Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes
Abstract
:1. Introduction
2. Results
2.1. Distribution of DAxud1 over the Drosophila Melanogaster Genome
2.2. Potential DAxud1 DNA Binding Motifs and Their Role in Regulatory Genomic Regions
2.3. DAxud1 Knockdown Induces Increased Expression of Hsp70, Hsp67, and Hsp26, Whose Effect in Adults Is Greater Survival and Less Resistance to Heat Stress
2.4. DAxud1 Is Detected by ChIP in the Promoter of Hsp70, and Heat Shock Reduces Its Binding in Those Regions
2.5. Changes in DAxud1 Levels Affect the Status and Positioning of RNA Polymerase II, Suggesting a Repressive Role
3. Discussion
3.1. Role of DAxud1 in Tissue Homeostasis through Hsp Regulation
3.2. How Does DAxud1 Exert Its Repressive Effect?
4. Materials and Methods
4.1. Fly Stocks
4.2. DAxud1 TaDa-Seq
4.3. Chromatin Immunoprecipitatin (ChIP-PCR)
4.4. RNA Extraction and qPCR
4.5. Lifespan Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia 2000, 2, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Rué, P.; Martinez Arias, A. Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol. 2015, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Hipfner, D.R.; Cohen, S.M. Connecting proliferation and apoptosis in development and disease. Nat. Rev. Mol. Cell Biol. 2004, 5, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Bunch, H. RNA polymerase II pausing and transcriptional regulation of the HSP70 expression. Eur. J. Cell Biol. 2017, 96, 739–745. [Google Scholar] [CrossRef]
- Richter, K.; Haslbeck, M.; Buchner, J. The Heat Shock Response: Life on the Verge of Death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef]
- Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 2018, 19, 2560. [Google Scholar] [CrossRef]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670–684. [Google Scholar] [CrossRef]
- Lebedeva, L.A.; Nabirochkina, E.N.; Kurshakova, M.M.; Robert, F.; Krasnov, A.N.; Evgen’ev, M.B.; Kadonaga, J.T.; Georgieva, S.G.; Tora, L. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc. Natl. Acad. Sci. USA 2005, 102, 18087–18092. [Google Scholar] [CrossRef]
- Janowska, M.K.; Baughman, H.E.R.; Woods, C.N.; Klevit, R.E. Mechanisms of small heat shock proteins. Cold Spring Harb. Perspect. Biol. 2019, 11, a034025. [Google Scholar] [CrossRef]
- O’Brien, T.; Lis, J.T.; Brien, T.O.; O’Brien, T.; Lis, J.T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 1993, 13, 3456–3463. [Google Scholar] [CrossRef]
- Gabai, V.L.; Meriin, A.B.; Yaglom, J.A.; Volloch, V.Z.; Sherman, M.Y. Role of Hsp70 in regulation of stress-kinase JNK: Implications in apoptosis and aging. FEBS Lett. 1998, 438, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Feder, M.E.; Kang, L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 2018, 27, 3040–3054. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.E. The HSP70 family and cancer. Carcinogenesis 2013, 34, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lan, T.; Xiao, H.; Chen, Z.H.; Wei, C.; Chen, L.F.; Guan, J.F.; Yuan, R.F.; Yu, X.; Hu, Z.G.; et al. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int. 2021, 21, 286. [Google Scholar] [CrossRef]
- Jagadish, N.; Agarwal, S.; Gupta, N.; Fatima, R.; Devi, S.; Kumar, V.; Suri, V.V.; Kumar, R.; Suri, V.V.; Sadasukhi, T.C.; et al. Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer. J. Exp. Clin. Cancer Res. 2016, 35, 150. [Google Scholar] [CrossRef]
- Sherman, M.Y.; Gabai, V.L. Hsp70 in cancer: Back to the future. Oncogene 2015, 34, 4153–4161. [Google Scholar] [CrossRef]
- Cramer, P. Organization and regulation of gene transcription. Nature 2019, 573, 45–54. [Google Scholar] [CrossRef]
- Reynolds, N.; O’Shaughnessy, A.; Hendrich, B. Transcriptional repressors: Multifaceted regulators of gene expression. Development 2013, 140, 505–512. [Google Scholar] [CrossRef]
- Mittal, S.; Rajala, M.S. Heat shock proteins as biomarkers of lung cancer. Cancer Biol. Ther. 2020, 21, 477–485. [Google Scholar] [CrossRef]
- Feder, J.H.; Rossi, J.M.; Solomon, J.; Solomon, N.; Lindquist, S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev. 1992, 6, 1402–1413. [Google Scholar] [CrossRef]
- Ishiguro, H.; Tsunoda, T.; Tanaka, T.; Fujii, Y.; Nakamura, Y.; Furukawa, Y. Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney. Oncogene 2001, 20, 5062–5066. [Google Scholar] [CrossRef] [PubMed]
- Gingras, S.; Pelletier, S.; Boyd, K.; Ihle, J.N. Characterization of a family of novel cysteine-serine-rich nuclear proteins (CSRNP). PLoS ONE 2007, 2, e808. [Google Scholar] [CrossRef] [PubMed]
- Feijóo, C.G.; Sarrazin, A.F.; Allende, M.L.; Glavic, A. Cystein-serine-rich nuclear protein 1, Axud1/Csrnp1, is essential for cephalic neural progenitor proliferation and survival in zebrafish. Dev. Dyn. 2009, 238, 2034–2043. [Google Scholar] [CrossRef] [PubMed]
- Glavic, A.; Molnar, C.; Cotoras, D.; de Celis, J.F. Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mech. Dev. 2008, 126, 184–197. [Google Scholar] [CrossRef]
- Simões-costa, M.; Stone, M.; Bronner, M.E. Axud1 integrates Wnt signaling and transcriptional inputs to drive neural crest formation. Dev. Cell 2015, 34, 544–554. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, H.; Ze, Y.; Su, J.; Li, B.; Sheng, L.; Zhu, L.; Guan, N.; Gui, S.; Sang, X.; et al. Gene-expression changes in cerium chloride-induced injury of mouse hippocampus. PLoS ONE 2013, 8, e60092. [Google Scholar] [CrossRef]
- Yi, X.; Bekeredjian, R.; DeFilippis, N.J.; Siddiquee, Z.; Fernandez, E.; Shohet, R. V Transcriptional analysis of doxorubicin-induced cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1098–H1102. [Google Scholar] [CrossRef]
- McDermott, J.E.; Vartanian, K.B.; Mitchell, H.; Stevens, S.L.; Sanfilippo, A.; Stenzel-Poore, M.P. Identification and validation of ifit1 as an important innate immune bottleneck. PLoS ONE 2012, 7, e36465. [Google Scholar] [CrossRef]
- Diercke, K.; Kohl, A.; Lux, C.J.; Erber, R. Compression of human primary cementoblasts leads to apoptosis A possible cause of dental root resorption? Kompression führt in primären humanen Zementoblasten zur Apoptose Eine mögliche Ursache für Wurzelresorptionen. J. Orofac. Orthop. 2014, 75, 430–445. [Google Scholar] [CrossRef]
- Rundqvist, H.C.; Montelius, A.; Osterlund, T.; Norman, B.; Esbjornsson, M.; Jansson, E. Acute sprint exercise transcriptome in human skeletal muscle. PLoS ONE 2019, 14, e0223024. [Google Scholar] [CrossRef]
- Aughey, G.N.; Southall, T.D. Dam it’s good! DamID profiling of protein-DNA interactions. Wiley Interdiscip. Rev. Dev. Biol. 2016, 5, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Southall, T.D.; Gold, K.S.; Egger, B.; Davidson, C.M.; Caygill, E.E.; Marshall, O.J.; Brand, A.H. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: Assaying RNA Pol II occupancy in neural stem cells. Dev. Cell 2013, 26, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Marshall, O.J.; Brand, A.H. Damidseq-pipeline: An automated pipeline for processing DamID sequencing datasets. Bioinformatics 2015, 31, 3371–3373. [Google Scholar] [CrossRef] [PubMed]
- La Marca, J.E.; Richardson, H.E. Two-Faced: Roles of JNK Signalling During Tumourigenesis in the Drosophila Model. Front. Cell Dev. Biol. 2020, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Germann, S.; Juul-Jensen, T.; Letarnec, B.; Gaudin, V. DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J. 2006, 48, 153–163. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Korb, K.; Katsikogianni, E.; Zingler, S.; Daum, E.; Lux, C.J.; Hohenstein, A.; Erber, R. Inhibition of AXUD1 attenuates compression-dependent apoptosis of cementoblasts. Clin. Oral Investig. 2016, 20, 2333–2341. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Lu, J.; Li, X.; Chen, X.; Tao, D.; Huang, W.; Huang, B. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J. Exp. Biol. 2005, 208, 697–705. [Google Scholar] [CrossRef]
- Morris, D.P.; Michelotti, G.A.; Schwinn, D.A. Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J. Biol. Chem. 2005, 280, 31368–31377. [Google Scholar] [CrossRef]
- Sørensen, J.G.; Loeschcke, V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol. 2001, 47, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Ribeil, J.-A.; Zermati, Y.; Vandekerckhove, J.; Cathelin, S.; Kersual, J.; Dussiot, M.; Coulon, S.; Moura, I.C.; Zeuner, A.; Kirkegaard-Sørensen, T.; et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 2007, 445, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Serras, F.; Martín-Blanco, E.; Baguñà, J. JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev. Biol. 2005, 280, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, R.; Soba, P.; Jan, Y.N. JNK signaling coordinates with ecdysone signaling to promote pruning of Drosophila sensory neuron dendrites. Development 2019, 146, dev163592. [Google Scholar] [CrossRef] [PubMed]
- Bergantiños, C.; Corominas, M.; Serras, F. Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 2010, 137, 1169–1179. [Google Scholar] [CrossRef]
- Klepsatel, P.; Gáliková, M.; Xu, Y.; Kühnlein, R.P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 2016, 6, srep33667. [Google Scholar] [CrossRef]
- Krebs, R.A.; Feder, M.E. Deleterious consequences of Hsp70 overexpression in Drosphilla melanogaster larvae. Cell Stress Chaperones 1997, 2, 60. [Google Scholar] [CrossRef]
- Wang, K.; Ling, T.; Wu, H.; Zhang, J. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation of the methylation of gene promoters in oral squamous cell carcinoma. Oncol. Rep. 2013, 29, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Kobelyatskaya, A.; Pudova, E.; Fedorova, M.; Nyushko, K.; Alekseev, B.; Kaprin, A.; Trofimov, D.; Sukhikh, G.; Snezhkina, A.; Krasnov, G.; et al. Differentially methylated CpG sites associated with the high-risk group of prostate cancer. J. Integr. Bioinform. 2021, 17, 20200031. [Google Scholar] [CrossRef]
- Kumar, S.; Gurshaney, S.; Adagunodo, Y.; Gage, E.; Qadri, S.; Sharma, M.; Malik, S.; Manne, U.; Singh, U.P.; Singh, R.; et al. Hsp70 and gama-Semino protein as possible prognostic marker of prostate cancer. Front. Biosci. 2018, 23, 1987–2000. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Niu, X.; Liu, J.; Wang, Z.; Chen, L.; Qin, B. Identification of seven-gene signature for prediction of lung squamous cell carcinoma. Onco. Targets. Ther. 2019, 12, 5979–5988. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Lv, W.; Li, X.; Zhang, L.; Lin, J. Prognostic genes of hepatocellular carcinoma based on gene coexpression network analysis. J. Cell. Biochem. 2019, 120, 11616–11623. [Google Scholar] [CrossRef] [PubMed]
- McDuffee, A.T.; Senisterra, G.; Huntley, S.; Lepock, J.R.; Sekhar, K.R.; Meredith, M.J.; Borrelli, M.J.; Morrow, J.D.; Freeman, M.L. Proteins containing non-native disulfide fonds generated by oxidative stress can act as signals for the induction of the heat shock response. J. Cell. Physiol. 1997, 171, 143–151. [Google Scholar] [CrossRef]
- Mosaddegh, B.; Takalloo, Z.; Sajedi, R.H.; Shirin Shahangian, S.; Hassani, L.; Rasti, B. An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity. Cell Stress Chaperones 2018, 23, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. 2010, 2010, 214074. [Google Scholar] [CrossRef]
- Steel, R.; Doherty, J.P.; Buzzard, K.; Clemons, N.; Hawkins, C.J.; Anderson, R.L. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J. Biol. Chem. 2004, 279, 51490–51499. [Google Scholar] [CrossRef]
- Guertin, M.J.; Petesch, S.J.; Zobeck, K.L.; Min, I.M.; Lis, J.T. Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 1–9. [Google Scholar] [CrossRef]
- Missra, A.; Gilmour, D.S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc. Natl. Acad. Sci. USA 2010, 107, 11301–11306. [Google Scholar] [CrossRef]
- Lis, J.T.; Mason, P.; Peng, J.; Price, D.H.; Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 2000, 14, 792–803. [Google Scholar] [CrossRef]
- Laybourn, P.J.; Dahmus, M.E. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J. Biol. Chem. 1990, 265, 13165–13173. [Google Scholar] [CrossRef]
- Zurita, M.; Merino, C. The transcriptional complexity of the TFIIH complex. Trends Genet. 2003, 19, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Marr, S.K.; Lis, J.T.; Treisman, J.E.; Marr, M.T. The Metazoan-Specific Mediator Subunit 26 (Med26) Is Essential for Viability and Is Found at both Active Genes and Pericentric Heterochromatin in Drosophila melanogaster. Mol. Cell. Biol. 2014, 34, 2710–2720. [Google Scholar] [CrossRef] [PubMed]
- Chatr-Aryamontri, A.; Breitkreutz, B.J.; Oughtred, R.; Boucher, L.; Heinicke, S.; Chen, D.; Stark, C.; Breitkreutz, A.; Kolas, N.; O’Donnell, L.; et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015, 43, D470–D478. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, F.; Dündar, F.; Diehl, S.; Grüning, B.A.; Manke, T. DeepTools: A flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014, 42, 187–191. [Google Scholar] [CrossRef]
- Ghosh, S.K.B.; Missra, A.; Gilmour, D.S. Negative Elongation Factor Accelerates the Rate at Which Heat Shock Genes Are Shut off by Facilitating Dissociation of Heat Shock Factor. Mol. Cell. Biol. 2011, 31, 4232–4243. [Google Scholar] [CrossRef]
- Gilchrist, D.A.; Nechaev, S.; Lee, C.; Ghosh, S.K.B.; Collins, J.B.; Li, L.; Gilmour, D.S.; Adelman, K. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 2008, 22, 1921–1933. [Google Scholar] [CrossRef]
1st percentile | Term | Genes in Term | % Enrichment | p-Value | FDR |
dme04310:Wnt signaling pathway | 9 | 2.586206897 | 0.0009865 | 0.02224402 | |
dme04391:Hippo signaling pathway—fly | 6 | 1.724137931 | 0.00437593 | 0.12252595 | |
dme04013:MAPK signaling pathway—fly | 7 | 2.011494253 | 0.00901989 | 0.16837131 | |
dme04068:FoxO signaling pathway | 5 | 1.436781609 | 0.03730033 | 0.52220455 | |
2nd percentile | dme04391:Hippo signaling pathway—fly | 6 | 1.719197708 | 0.00355027 | 0.18106386 |
dme00230:Purine metabolism | 6 | 1.719197708 | 0.0274048 | 0.40818985 | |
dme04013:MAPK signaling pathway—fly | 6 | 1.719197708 | 0.02855552 | 0.40818985 | |
dme04068:FoxO signaling pathway | 5 | 1.432664756 | 0.03201489 | 0.40818985 | |
3rd percentile | dme04013:MAPK signaling pathway—fly | 10 | 2.915451895 | 7.1911 × 10−5 | 0.00264315 |
dme04391:Hippo signaling pathway—fly | 8 | 2.332361516 | 9.6114 × 10−5 | 0.00264315 | |
dme04214:Apoptosis—fly | 7 | 2.040816327 | 0.00137923 | 0.02528582 | |
dme04392:Hippo signaling pathway—multiple species | 3 | 0.874635569 | 0.03916055 | 0.53845762 | |
4th percentile | dme04392:Hippo signaling pathway—multiple species | 4 | 1.162790698 | 0.00469003 | 0.3470621 |
dme04341:Hedgehog signaling pathway—fly | 5 | 1.453488372 | 0.01092496 | 0.40422338 | |
dme01212:Fatty acid metabolism | 5 | 1.453488372 | 0.02826409 | 0.47347768 | |
dme04213:Longevity regulating pathway—multiple species | 5 | 1.453488372 | 0.03185866 | 0.47347768 | |
5th percentile | dme04310:Wnt signaling pathway | 10 | 3.03030303 | 3.0041 × 10−5 | 0.00132182 |
dme04013:MAPK signaling pathway—fly | 9 | 2.727272727 | 7.466 × 10−5 | 0.00164252 | |
dme04391:Hippo signaling pathway—fly | 6 | 1.818181818 | 0.00159687 | 0.02342078 | |
dme04350:TGF-beta signaling pathway | 5 | 1.515151515 | 0.00416474 | 0.03690422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuñiga-Hernandez, J.; Meneses, C.; Bastias, M.; Allende, M.L.; Glavic, A. Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. Int. J. Mol. Sci. 2023, 24, 7485. https://doi.org/10.3390/ijms24087485
Zuñiga-Hernandez J, Meneses C, Bastias M, Allende ML, Glavic A. Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. International Journal of Molecular Sciences. 2023; 24(8):7485. https://doi.org/10.3390/ijms24087485
Chicago/Turabian StyleZuñiga-Hernandez, Jorge, Claudio Meneses, Macarena Bastias, Miguel L. Allende, and Alvaro Glavic. 2023. "Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes" International Journal of Molecular Sciences 24, no. 8: 7485. https://doi.org/10.3390/ijms24087485
APA StyleZuñiga-Hernandez, J., Meneses, C., Bastias, M., Allende, M. L., & Glavic, A. (2023). Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. International Journal of Molecular Sciences, 24(8), 7485. https://doi.org/10.3390/ijms24087485