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T.O.; Bent,a, G.; Grama, A.; Joosten,

L.A.B.; Rednic, S.; Pop, T.L. Detection

of Novel Biomarkers in Pediatric

Autoimmune Hepatitis by Proteomic

Profiling. Int. J. Mol. Sci. 2023, 24,

7479. https://doi.org/10.3390/

ijms24087479

Academic Editor: Cristian Turato

Received: 14 March 2023

Revised: 14 April 2023

Accepted: 16 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Detection of Novel Biomarkers in Pediatric Autoimmune
Hepatitis by Proteomic Profiling
Claudia Sîrbe 1,2 , Medeea Badii 3,4, Tania O. Crişan 3,4 , Gabriel Bent,a 1,2, Alina Grama 1,2,* ,
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Abstract: Autoimmune hepatitis (AIH) is characterized by immune-mediated hepatocyte injury
resulting in the destruction of liver cells, causing inflammation, liver failure, and fibrosis. Pediatric
(AIH) is an autoimmune inflammatory disease that usually requires immunosuppression for an
extended period. Frequent relapses after treatment discontinuation demonstrate that current therapies
do not control intrahepatic immune processes. This study describes targeted proteomic profiling
data in patients with AIH and controls. A total of 92 inflammatory and 92 cardiometabolic plasma
markers were assessed for (i) pediatric AIH versus controls, (ii) AIH type 1 versus type 2, (iii) AIH and
AIH–autoimmune sclerosing cholangitis overlapping syndrome and (iv) correlations with circulating
vitamin D levels in AIH. A total of 16 proteins showed a nominally significant differential abundance
in pediatric patients with AIH compared to controls. No clustering of AIH subphenotypes based on
all protein data was observed, and no significant correlation of vitamin D levels was observed for the
identified proteins. The proteins that showed variable expression include CA1, CA3, GAS6, FCGR2A,
4E-BP1 and CCL19, which may serve as potential biomarkers for patients with AIH. CX3CL1, CXCL10,
CCL23, CSF1 and CCL19 showed homology to one another and may be coexpressed in AIH. CXCL10
seems to be the central intermediary link for the listed proteins. These proteins were involved in
relevant mechanistic pathways for liver diseases and immune processes in AIH pathogenesis. This is
the first report on the proteomic profile of pediatric AIH. The identified markers could potentially
lead to new diagnostic and therapeutic tools. Nevertheless, considering the complex pathogenesis of
AIH, more extensive studies are warranted to replicate and validate the present study’s findings.

Keywords: autoimmune hepatitis; autoimmune sclerosing cholangitis; novel biomarkers; proteomic
profiling; immune tolerance; hepatic inflammation; liver fibrosis

1. Introduction

Autoimmune hepatitis (AIH) is characterized by immune-mediated hepatocyte in-
jury resulting in the destruction of liver cells, causing inflammation, liver failure, and
fibrosis [1]. (AIH) is characterized by a female preponderance [1], circulating autoanti-
bodies, hypergammaglobulinemia (IgG) and histological findings that describe a dense
lymphoplasmocytic infiltrate of the portal tract suggesting interface hepatitis [2–6]. Inter-
face hepatitis constitutes hepatocyte apoptosis [7–9] that can transform hepatocytes into
myofibroblasts, progressing to liver fibrosis [10,11]. The inflammatory infiltrate can expand
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into the liver parenchyma and form portal bridges with lobular collapse [12,13]. The clini-
cal severity, histological manifestations and disease outcome result from the outstanding
cellular and molecular disease mechanisms [4]. Autoimmune sclerosing cholangitis (ASC)
is a progressive liver disease characterized by intrahepatic and/or extrahepatic biliary tree
inflammation with elusive etiology, resulting in bile duct injury and liver fibrosis. The over-
lapping syndrome between AIH and ASC has been more frequently described in children
than adults since the increasing usage of noninvasive biliary imaging [14]. Autoantibodies
are the serologic hallmark of AIH. The presence of antinuclear antibody (ANA) and/or
antismooth muscle antibodies (SMA) indicates AIH type 1 (AIH-1), whereas antiliver kid-
ney microsomal antibody type one (LKM-1) and/or antiliver cytosol type one antibody
(LC-1) are attributed to AIH type 2 (AIH-2) [14]. Usually detected with routine immunoflu-
orescence testing, autoantibodies are not specific for AIH and can also be detected due to
molecular mimicry in a small percentage of patients with viral hepatitis [15], drug-induced
liver injury or other autoimmune disorders [16]. Therefore, specific biomarkers are further
needed for the diagnosis of AIH. In addition to the potential diagnostic application, novel
AIH autoantigens could also contribute to a better understanding of the pathogenesis of the
disease. Although various AIH target autoantigens have been discovered and described,
little is known about their pathogenetic role. Pathogenetic autoantibodies must be ex-
pressed on target cells, either on the plasma membrane or secreted by the cells. They should
be binding to the specific antigen to disturb a cellular function directly or indirectly [17].
These criteria are met by specific autoantibodies for cytochrome P450 2D6 (CYP2D6) or
Asialoglycoprotein receptor 1 (AGPR-1) or sulfated glycosaminoglycan, being both present
on the liver cell membrane [18].

Additionally, chemokines are small proteins present in the damaged tissue, which
can influence the immune and inflammatory cells’ migration to the liver and contribute to
hepatic fibrosis [19–29]. Chemokines induce chemotactic activity in injured hepatocytes,
hepatic stellate cells, endothelial cells and dendritic cells [30]. The chemokine receptors are
mostly found on the immune and inflammatory cells [30]. Effector cells of the same family
can attract various ligands that express the same receptor, enabling an excessive immune
response [22,30,31]. The chemokine ligands cited in immune-mediated liver diseases are
CXC motif chemokine ligands (CXCL) 9–10, 12 or 26. Chemokine differences could correlate
with inflammatory activity and disease severity and could be used as potential biomarkers
or therapeutic targets [11].

A significant increase in the number of proteomic studies in recent years has led
to essential data regarding the implication of proteins in autoimmune diseases, such as
osteoarthritis, rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, systemic
lupus erythematosus, systemic sclerosis and Sjogren’s syndrome [32].

Several studies identified candidate biomarkers for AIH with proteomics tools. For
example, patients with AIH-1 presented a heterogenous nuclear ribonucleoprotein A2/B1
(hnRNP-A2/B1) [33] and liver arginase, HSP60, HSP70, HSP90 and valosin-containing pro-
tein [34,35]. Fumarate hydratase and phosphoglycerate mutase isozyme B were described
in Chinese patients with AIH [36,37], and other autoantigens were mentioned in various
studies (IL4R, AL137145, LOC646100, C17orf99, METRNL, APCDD1L [17], lamin, histone,
cyclin A and U1RNP-A [38]).

Vitamin D intervenes in the etiopathogenesis of AIH by inhibiting the activation of
elevated levels of toll-like receptors (TLRs) -2, TLR-4 and TLR-9 [38]. Clinical studies
often describe the association between low vitamin D levels and increased severity of
interface hepatitis and liver fibrosis [39]. VDR and CTLA-4 alleles are involved in the
immune process of AIH [40]. The detection of low vitamin D levels in nonresponders to
glucocorticoid therapy has led to correlations between AIH and vitamin D as a possible
prognostic biomarker [39].

However, proteomic analysis has not previously been performed in pediatric patients
with AIH. To address this important research gap, the main objective of our study was
to identify whether patients with AIH differ in their inflammatory status by assessing
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their proteomic profile and levels of vitamin D. We assessed the serum markers using
two 92-target panels (Inflammation and Cardiometabolic panels, Olink, Uppsala, Sweden)
in patients with AIH and healthy control samples. Further, the aim of our study was to
identify the differences between patients. In this regard, we compared generated protein
profiles to obtain (i) a comparison between the types of AIH, (ii) a comparison between
AIH and overlapping syndrome AIH–ASC and (iii) correlations between AIH and vitamin
D as a possible prognostic biomarker. Our study is the first one to describe the serum
proteome profiles of patients with AIH. Subject to replication and validation, the identified
markers could potentially lead to new diagnostic and therapeutic tools.

2. Results
2.1. Clinical Cohort

The study groups included in the current study comprised 20 pediatric patients with
AIH and 19 healthy controls. Patients with concomitant liver diseases, drug-induced liver
injury, acute or chronic infections and those with de novo AIH who had undergone liver
transplantation were excluded. Table 1 depicts the patients’ clinical and serological features.
The controls were age- and sex-matched patients with no acute or chronic liver diseases and
no acute or chronic infections with no systemic autoimmune diseases (Figure 1a,b). The
median level of the total vitamin D in the patients with AIH was 15 ng/mL (Interquartile
range IQR, 9–22 ng/mL), and it was significantly lower in the serum samples from the
patients with AIH than from the age- and sex-matched healthy controls (15 ng/mL vs.
47 ng/mL, p < 0.0001) (Figure 1c). Alanine transaminase, alkaline phosphatase, gamma-
glutamyl transpeptidase and total bilirubin levels were significantly negatively correlated
with vitamin D levels, while no association was observed between serum vitamin D levels
and aspartate transferase, albumin, γ-Globulin levels and platelet count (Table 2).

Table 1. Clinical and serological features of patients with AIH tested for autoantibodies.

Characteristics AIH (n = 20)

Age (median; range) (yr) 9.95; 2.5–15.8
Sex (male/female) 5/15

ALT (U/L; median; range) 251.5; 104–2988
AST (U/L; median; range) 184.5; 110–2441
ALP (U/L; median; range) 291.5; 86–1620
GGT (U/L; median; range) 74.5; 6–574
TB (mg/dL; median; range) 1.28; 0.3–6.5

γ-Globulin (g/L; median; range) 1902; 467–2553
ALB (g/dL; median; range) 4.3; 3–4.9

PLT (×104/µL; median; range) 27; 12–57
ANA Positive (%) 85%
SMA Positive (%) 25%

LKM-1 Positive (%) 10%
Lc-1 Positive (%) 10%

Anti-SLA positive (%) 5%
Abbreviations: AIH, autoimmune hepatitis; ALT, alanine transaminase; AST, aspartate transferase; ALP, alkaline
phosphatase; GGT, gamma-glutamyl transpeptidase; TB, total bilirubin; ALB, albumin; PLT, platelet count; ANA,
antinuclear antibody; LKM-1, liver kidney microsomal type 1 antibody; Lc-1, antibodies to liver cytosol antigen
type 1; SMA, antismooth muscle antibody with anti-actin cable specificity; SLA, soluble liver antigen.
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Table 2. Relationship between vitamin D and laboratory parameters in patients with AIH. 

Variable 
Vitamin D 
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Abbreviations: ALT, alanine transaminase; AST, aspartate transferase; ALP, alkaline phosphatase; 
GGT, gamma-glutamyl transpeptidase; TB, total bilirubin; ALB, albumin; PLT, platelet count; r, 
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Figure 1. Baseline characteristics of patients. (a) Schematic representation for data collection (healthy
controls in blue and patients with AIH in red). (b) Age in all patients included in the study. (c) Vitamin
D in serum. Each dot represents measurements from one patient; unpaired t-test with data presented
as the mean with SEM, p < 0.0001 (****).

Table 2. Relationship between vitamin D and laboratory parameters in patients with AIH.

Variable
Vitamin D

r p

ALT (U/L) −0.5117 0.0211 *
AST (U/L) −0.4331 0.0564
ALP (U/L) −0.6470 0.0020 *
GGT (U/L) −0.5291 0.0164 *
TB (mg/dL) −0.4855 0.0300 *

γ-Globulin (g/L) 0.1595 0.5018
ALB (g/dL) 0.4144 0.0693

PLT (×104/µL) 0.2796 0.2325
Abbreviations: ALT, alanine transaminase; AST, aspartate transferase; ALP, alkaline phosphatase; GGT, gamma-
glutamyl transpeptidase; TB, total bilirubin; ALB, albumin; PLT, platelet count; r, Spearman correlation coefficient;
* p value of <0.05 was considered significant.

2.2. Targeted Proteome Profiling

Principal component analysis (PCA) of the remaining 18 healthy controls and 18 pa-
tients is shown in Figure 2 for the Cardiometabolic panel and Figure 3 for the Inflammation
panel. No clear separation of patients and controls was observed when considering all pro-
teins. However, two patients with AIH were significantly distinct from the rest of the group
on PC2 and PC3 consistently between the two proteome panels. These samples correspond
to two patients with AIH presenting with decompensated cirrhosis. The remaining patients
were in remission, and the serum samples were collected during follow-up.
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that accounted for each principal component is shown in brackets along the x and y axis label.
(a) PC1–PC2; (b) PC2–PC3.
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Figure 3. Principal component analysis (PCA) plots of the AIH and control cohort samples in the
Inflammation panel. The samples are colored according to the group. The percentage of variation
that accounted for each principal component is shown in brackets along the x and y axis label.
(a) PC1–PC2; (b) PC2–PC3.

2.3. Comparison of Protein Abundance in Patients with AIH and Controls

In order to assess differentially expressed serum markers in the patients with AIH
compared to the controls, protein abundance was compared between the healthy controls
and patients with AIH using group t-test analysis. Nominally significant differences
in protein abundance were identified, such as CA1, CA3, GAS6, FCGR2A, TIMD4 and
EFEMP1, in the Cardiometabolic panel (Figure 4a) or 4E-BP1, CCL19, CSF-1, CX3CL1,
CCL23, IL-18R1, IL-10RB, OPG, CXCL10 and CDCP1 in the Inflammation panel (Figure 4b).
However, these differences did not reach statistical significance at a p-adjusted level. The
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two proteome panels’ top candidate proteins that were down-regulated or up-regulated
are also individually depicted in Figure 5.
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Figure 5. Levels of serum proinflammatory markers in patients with AIH (red) and controls (blue).
Boxplots of up-regulated (GAS 6, FCGR2A, CXCL10 and CCL19) and down-regulated proteins (CA1,
CA3 and 4E-BP1) in the (a) Cardiometabolic and (b) Inflammation panels. Un-paired t-test with
corresponding p values are shown on plots for each protein.
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2.4. Comparison of Proteome Profiles between AIH Subphenotypes

Next, we assessed whether proteome profiles could discriminate between subpheno-
types of pediatric AIH. We analyzed all protein data within the group to assess clustering
based on AIH type 1 (AIH-1) (twelve patients) or type 2 (AIH-2) (six patients). The results
suggest that the samples are rather heterogeneous and do not provide a clear clustering
by type of AIH (Figure 6). We also compared the proteome profiles in patients with AIH
(ten patients) and with overlap ASC (eight patients), and the results did not show the
clustering of samples based on these conditions (Figure 6).
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and blue indicating down-regulated proteins.

2.5. Correlations between AIH and Vitamin D

Since vitamin D deficiency is a well-known feature in AIH [39], and vitamin D is also
known to exert potent immunomodulatory roles [40–42], we also assessed the association
of serum vitamin D levels with the differentially expressed proteins in the AIH group
identified in the Cardiometabolic panel (CA1, CA3, GAS6, FCGR2A, TIMD4, EFEMP1)
and Inflammation panel (4E-BP1, CCL19, CSF-1, CX3CL1, CCL23, IL-18R1, IL-10RB, OPG,
CXCL10). No clear correlations were observed between these proteins and circulating
vitamin D (Figure 7a,b).
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3. Discussion

An important step towards improving the management of AIH is to contribute to a
better understanding of disease etiopathogenesis. Without early and adequate treatment,
the chronic process of AIH can advance to cirrhosis and liver failure, significantly impairing
the quality of life. Approximately one-third of adult and one-half of pediatric patients
present cirrhosis at diagnosis [43]. To avoid the final stage of disease complications, early
diagnosis is necessary to properly assess the risk factors of illness progression. Lack of the
means for early diagnosis is the present problem in preventing disease complications.

We applied proteome analysis to blood specimens of pediatric patients with AIH
and healthy controls. PCA on proteome data did not reveal sample segregation based
on case or control status. Nevertheless, we found 16 proteins that showed nominally
significant differential expression in the circulation of patients with AIH, namely CA1,
CA3, GAS6, FCGR2A, TIMD4, EFEMP1, CSF-1, CX3CL1, CCL23, IL-18R1, IL-10RB, OPG,
4E-BP1, CXCL10 and CCL19. These proteins were differently expressed among patients
with AIH and controls with up-regulated proteins (GAS 6, FCGR2A, CXCL10 and CCL19)
and down-regulated proteins (CA1, CA3 and 4E-BP1). Based on the observed patterns,
these identified proteins could be potential new biomarkers for AIH.

However, these proteomic profiles did not differentiate patients based on type 1 or
type 2, AIH, or based on AIH vs. AIH–ASC. This relatively small number of differentially
expressed proteins and the slight difference between disease subphenotypes could be due
to several limitations: a relatively small sample size, sample heterogeneity and the fact that
most serum samples were collected from patients with AIH after the initiation of therapy
at follow-up after years of the controlled disease.

The advent of affinity-based proteomic technologies highlights the importance of
biomarker discovery [44]. The PEA developed with Olink Proteomics has received increas-
ing attention and surpassed the studies presenting MS-based approaches. The magnitude
of highly specific antibodies and primers places substantial sensitivity and specificity for
assays in biological samples [45]. The essence of the precision of PEA has been used in the
pathogenesis of liver diseases. This proteomic analysis has not been performed before in
pediatric patients with AIH.

There is limited information regarding PEA in AIH in other studies, most of them
experimental studies. One study tested if complexed IL-2/anti-IL-2 in mice could increase
the selectivity for intrahepatic regulatory T cells (Tregs) in the late course of AIH with
the Olink mouse exploratory panel. Complexed IL-2/anti-IL-2 managed to stabilize the
numbers of Tregs and intrahepatic effector T cells (Teffs) within the liver, resulting in AIH
improvement [46]. The same Olink panel was used in splenectomized mice followed by
induction of AIH. Splenectomized mice presented more severe portal inflammation. The
results indicated that the spleen does not contribute to AIH induction, and splenectomy
interrupts the immune regulation by increasing IL-17, IL-23 receptors and caspase 3 that
generate liver inflammation and apoptosis [47]. Furthermore, the same authors treated the
experimental murine with anti-CD20 during the late stage of AIH. The results suggested
that anti-CD20 therapy solely is ineffective in AIH [48].

Moreover, Olink proteome profiling was used in several liver diseases. One study
identified the inflammatory modulator STAT3 and the E2 component of the mitochondrial
pyruvate dehydrogenase complex (PDC-E2) in cholangiocytes and hepatocytes. Both pro-
teins presented higher expression in cirrhotic primary biliary cholangitis (PBC) livers [49].
One study that included subjects with PBC from the UK Biobank discovered nineteen
proteins with significant expression even in patients treated with ursodeoxycholic acid. Six
proteins were tightly linked to chemokines, including C-C motif chemokine 20 (CCL20) [50].
The PEA technology was also used in multiple studies to describe the proteomic profile in
viral hepatitis. Various inflammatory protein biomarkers were described in patients with
liver transplants and active HCV infection, such as C-X-C motif chemokine 10 (CXCL10),
CXCL11, C-C motif chemokine 19 (CCL19), CCL20, interferon γ, interleukin (IL) -18R1
and tumor necrosis factor-β [51]. The same chemokines were mentioned in patients with
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hepatitis C before and during treatment with glecaprevir/pibrentasvir (GLE/PIB) +/−
ribavirin [52] and treatment with ledipasvir/sofosbuvir [53]. One large study analyzed the
levels of 4907 plasma proteins in 35,559 Icelanders and 1459 proteins in 47,151 UK Biobank
participants to identify proteins involved in nonalcoholic fatty liver disease (NAFLD) with
Olink proteome profiling. The results led to eighteen sequence variants associated with
NAFL and four with cirrhosis, meaning that proteomics can differentiate between NAFL
and cirrhosis [54].

In our study, the differently expressed proteins among the patients with AIH and
controls (GAS 6, FCGR2A, CXCL10, CCL19, CA1, CA3 and 4E-BP1) are described in
multiple liver diseases with proteomic analysis that uses different technologies, such as two-
dimensional gel electrophoresis (2-DE), image analysis and mass spectrometry (MS). GAS6
protein was up-regulated in our patients with AIH. The TAM (Tyro3, AXL, Mer) receptor
ligand GAS6 is primarily expressed by Kupffer cells and is a vitamin K-dependent protein
with a high affinity for the AXL receptor [55–57]. The GAS6/AXL pathway promotes
HSC activation and could attenuate hepatic fibrosis [55]. Clinical trials have demonstrated
elevated GAS6 and AXL levels in patients with chronic hepatitis C (HCV) and acute liver
disease (ALD) [55]. One recent prospective study including 154 patients undergoing liver
resection evaluated soluble AXL (sAXL) and GAS6 in the immediate perioperative and
postoperative periods. The GAS6/AXL pathway was expressed in the case of underlying
liver disease, and its inhibition appeared after the induction of liver regeneration, resulting
in immune activation [58]. Their implication in autoimmune phenotypes is underlined by
an experimental study on mice knockout for all three TAM receptors (TAM triple knockout;
TAM TKO) that developed a spontaneous liver disease that resembles AIH [59]. The
association between GAS6 and liver fibrosis and autoimmune phenotypes could explain
the difference between the AIH cohort and controls regarding GAS6 expression.

Another up-regulated protein in our patients with AIH is FCGR2A, which presents
low-affinity Fcγ receptors (FCGRs) that intervene in immunoglobulin G (IgG) antibody
effects on leukocytes. FCGRs are involved in phagocytosis, recruitment to inflammatory
lesions, antibody-dependent cellular cytotoxicity, regulation of B-cell activation and release
of inflammatory mediators [60]. When inappropriately activated, the same mechanism also
results in the development of autoimmune diseases [61]. The Fc receptor locus presents
marked genetic variability, leading to an increased risk of developing autoimmune diseases
and impacting the defense against infection [62–67]. Only one clinical study has genotyped
FcγRIIA, FcγRIIB and four Fc receptor-like gene 3 (FCRL3) polymorphisms in 87 Japanese
patients with type 1 AIH and matched controls. Still, they observed no difference in the
distribution of the genotypes between patients and controls, suggesting that type 1 AIH
was not influenced by FcγRIIA, FcγRIIB or FCRL3 polymorphisms [68]. There is scarce
information regarding the role of FCGR2A in AIH, and further research is needed for
this association. In light of those mentioned above, the overexpression of FCGR2A in our
patients with AIH renders it an interesting target for future studies.

CCL19 is a proinflammatory human chemokine protein of the intercrine beta family
[Cystein–Cysteine Chemokine] [69–71], and it is up-regulated in patients with AIH versus
controls. This chemokine plays an important role in autoimmune diseases and chronic
inflammatory disorders [72,73]. The CCR7/CCL19/CCL21 axis establishes interactions
between antigen-presenting cells (APCs) and antigen-specific lymphocytes, representing a
key process in adaptive immune system function [74]. Neo-lymphoid follicles expressing
CCL19 and CCL21 are encountered in chronic inflammatory liver diseases, such as PBC,
PSC and chronic hepatitis C [75]. They are involved in liver lymphocyte recruitment
and maintaining the chronic inflammatory infiltrate [76]. Some studies link CCL19 with
inflammation in autoimmune diseases, but there is limited information regarding its role
in AIH. Targeting the CCL19/CCR7 complex, necessary for lymphocyte trafficking and
also overexpressed in our AIH cohort, could represent a novel anti-inflammatory drug
discovery approach [69].



Int. J. Mol. Sci. 2023, 24, 7479 11 of 17

CXCL10 was up-regulated in our patients with AIH versus the controls. Elevated
serum levels of CXCL10 are described in patients with AIH in correspondence with liver
inflammation, primary biliary cirrhosis (PBC), chronic viral hepatitis [77], mixed cryo-
globulinemia and autoimmune thyroiditis [78]. CXCL10 was proposed as a biomarker
in progressive fibrosis in African-American patients with chronic hepatitis C [79], and
its levels were inversely correlated with the prognosis of interferon therapy [80]. Being
present in various inflammatory liver diseases, CXCL10 could be an important therapeutic
agent [27,30].

Bile duct epithelium contains an important amount of carbonic anhydrase. Antibod-
ies to this enzyme are disease-specific markers of injury to the biliary epithelium, often
encountered in autoimmune disorders [81]. Patients with ASC are different from patients
with PBC by presenting more elevated serum levels of aspartate transaminase (AST) and
lower serum levels of immunoglobulin M [82], and they are also characterized by the
presence of antibodies to carbonic anhydrase in serum more often than patients with PBC
or AIH [81,83]. CA1 and CA3 proteins were found to be down-regulated in our patients
with AIH, and CA3 was described in various systemic autoimmune diseases [84]. Even
though carbonic anhydrase is abundant in bile duct epithelium, the role of CA1 and CA3
in AIH is not known and has not been described in detail.

There is scarce information regarding the role of 4E-BP1 in AIH, and in our study, the
levels of 4E-BP1 were lower in the patients with AIH compared to the healthy controls.
In experimental studies, 4E-BP protein synthesis is promoted by the mechanistic target
of rapamycin complex 1 (mTORC1), which is involved in regulating cell growth and
metabolism [85]. The mechanistic target of rapamycin (mTOR) participates in autophagy
regulation that can be involved in liver injury [86]. mTOR plays a key role in innate
and adaptive immune responses [87]. Phosphatidylinositol 3 Kinase PI3K/AKT/mTOR-
mediated autophagy was demonstrated to play a role in reversing liver fibrosis [86].

The prevalence of AIH has been rising in the past two decades, especially in young
patients under 20 years old and in patients with ages between 50 and 69 years [88]. AIH
has typical serological and genetic characteristics regarding each age group [89]. It would
be of great interest to compare the proteomic analysis among pediatric, adult and elderly
patients with AIH. There are several studies that enrolled adult patients with AIH and
have identified candidate biomarkers for AIH with proteomics tools. One study identified
heterogenous nuclear ribonucleoprotein A2/B1 (hnRNP-A2/B1) [33], liver arginase, HSP60,
HSP70, HSP90 and valosin-containing protein [34,35] in adult patients with AIH-1. Other
autoantigens are mentioned in various studies, which include adult patients with AIH,
such as fumarate hydratase and phosphoglycerate mutase isozyme B [36,37], and IL4R,
AL137145, LOC646100, C17orf99, METRNL, APCDD1L [17], lamin, histone, cyclin A
and U1RNP-A [38]. Based on the proteins that showed nominally significant differential
expression in the circulation of our pediatric patients with AIH, some were different from
those cited in studies that included adult AIH, and some were described in other chronic
liver diseases as mentioned above. Further research could provide more insight regarding
the differences between age groups.

In the present study, the patients with AIH presented 25(OH)D deficiency compared to
the controls. Analyzing the expressed proteins and the serum level of vitamin D, we found
no significant correlations in both Olink panels. The small number of pediatric patients
with AIH could be the cause of these results.

Vitamin D deficiency is frequently encountered in AIH [39,40,90,91]. In AIH, an
increased number of monocytes express a high level of regulated intracellular toll-like
receptors (TLRs). Vitamin D inhibits TLR-2, TLR-4 and TLR-9 activation [39,92]. The
non-genomic role of vitamin D in AIH comprises the up-regulation of the phosphatase
1 mitogen-activated protein kinase (MAPK) signaling pathways, controlling cytokine
production. 25(OH)D inhibits Gamma delta (γδ) T cells, a small subset of T cells described in
proinflammatory reactions [92,93]. 25(OH)D intervenes against oxidative injuries resulting
in nitrite production, decreases lipid peroxidation and stimulates the hepatic antioxidant
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system [92,93]. Clinical trials often describe the association between decreased levels of
25(OH)D and increased severity of interface hepatitis and important liver fibrosis [94,95].
Some VDR and CTLA4 variants are involved in developing the immune process as part
of AIH pathogenesis. The genotype variants are connected to fatty acid synthase (FAS)
promoter variants or other TNF superfamily proinflammatory cytokines. This mechanism
presents great potential in discovering disease-specific liver fibrosis [96,97]. Decreased
circulating levels of 25(OH)D are reported in 81% of Turkish patients with AIH compared
to healthy individuals. These patients are also more often nonresponders to glucocorticoid
therapy than patients with AIH without 25(OH)D deficiency [94]. In this regard, 25(OH)D
deficiency has been proposed as a prognostic biomarker in AIH [94,95].

In summary, in this pilot study, we describe for the first time the proteomic profile of
pediatric AIH compared to controls. We show differences in circulating levels of proteins
that, based on existing literature, are relevant to AIH pathogenesis. Future studies in larger
cohorts and newly diagnosed patients are warranted to validate the findings revealed by
the current study and assess the performance of these biomarkers in the diagnosis of AIH.
Despite the current treatments (prednisone and azathioprine) and the immunosuppressive
response of these drugs, little is mentioned about the metabolic reactions that occur in vivo,
which intervene with the autoimmune response and inflammation. Further research into
this interaction could deliver a new perspective on the pathogenesis of autoimmune liver
diseases and novel therapeutic agents. Our data further show the serological heterogeneity
in pediatric AIH and propose a variety of mechanisms underlying AIH. Identifying new
specific autoantigens in AIH may influence characterizations of the autoimmune responses
and explorations of their pathogenic role. Further investigations of autoantibodies in
pediatric AIH may decide their value for diagnosis and gain insight into the pathogenesis
in pediatric AIH.

4. Materials and Methods
4.1. Patients

We enrolled 39 participants, pediatric AIH (n = 20) and controls (n = 19). Pediatric
patients fulfilled the diagnostic simplified criteria for AIH defined by the International Au-
toimmune Hepatitis Group [98]. The patients included in our study were enrolled between
February 2021 and March 2022. The simplified AIH scoring system includes the presence of
autoantibodies, immunoglobulin G, histology and exclusion of viral hepatitis [99]. AIH-1
was defined by the presence of ASMA and/or ANA and AIH-2 by the presence of LKM-1 or
LC-1 antibodies. Patients with de novo AIH occurring after liver transplant (LT) and other
concomitant liver diseases (viral, metabolic, Wilson’s disease, toxic causes) were excluded.
Based on the simplified AIH criteria [98], 7 patients had a score of ≥7 (definite AIH), and
13 patients had a score of ≥6 (probable AIH). Acute liver failure was defined as an INR
(international normalized ratio) >2 and encephalopathy within 8 weeks of diagnosis. The
overlap syndrome of AIH and sclerosing cholangitis (AIH–SC) was defined by typical
cholangio-magnetic resonance imaging (cholangio-RM) features. Cirrhotic AIH was de-
fined based on laboratory analysis and liver stiffness on transient elastography (FibroScan,
Echosens, Paris, France), equivalent to stage F4 METAVIR. Remission was defined as the
normalization of aminotransferase and IgG levels. All patients were started on steroids
with the addition of a second agent depending on the response to steroids. Azathioprine
metabolite monitoring was not universally performed. Children were categorized as AIH-1
versus AIH-2, acute liver failure versus cirrhotic AIH and overlap sclerosing cholangitis ver-
sus nonoverlap. Controls were obtained from age- and sex-matched patients with no acute
or chronic liver diseases or systemic autoimmune diseases. We provided ranges for the me-
dian values and standard deviations for the mean values. The Institutional Review Board
approved the study protocol, and all participants provided informed voluntary consent.
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4.2. Sample Processing and Protein Detection

Serum samples were collected from the 39 participants and stored at −80 ◦C until
shipment. The serum samples were shipped for protein profiling to Radboud University
Medical Center, Nijmegen, The Netherlands, using cold chains. A total of 184 proteins
were measured in the serum using the Olink Cardiometabolic and Inflammation panels
(92 proteins each) (Olink, Uppsala, Sweden). Proteins were quantified with the proximity
extension assay (PEA). Data were reported in Normalized Protein eXpression values (NPX),
which are calculated on a log2 scale [100]. One sample attributed to one patient in the
Inflammation panel was flagged as “Warning” by Olink and was further excluded from the
analysis. The analysis within the Inflammation panel was performed on 19 patients with
AIH and 19 controls. Regarding the Cardiometabolic panel, two samples, one patient and
one control, fell outside +/−3 standard deviations from the mean IQR and +/−3 standard
deviations from the mean sample median with the olink_qc_plot function in the Olink®

Analyze library and were considered outliers and, therefore, removed from further analysis.
Subsequent analysis within the Cardiometabolic panel was carried out in the remaining
19 patients and 18 control samples. Several proteins in both panels measured at or below
the lower limit of detection (LLOD) in more than 50% of the samples were filtered to be
removed from further analyses. For the remainder of the proteins, levels measured at or
below LLOD were used as such. Seventy-eight proteins from the Cardiometabolic panel
and 63 from the Inflammation panel further proceeded into unsupervised learning and
differential expression analyses. After sample QC, two patient samples and one control
were excluded from further analysis. Data were intensity normalized (v.2) before analysis.

4.3. Statistical Analysis

To observe patterns in our data set, we used principal component analysis (PCA).
Heatmaps were also used to visualize clusters of samples or features. The significance
of the difference between healthy controls and patients with AIH across the entire set
of serum proteomics readouts was assessed using the olink_ttest function in the Olink®

Analyze library in R, which performs a Welch 2-sample t-test at a confidence level of 0.95
for every protein using the function t.test from the R library stats and corrects for multiple
testing using the Benjamini–Hochberg method (“FDR”) using the function p.adjust from
the R library stats. A group t-test was performed on AIH–Control. Box plots were used
to visualize the distribution and difference between healthy controls and patients with
AIH for a given targeted protein. Associations between serum protein levels measured by
Olink and vitamin D for the AIH-Control differentially expressed proteins were evaluated
with Pearson correlation. Unsupervised learning and differential expression analyses were
performed in R using Olink® Analyze. R version: R 4.2.1 with RStudio (R Core Team (2023).
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria) as an IDE for R. Base packages: Olink® Analyze, xlsx, stats,
dplyr, ggplot2, cowplot. Running under Windows 10 x64, 22H2 (build 19045).
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