatment. (B) Statistics of Kronos and 4 EMS-induced mutants under the 15%
PEG-6000 treatment. Growth was measured on days 2, 4, 5, and 7. The experiment was repeated three
times, and the error bar represents the SD of the means (n = 3). ** represents p < 0.01. ns indicates
not significant.

Twelve RNA-Seq libraries were constructed, with three biological repeats: ZM366_root_15%
PEG_6000_1, ZM366_root_15%PEG_6000_2, ZM366_root_15%PEG_6000_3, CM42_root_15%
PEG_6000_1, CM42_root_15%PEG_6000_2, CM42_root_15%PEG_6000_3, ZM366_root_hydro
ponics_1, ZM366_root_hydroponics_2, ZM366_root_hydroponics_3, CM42_root_hydroponics_1,
CM42_root_hydroponics2, and CM42-root-hydroponics-3. We definitively compared ZM366
with CM42 under 15% PEG treatment. A total of 70.5–84.3 million reads were obtained from each
sample. The amount of data ranged from 10.58 Gb to 12.64 Gb, the Q30 percentage exceeded
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94.66%, and the GC content distribution was 55.93–57.28% (Figure S1 and Table S1). Sequencing
alignment showed that 94.43–95.29% of the reads could be mapped to IWGSC RefSeq v2.1.
The aligned regions, alignment rates, and sequencing data filtering were analyzed statistically.
The regions identified in the sample comparisons were mainly exons, introns, and genes, with
sample alignment rates of 85.08–85.89%, sequencing data filtering statistics that included clean
data, low quality, containing N, and adapter related (Figures S2 and S3, Tables S2 and S3). The
results suggested that the RNA-Seq data were suitable for further analysis.

2.2. Variant Site Detection and Analysis

The identified variant sites were mainly composed of SNPs and InDels. We analyzed
ZM366 and CM42 under the 15% PEG treatment. The clean data obtained by sequencing
were aligned with the wheat reference genome (version 2.1). For cultivar ZM366, the 3 bio-
logical repeats produced 82,003, 72,333, and 76,333 SNPs and 7934, 7190, and 7800 InDels.
In CM42, the 3 biological repeats produced 73,554, 83,353, and 83,605 SNPs and 5856, 8189,
and 6486 InDels (Table S4). Next, the SNPs and InDels were annotated based on the Human
Genome Variation Society (HGVS) annotation of variant sites at the DNA level (HGVS_C),
variant sites at the protein level only for protein-encoding genes (HGVS_P), the effect of
the mutation sites (EFFECT), and the degree of influence caused by the mutation sites
(IMPACT) (Table S5). The identification of SNPs and InDels has considerable implications
for improving our understanding of the structural variation, genome evolution, and origin
of wheat. Many SNPs and InDels were obtained through the analysis, which will aid in the
later search for genes.

Next, statistics on each mutation site were performed based on the annotation infor-
mation, including the function of the variant site, the mutation site area, the influence of
the mutation site, and the detection of SNPs and InDels. The results showed that the effects
of the mutation sites (SNP-impact and InDel-impact) were quantified and plotted at four
levels: high, moderate, low, and modifier (no phenotypic effect itself, but effects on other
mutation sites with phenotypic effects) (Figure 3A,D and Table S6). The categories of the
regions of variants (SNP-region and InDel-region) included the following: downstream,
exon, intron, intergenic, splice_site_acceptor, splice_site_donor, splice_site_region, tran-
script, upstream, UTR_3_prime, and UTR_5_prime (Figure 3B,E). The variant site function
(SNP-function) varied from synonymous mutations to missense mutations and nonsense
mutations (Figure 3C). Finally, after we obtained the SNP sites, we clarified the functions
of these mutation sites, the regions of the mutations, and the impacts of the mutation
sites. These characteristics may play a role in predicting the effect of genetic mutations on
gene function. By counting the mutation sites, we also develop a clearer understanding of
the changes in key genes; this will help to identify key genes and predict upstream and
downstream genes that regulate their expression.
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Figure 3. Statistics for variant sites, including InDels and SNPs. (A) InDel-impact was plotted for 
four levels: high, moderate, low, and modifier. (B) InDel-region was counted for the following gene 
structure regions: downstream, exon, intron, intergenic, splice_site_acceptor, splice_site_donor, and 
splice_site_region, transcript, upstream, utr_3_prime and utr_5_prime. (C) SNP-function was sta-
tistically plotted for three conditions: synonymous mutation, missense mutation, and nonsense mu-
tation. (D) SNP-impact was statistically plotted for four levels: high, moderate, low, and modifier. 
(E) SNP-region was counted and mapped for the following gene structure regions: downstream, 
exon, intron, intergenic, splice_site_acceptor, splice_site_donor, and splice_site_region, transcript, 
upstream, utr_3_prime and utr_5_prime. 

2.3. Principle Component Analysis (PCA) 
Principle Component Analysis (PCA) was performed to evaluate inter-group differ-

ences and intra-group sample duplication. It is an algorithm to reduce the dimensions of 
data. The distance between points in the figure represents the degree of similarity between 
samples. PC1 refers to the top contribution rate, which is the factor that has the greatest 

Figure 3. Statistics for variant sites, including InDels and SNPs. (A) InDel-impact was plotted for
four levels: high, moderate, low, and modifier. (B) InDel-region was counted for the following
gene structure regions: downstream, exon, intron, intergenic, splice_site_acceptor, splice_site_donor,
and splice_site_region, transcript, upstream, utr_3_prime and utr_5_prime. (C) SNP-function was
statistically plotted for three conditions: synonymous mutation, missense mutation, and nonsense
mutation. (D) SNP-impact was statistically plotted for four levels: high, moderate, low, and modifier.
(E) SNP-region was counted and mapped for the following gene structure regions: downstream,
exon, intron, intergenic, splice_site_acceptor, splice_site_donor, and splice_site_region, transcript,
upstream, utr_3_prime and utr_5_prime.

2.3. Principle Component Analysis (PCA)

Principle Component Analysis (PCA) was performed to evaluate inter-group differ-
ences and intra-group sample duplication. It is an algorithm to reduce the dimensions of
data. The distance between points in the figure represents the degree of similarity between
samples. PC1 refers to the top contribution rate, which is the factor that has the greatest
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influence on variation, and PC2 is the second factor. Therefore, we tend to pay more atten-
tion to the distribution of samples on PC1 (the horizontal coordinate). To assess inter-group
differences and sample duplication within groups, PCA analysis was performed for the
gene expression values of all samples. As shown in Figure 4, the PC1 and PC2 of the three
samples of CM42-hydroponics, CM42-15% PEG, ZM366-hydroponics, and ZM366-15%
PEG group are very close, and such samples are actually very similar. Figure 4A represents
a PCA analysis of a PCA 2D plot. Figure 4B represents a PCA analysis of a PCA 3D plot.
Overall, sample duplication within the group was consistent, and the PCA data showed
the high quality of the samples’ biological repetition.
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2.4. Identification of Differentially Expressed Genes 
Gene expression quantification analysis was performed, and the expected number of 

fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM) 
was calculated. The read count expression matrix and the FPKM expression matrix of each 
gene in the sample are shown in Table S7. Based on the gene quantification results, 49,216 
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Figure 4. Principle Component Analysis (PCA) (A) CM42-hydroponics, CM42-15% PEG, ZM366-
hydroponics, and ZM366-15% PEG PCA of a PCA 2D plot. (B) CM42-hydroponics, CM42-15% PEG,
ZM366-hydroponics, and ZM366-15% PEG PCA of a PCA 3D plot. PC1 refers to the top contribution
rate, which is the factor that has the greatest influence on variation, and PC2 is the second factor.

2.4. Identification of Differentially Expressed Genes

Gene expression quantification analysis was performed, and the expected number of
fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM)
was calculated. The read count expression matrix and the FPKM expression matrix of
each gene in the sample are shown in Table S7. Based on the gene quantification results,
49,216 genes were expressed in both ZM366 and CM42, and 4426 and 3726 genes were
uniquely expressed in either ZM366 or CM42, respectively (Figure 5A, Tables S8–S10). DEG
analysis showed that there were 11,083 DEGs between ZM366 and CM42 after 15% PEG-
6000. Among the DEGs, 6329 genes were upregulated, and 4844 genes were downregulated
(Figure 5B, Figure S4A, and Tables S11–S13). In addition, we studied the DEGs of ZM366
and CM42 under control conditions (hydroponics), and there were 13,235 DEGs between
ZM366 and CM42. Among the DEGs, 6937 genes were upregulated, and 6298 genes were
downregulated (Figure S4B, and Table S12). Among these DEGs, 7294 DEGs were uniquely
identified under PEG-6000 treatment conditions. A total of 4111 genes were upregulated,
and 3183 genes were downregulated (Figure S4C–E).
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Figure 5. Transcriptomic analysis of ZM366 and CM42 treated with 15% PEG-6000. (A) Venn dia-
gram of expressed genes in ZM366 and CM42 under 15% PEG-6000 treatment conditions. The yel-
low represents the genes expressed in ZM366. The purple represents the genes expressed in CM42. 
(B) Volcano map of differentially expressed genes (DEGs) in ZM366 and CM42 under 15% PEG-
6000 treatment conditions. Up, 6239; down, 4844. (C) GO enrichment analysis bubble diagrams. The 
abscissa represents the ratio of the number of DEGs annotated with a GO term to the total number 
of DEGs, and the ordinate is the GO term; the size of the point represents the number of genes 
annotated with a GO term, and the color change from red to purple represents the significance of 
the enrichment. (D) Expression heatmap of the GO enrichment DEGs between CM42 and ZM366 
under 15% PEG-6000 treatment conditions. 

2.5. GO Enrichment Analysis of Differentially Expressed Genes (DEGs) 
After obtaining the DEGs, we focused on the functions of the genes and further ana-

lyzed the associated biological pathways. The Gene Ontology (GO) database is a compre-
hensive database describing gene functions, which are divided into three major categories: 
biological process (BP), cellular component (CC), and molecular function (MF). GO en-
richment analysis revealed 2582 significantly enriched genes, including 1293 upregulated 
genes and 1289 downregulated genes (Table S14). The 1293 upregulated genes were fur-
ther analyzed. Based on the analysis, the most prominent BP terms were the response to 
water, acid chemicals, oxygen-containing compounds, inorganic substances, and abiotic 

Figure 5. Transcriptomic analysis of ZM366 and CM42 treated with 15% PEG-6000. (A) Venn diagram
of expressed genes in ZM366 and CM42 under 15% PEG-6000 treatment conditions. The yellow
represents the genes expressed in ZM366. The purple represents the genes expressed in CM42.
(B) Volcano map of differentially expressed genes (DEGs) in ZM366 and CM42 under 15% PEG-6000
treatment conditions. Up, 6239; down, 4844. (C) GO enrichment analysis bubble diagrams. The
abscissa represents the ratio of the number of DEGs annotated with a GO term to the total number
of DEGs, and the ordinate is the GO term; the size of the point represents the number of genes
annotated with a GO term, and the color change from red to purple represents the significance of the
enrichment. (D) Expression heatmap of the GO enrichment DEGs between CM42 and ZM366 under
15% PEG-6000 treatment conditions.

2.5. GO Enrichment Analysis of Differentially Expressed Genes (DEGs)

After obtaining the DEGs, we focused on the functions of the genes and further
analyzed the associated biological pathways. The Gene Ontology (GO) database is a
comprehensive database describing gene functions, which are divided into three major
categories: biological process (BP), cellular component (CC), and molecular function (MF).
GO enrichment analysis revealed 2582 significantly enriched genes, including 1293 upregu-
lated genes and 1289 downregulated genes (Table S14). The 1293 upregulated genes were
further analyzed. Based on the analysis, the most prominent BP terms were the response to
water, acid chemicals, oxygen-containing compounds, inorganic substances, and abiotic
stimuli. The result is shown by GO enrichment analysis bubble diagrams (Figure 5C). Im-
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portantly, a total of 41 shared genes were annotated with these terms, and gene expression
analysis showed that the expression heatmap of these 41 genes was higher in ZM366 than
in CM42 (Figure 5D). Next, we focused on 16 of the 41 genes associated with these terms.
These 16 genes were the most significantly enriched in the GO pathways; based on their
association with the same enrichment pathway, we considered these genes to be potential
candidates related to drought stress (Table 1).

Table 1. Information for the 16 candidate genes.

Candidate Gene ID Description Log2(FC) p Value

TraesCS6A03G0899800 Dehydrin, BP: response to water, abiotic stimulus 7.60 2.92 × 10−45

TraesCS6B03G1084600 Dehydrin, BP: response to water, abiotic stimulus 3.40 1.47 × 10−41

TraesCS6A03G0900700 Dehydrin, BP: response to water, acid chemical 2.77 2.92 × 10−45

TraesCS3B03G1055400 Dehydrin, BP: response to water, abscisic acid 4.12 2.92 × 10−45

TraesCS6A03G0900100 Dehydrin, BP: response to water, abscisic acid 3.22 1.38 × 10−27

TraesCS6D03G0772300 Dehydrin, BP: response to water, inorganic substance 2.24 5.15 × 10−17

TraesCS7D03G1292300 Dehydrin, BP: response to water, oxygen-containing compound 9.46 8.39 × 10−15

TraesCS6B03G1082300 Dehydrin, BP: response to water, inorganic substance 3.13 1.23 × 10−12

TraesCS6B03G0794800 Dehydrin, BP: response to water 0.99 1.80 × 10−37

TraesCS3B03G0736100 Dehydrin, BP: response to water, abiotic stimulus 3.92 2.19 × 10−36

TraesCS4A03G0658300 Dehydrin, BP: response to water 3.76 4.84 × 10−8

TraesCS7A03G1365300 Dehydrin, BP: response to water, abiotic stimulus 4.81 1.47 × 10−41

TraesCS5A03G1006700 Dehydrin, BP: response to water, oxygen-containing compound 4.47 3.94 × 10−7

TraesCS3A03G0653000 Dehydrin, BP: response to water, abscisic acid 3.94 3.96 × 10−7

TraesCS6B03G1084000 Dehydrin, BP: response to water, inorganic substance 4.00 1.8 × 10−37

TraesCS4B03G0139700 Dehydrin, BP: response to water, abiotic stimulus 3.12 2.19 × 10−36

2.6. Quantitative Real-Time PCR Analysis and Functional Verification of Candidate Genes

To further identify candidate genes, RT-qPCR analysis was completed. On day 7 after
ZM366 and CM42 were treated with a 15% PEG-6000 solution, root tissues were collected,
and RNA was extracted. RT-qPCR showed that the expression levels of 16 genes in ZM366
were higher than those of the genes in CM42 (Figure 6, Table S15). Therefore, these 16 genes
were regarded as important candidate genes.

To verify that the candidate genes were indeed related to drought stress tolerance, we
checked the tetraploid wheat Kronos (Triticum turgidum L.) EMS-induced mutant informa-
tion for these genes in the Ensembl plant database (http://plants.ensembl.org/Triticum_
aestivum/Info/Index, accessed on 25 August 2022) and found available mutant informa-
tion for four genes. These gene ID were TraesCS6A03G0900700 (TraesCS6A02G350500),
TraesCS6A03G0899800 (TraesCS6A02G350100), TraesCS3B03G1055400 (TraesCS3B02G428200),
and TraesCS6B03G1084600 (TraesCS6B02G383800), and the respective EMS-induced mutant
identifier numbers were Kronos3935.chr6A.582265082, Kronos3216.chr6A.581983177, Kro-
nos3538.chr3B.667112943, and Kronos3557.chr6B.658578115 (abbreviated as 3935, 3216, 3538,
and 3557); the tetraploid wheat Kronos was used as the control. The mutants’ information is
listed in Table 2.

http://plants.ensembl.org/Triticum_aestivum/Info/Index
http://plants.ensembl.org/Triticum_aestivum/Info/Index
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Table 2. EMS-induced mutation information.

Mutation
Name

Most Severe
Consequence Alleles Location of IWGSC

RefSeq v2.0
IWGSC RefSeq v2.1

(IWGSC RefSeq v2.0)

Kronos3216.chr6A.581983177 splice region variant G/A Chromosome
6A:581983177

TraesCS6A03G0899800
(TraesCS6A02G350100)

Kronos3935.chr6A.582265082 splice region variant C/T Chromosome
6A:582265082

TraesCS6A03G0900700
(TraesCS6A02G350500)

Kronos3538.chr3B.667112943 splice region variant G/A Chromosome
3B:667112943

TraesCS3B03G1055400
(TraesCS3B02G428200)

Kronos3557.chr6B.658578115 splice region variant C/T Chromosome
6B:658578115

TraesCS6B03G1084600
(TraesCS6B02G383800)

Next, the 4 EMS-induced mutants seeds were planted and treated with 15% PEG-6000
solution, and root growth was observed at 2, 4, 5, and 7 days after planting. Based on
phenotypic characteristics and root growth statistics analysis, we found that the root growth
rate of the mutants was apparently faster, and the roots length were longer than the control
(Figures 2B and 7). This experiment was repeated three times with similar results.

In addition, further verification was conducted using RT-qPCR with three biological
repeats for each group. The expression levels of the corresponding genes in the four
mutant materials were significantly higher than those in the control group Kronos material
(Figure 8, Table S15), which is consistent with the result that the mutants’ roots were
longer than WT. Therefore, it is reasonable to assume that these genes are involved in
drought tolerance pathways in wheat. Therefore, these genes can be regarded as important
candidate genes related to drought stress.
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Figure 7. Root growth of Kronos and 4 EMS-induced mutants under the 15% PEG-6000 treatment.
(A) Kronos root growth conditions. (B) Root growth conditions of mutant 3935. (C) Root growth
conditions of mutant 3216. (D) Root growth conditions of mutant 3538. (E) Root growth conditions
of mutant 3557. Root growth was measured on days 2, 4, 5, and 7.
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3. Discussion
3.1. Importance of Drought Resistance Genes in Wheat According to Multi-Omics

Global climate change gives rise to environmental cues, especially drought toler-
ance [4]. In this study, 16 drought tolerance genes with high confidence level were obtained
by RNA-seq, and functional verification of the candidate genes was carried out. This
provides data in support of the study of drought tolerance genes and plays a supporting
role in enriching wheat’s genetic resources for drought tolerance.

Additionally, drought stress disturbs seed germination, seedling development, leaf
size, plant height, and plant biomass, limiting water availability to roots and leading to
losses in crop yield [17]. Deeper and longer roots can help crops to access soil water under
water-deficient conditions, increasing production [4,18]. In general, plants are in a state of
drought tolerance when water transfer to the root system is insufficient, or when the amount
of water lost through transpiration is very high [19]. Damage caused by drought tolerance
severity is often unstable because it is determined by several factors, such as rainfall pat-
terns, soil moisture availability, and water deficiency due to transpiration [20]. As a result,
drought tolerance hinders crop growth, water-nutrient relationships, and photosynthesis,
ultimately leading to a significant decline in crop yields [4,19,20]. Therefore, studying
wheat drought resistance is an important and meaningful aspect of wheat breeding. Multi-
omics analysis has become a mainstream method for mapping important agronomic loci
of wheat. Notably, at present, the development of RNA-seq, genomics-assisted breeding,
proteomics, metabolomics, epigenetics, pan-genomics and high-throughput phenomics pro-
vides a convenient approach for the exploration of important agronomic trait resources and
the cloning of important agronomic genes in wheat, which helps us understand drought
tolerance adaptation and molecular mechanisms [4].

Recently, scientists have used genome-wide association studies (GWASs), RNA-seq,
and DAP-seq to clone the wheat drought tolerance genes TaDTG6-B [21], TaNAC071-
A [22], and TaWRKY1-2D [23]. Using two control genotypes, drought-tolerant NI543941
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and drought-susceptible WL711, a total of 45,139 DEGs, 13,820 TFs, 288 miRNAs, and
640 pathways were identified to provide an RNA-Seq approach for studying the response
mechanism of wheat roots under drought conditions [24]. However, none of these new
genes that have been reported so far were included in the current study. Therefore, the
new genes found via RNA-Seq in this study represent a significant development for wheat
drought resistance breeding and the cloning of new drought resistance genes.

3.2. Sixteen Key Candidate Drought Tolerance Genes Identified in the Response to 15%
PEG-6000 Treatment

In previous studies, the researchers found that TaERF87 and TaAKS1 synergistically
regulate TaP5CS1/TAP5Cr1-mediated proline biosynthesis to enhance drought resistance
in wheat [25]. Some researchers explored new QTL loci in response to drought stress [26].
TaIAA15-1A and TaSPP-5A were also associated with drought tolerance [27,28]. These key
genes, associated with tolerance to drought stress, have been cloned and excavated using
various methods. However, we found that the new genes obtained in this study are not the
same type of gene as was previously reported.

In this study, 16 key candidate genes responding to drought stress were identified
by RNA-seq, RT-qPCR, and tetraploid wheat mutants. These genes showed the most
significant results in the GO enrichment pathway, and their expression levels were also
highest in the same enrichment pathway. Through our analysis, we found an interesting
phenomenon: all 16 of these genes belong to the dehydrin family. Numerous reports have
shown that the dehydrin gene is involved in regulating drought resistance in plants. The
dehydrin gene exhibits specialized metabolite drought stress responses in switchgrass [29].
The dehydrin genes Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) enhanced
cotton drought tolerance and salt tolerance [30]. Dehydrin MtCAS31 promotes autophagic
degradation under drought stress [31]. The researchers studied the regulatory mechanism
of the wheat dehydrin gene WZY2 under drought stress [32]. Therefore, it is reasonable to
assume that these genes have important application value for wheat drought resistance
breeding and play an important role in the wheat drought resistance pathway. This study
provides a reference for the future enrichment of key gene resources and cloning of genes
related to drought stress tolerance.

3.3. Genomic Era Genome Data Integration and Establishment of a Stress Gene Resource
Exploration Platform

In this experiment, a large number of reliable SNPs and InDels were identified. There-
fore, it is reasonable to assume that these variations may be one of the reasons why ZM366
is more drought tolerant than CM42. It can be used to explain the reason for the signif-
icant differences in genotype and phenotype between the two cultivars. We can better
understand the sequence and structural variation between the two phenotypically different
cultivars. These data assist the mapping of the corresponding genes related to drought
resistance, providing support for the later utilization and screening of excellent alleles and
cultivars. With the explosive growth of information and data, quickly mapping valuable
target genes and loci has become a research hotspot in genomics [33]. Thus, there is cur-
rently increased interest in the fast and accurate anchoring of key regions and candidate
genes. The integration and utilization of massive amounts of data to establish a stress
gene resource exploration platform based on high-throughput genotype identification
has become extremely urgent [34]. To date, a large number of gene resource exploration
platforms [33–37], wheat databases [38–40], and websites [41] have been built, enabling
researchers to consult genomic information more efficiently.

There is no doubt that our next step is to clone and use these key genes. Transgenics,
gene editing, and other technologies can be used to create excellent wheat varieties. The
cloning and utilization of these key genes provide key data support for the breeding
of drought-tolerant wheat varieties and the creation of drought-tolerant cultivars, and
they will enrich the drought-tolerant gene pool of wheat. We will build and improve
the database, using existing data and databases to discover and explore differences in
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sequence changes between modern breeding varieties and local cultivars to quickly search
for superior alleles and superior key genes. Additionally, our work will provide ideas
for the creation of excellent drought-tolerant germplasm resources and materials through
modern and advanced biological techniques. Under the conditions of global warming
and the decrease in the effective use of cultivated areas, there is a demand for agricultural
development to identify key genes and create planting materials using biotechnology and
database platforms. Thus, speed breeding can be realized in the near future.

4. Materials and Methods
4.1. Materials and Growth Conditions

To identify genes related to the drought tolerance response, two different ecologi-
cally differentiated materials, Zhengmai 366 (ZM366, Wheat Research Institute of Henan
Academy of Agricultural Sciences, Henan, China) and Chuanmai 42 (CM42, Crop Research
Institute of Sichuan Academy of Agricultural Sciences, Sichuan, China), were treated with
15% polyethylene glycol (PEG-6000, Modern Oriental Technology Development CD., LTD,
Beijing, China) for 7 days to observe root growth changes; a water treatment was used as a
control. Each treatment was repeated three times. Moreover, 4 EMS-induced mutants of
Kronos (Triticum turgidum L.) (Table 2) were selected to be treated with 15% PEG-6000 for
7 days to observe root growth changes, using Kronos as a control. Each sample treatment
was repeated three times.

4.2. RNA Extraction, Library Construction, Sequencing, and Quality Control

In this experiment, RNA samples were stored and sequenced after 7 days of growth.
Total RNA was extracted using standard methods, followed by strict quality inspection
and the on-machine sequencing of RNA sequencing data [42]. The constructed sequence
libraries subjected to 150 bp paired-end sequencing on the Illumina HiSeq™ 6000 plat-
form, and the raw data were saved as FASTQ files. To remove adaptors and low-quality
reads at the head and tail, Trimmomatic (version 0.35) [43] was used to conduct quality
control of the sequencing data using the following protocol: java–jar, trimmomatic-0.35.jar,
PE-threads 20, forward.fastq, reverse.fastq, forward_paired.fastq, forward_unpaired.fastq,
reverse_paired.fastq, reverse_unpaired.fastq, ILLUMINACLIP:1.adapter.list:2:30:10, LEAD-
ING:10, TRAILING:10, SLIDINGWINDOW:1:10 and MINLEN:50. In this step, clean data
were obtained by removing reads containing adapters, reads containing poly-N, and low-
quality reads from the raw data. At the same time, the Q20, Q30, and GC contents of
the clean data were calculated. FaQC software (version 2.08) [44] was then used to cal-
culate the quality score, Q20, Q30 distribution, and GC distribution using the default
parameters: FaQCs—1 R1.clean.fastq—2 R2.clean.fastq—d.—qc_only. PCA of RNA−seq
data was carried out by OmicShare tools (http://www.omicshare.com/tools, accessed
on 15 September 2021). All downstream analyses were performed based on high-quality
clean data.

4.3. Read Mapping to the Reference Genome and Novel Transcript Prediction

The wheat reference genome (2.1 version) and gene model annotation files were directly
downloaded from the genome website (IWGSC RefSeq v2.1, http://www.wheatgenome.org/
Tools-and-Resources, accessed on 10 August 2021). The index of the reference genome
was built using HISAT2 (v2.0.5), and paired-end clean reads were aligned to the refer-
ence genome using Hisat2 (v2.0.5). Clean reads were mapped to IWGSC RefSeq v2.1 by
HISAT2 with the parameters “hisat2—x reference.genome.index—p 8—X 400—no-unal—
dta—1 input.R1.clean.fastq.gz—2 input.R2.clean.fastq.gz—S input.sam”, and the mapping
results of the reads were stored in a BAM file [45]. The mapped reads of each sample were
assembled using StringTie (vl.3.3b) using a reference-based approach [46]. StringTie uses a
novel network flow algorithm as well as an optional de novo assembly step to assemble and
quantitate full-length transcripts representing multiple splice variants for each gene locus.

http://www.omicshare.com/tools
http://www.wheatgenome.org/Tools-and-Resources
http://www.wheatgenome.org/Tools-and-Resources
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4.4. SNP Analysis

GATK [47] (v4.1.1.0) software was used to perform SNP calling. Raw VCF files were
filtered with the GATK standard filter method and the following parameters settings:
cluster, 3; window size, 35; QD < 2.0; FS > 30.0; and DP < 10. SnpEff (v4.3.1) software was
used for variant site annotation [48].

4.5. Quantification of Gene Expression Levels

FeatureCounts (vl.5.0-p3) [49] was used to count the number of reads mapped to
each gene. The FPKM value of each gene was then calculated based on the length of
the gene and the read count mapped to the gene. The FPKM value, representing the
expected number of fragments per kilobase of transcript sequence per millions of base
pairs sequenced, simultaneously considers the effect of the sequencing depth and gene
length on the read count; it is currently the most commonly used metric for estimating gene
expression levels [50,51].

4.6. Differential Expression Analysis (DEGs)

The differential expression analysis of three biological repeats per condition was per-
formed using the DESeq2 R package (v1.20.0) [51]. DESeq2 provides statistical routines for
determining differential expression from digital gene expression data using a model based
on the negative binomial distribution. The resulting p values were adjusted using Ben-
jamini and Hochberg’s approach for controlling the false discovery rate. Genes identified
by DESeq2 with an adjusted p value < 0.05 were assigned as differentially expressed.

4.7. GO Enrichment Analysis of Differentially Expressed Genes

The clusterProfiler R package was used for the Gene Ontology (GO) enrichment
analysis of differentially expressed genes [52], in which gene length bias was corrected.
GO terms with corrected p values less than 0.05 were considered significantly enriched by
differentially expressed genes.

4.8. Quantitative Real-Time PCR

NCBI-Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast, accessed
on 15 November 2022) was used to design gene-specific primers. Each experiment included
3 biological repeats. In the PCR system, each 20 µL reaction contained 10 µL of SYBR
Mix, 2 µL of cDNA, 0.8 µL of forward and reverse primers, and 7.2 µL of ddH2O. RT-
PCR amplification was performed in a Roche LightCycler 480 Real-Time System (Roche,
Switzerland). The PCR amplification steps were 95 ◦C for 60 s and then 40 cycles of 95 ◦C
for 5 s, 60 ◦C for 30 s, and 95 ◦C for 15 s. The 2 (-delta C (T)) method was used for the
relative gene expression analysis of DEGs with TaActin as the endogenous control [53].
Data are presented as the mean ± standard deviation.

5. Conclusions

This study revealed that ZM366 was more drought resistant than CM42; 16 key genes
that were responsive to drought stress were identified by RNA-seq and RT-qPCR, and
4 genes related to drought resistance were further functionally verified by mutant analysis
and RT-qPCR. This work provides data that will support studies on drought stress in wheat
and the mapping of wheat drought resistance genes, as well as the enrichment of wheat
drought genetic resources. In addition, a large number of SNPs and InDels were identified
in this study, which will contribute to the study of the origin, evolution, and genetic
diversity of wheat in the postgenomic era and will play an important role in enriching
wheat databases.

The next focus of our work will be to systematically study the 16 genes obtained in
this work. We will clone the key genes, verify their functions through overexpression,
gene editing, and other methods, and analyze the mechanism of the specific regulation of
drought tolerance by these genes via biochemical experiments.

https://www.ncbi.nlm.nih.gov/tools/primer-blast
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