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Abstract: Although heart failure (HF) is a clinical syndrome that becomes worse over time, certain
cases can be reversed with appropriate treatments. While coronary artery spasm (CAS) is still
underappreciated and may be misdiagnosed, ischemia due to coronary artery disease and CAS
is becoming the single most frequent cause of HF worldwide. CAS could lead to syncope, HF,
arrhythmias, and myocardial ischemic syndromes such as asymptomatic ischemia, rest and/or effort
angina, myocardial infarction, and sudden death. Albeit the clinical significance of asymptomatic
CAS has been undervalued, affected individuals compared with those with classic Heberden’s
angina pectoris are at higher risk of syncope, life-threatening arrhythmias, and sudden death. As
a result, a prompt diagnosis implements appropriate treatment strategies, which have significant
life-changing consequences to prevent CAS-related complications, such as HF. Although an accurate
diagnosis depends mainly on coronary angiography and provocative testing, clinical characteristics
may help decision-making. Because the majority of CAS-related HF (CASHF) patients present with
less severe phenotypes than overt HF, it underscores the importance of understanding risk factors
correlated with CAS to prevent the future burden of HF. This narrative literature review summarises
and discusses separately the epidemiology, clinical features, pathophysiology, and management of
patients with CASHF.

Keywords: heart failure with preserved ejection fraction; heart failure with reduced ejection fraction;
coronary artery spasm

1. Introduction

Heart failure (HF) is a clinical, heterogeneous syndrome stemming from any struc-
tural or functional ventricular impairment of diastolic filling or systolic ejection fraction or
both [1]. Because the left ventricular ejection fraction (LVEF) has a bimodal distribution
among HF patients [2], LVEF has been a phenotypic marker indicative of idiosyncratic

Int. J. Mol. Sci. 2023, 24, 7530. https://doi.org/10.3390/ijms24087530 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24087530
https://doi.org/10.3390/ijms24087530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5189-9755
https://orcid.org/0000-0002-9751-6710
https://orcid.org/0000-0002-6912-7523
https://doi.org/10.3390/ijms24087530
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24087530?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 7530 2 of 35

pathophysiological mechanisms [3,4] and, most importantly, response to therapies [5];
however, regardless of LVEF, the prognosis of HF patients has been also correlated with
diastolic dysfunction [6]. In the general population, LV diastolic dysfunction demonstrates
a prevalence of ~21%, but only 1.1–5.5% of individuals present symptoms [7], suggesting
the ischemic cascade beginning with clinically silent diastolic dysfunction has been sub-
stantially underrecognized. There is no specific, noninvasive diagnostic test that serves
as a gold standard for HF diagnosis since it is a clinical entity established upon a careful
history, physical examination, laboratory, and imaging data. The clinical diagnostic gold
standard of HF is the identification of an elevated pulmonary capillary wedge pressure
at rest or exercise on an invasive hemodynamic exercise test in a symptomatic patient [8].
While most patients with suspected HF do not require invasive testing for diagnosis, an
echocardiogram constitutes often the best method for HF diagnosis [9].

In the US, approximately 50% of HF patients have LVEF ≥50%, with the balance
having LVEF <50% [10,11]. While HF with reduced ejection fraction (HFrEF) <50% is a
final common pathway of systolic dysfunction due to various etiologies [12], numerous
drugs and cardiac devices have been reported to enhance outcomes in patients with HFrEF
independently of etiology, demonstrating that patients with HFrEF share similar patho-
physiological pathways to the progression of systolic dysfunction [12]. In contrast to HFrEF,
such a unifying pathophysiological adaptation is lacking in HF with preserved ejection
fraction (HFpEF) ≥50% [13], which has proved to be the main form of HF worldwide
because of aging of the general population and the augmenting prevalences of obesity,
diabetes mellitus, and hypertension [13]. Because the relevant therapy should target the dif-
ferent underlying etiologies, pathophysiologies, and comorbidities [3,14–16], patients with
HFpEF may respond in a less homogenous way to treatment. Furthermore, the long-term
survival rates in HFpEF patients are lower than those in HFrEF patients, although mostly
driven by non-cardiovascular causes [17]. Notably, HF is considered as treatment failure
rather than an indication for therapy [18]; future attempts to reduce HF burden should
focus not only on reducing or averting exposure to risk factors but also on the management
of comorbidities. However, neither the molecular mechanisms underlying HF, irrespective
of LVEF, nor effective prevention strategies are fully understood.

Basic science evidence, epidemiological studies, and clinical trials suggest that coro-
nary artery disease (CAD), including epicardial CAD and coronary microvascular disease
(CMD) [19], is a significant contributor to HF pathogenesis. In patients with HFrEF, CAD
constitutes frequently the main cause [20]. Thus, up to 25% of HF patients classified clini-
cally as “nonischemic cardiomyopathy,” might reveal evidence of CAD at autopsy [21], and
ischemic changes have also been reported in endomyocardial biopsies [22] in such patients.
On the other hand, coronary artery spasm (CAS), an excessive coronary vasoconstriction
leading to total or subtotal vascular obstruction, has been considered one of the causes of
HFrEF [23–25].

As a separate entity from classic angina pectoris (pectoris dolor) described by Dr.
William Heberden (1710–1801) based on 20 cases with this affliction in 1772 [26], which
started when chest pain was evoked by exercise or emotional stress, and was relieved by
rest or nitroglycerin, in 1959, with Dr. Rexford Kennamer and others, Dr. Myron Prinzmetal
(1908–1987) published the first landmark report [27] of their findings on “A variant form of
angina pectoris”. In Prinzmetal’s first report, among the 32 cases of variant angina between
1931–1956, of which 20 and 12 were personally observed and reported in the literature,
respectively, the pain appeared at rest or during daily routine activity but was not caused by
exercise or emotional stress. Among the reported 32 patients, 12 had myocardial infarction
[MI] at follow-up [27]. Because both forms of angina pectoris had coronary atherosclerosis
in common post-mortem, and the variant angina attack usually happened at rest, when
the vascular physiologically hypertonic action is greatest [27], the mechanism for variant
angina proposed by Prinzmetal et al., or other researchers was arterial hypertonus or CAS,
respectively. Of note, following the first report of coronary angiography in 1959, CAS in
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variant angina had never been proved angiographically [28,29] within a decade until the
early 1970s [29–31].

It was common for coronary angiography in the 1970s and 1980s to diagnose CAS in
the catheterization laboratory. It turned out increasingly clear that CAS could occur in a
patient with [26,27] or without atherosclerotic obstructive CAD, referred to as “variant of
the variant” [30]. Moreover, CAS is more frequently associated with ST-segment depression
rather than non-progressive elevation [32,33]. Hence, the term “variant angina” is specifi-
cally reserved for CAS-induced angina with temporary ST-segment elevation (Figure 1).
In addition, CAS-related acute coronary syndrome can be due to anaphylactic reactions,
involving the release of inflammatory mediators such as histamine, chymase, leukotrienes,
and platelet-activating factor from mast cells upon activation to cause the constriction of
coronary vascular smooth muscle cells that constitute the pathophysiologic mechanism of
Kounis syndrome [34,35]. Altogether, in coronary heart disease, atherosclerotic obstructive
CAD cannot be regarded as the sole source of angina pectoris [36].

Figure 1. The 12-lead electrocardiograms and coronary angiography of variant angina. Angina attack
(A) and post-sublingual nitroglycerin 0.6 mg (B) 12-lead electrocardiograms of a 47-year-old male
revealed brief ST-segment elevation in II, III, and aVF leads. Ten months later because of recurrent
chest pain, he underwent coronary angiography. The coronary angiography revealed intracoronary
methylergonovine-induced CAS in the middle portion of the right coronary artery (C, arrow), which
was alleviated after intracoronary nitroglycerin 200 µg (D). (Reproduced from [33], with permission
of the publisher.).
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Most importantly, the use of nitroglycerin at the beginning of coronary angiography
should be avoided [37] to prevent inadvertent abrogation of spontaneous CAS. However,
nitroglycerin solution has to be fully prepared before performing CAS provocative testing
to relieve established CAS promptly through intracoronary infusion [33]. Therefore, 2 sets
of coronary angiograms pre- and post-intracoronary nitroglycerin should be obtained
routinely once obstructive lesions are noted. Spontaneous CAS can be misdiagnosed as
a candidate for percutaneous coronary intervention unless the alleviation of obstructive
stenosis is documented after intracoronary nitroglycerin, emphasizing the importance of
intracoronary nitroglycerin infusion before endeavored coronary intervention, and avoid-
ing unnecessary coronary revascularization [38]. Because coronary revascularization in
selected obstructive CAD patients can ameliorate diastolic dysfunction, decrease morbidity
and mortality [39–42], and enhance systolic function [43], likely by improvement of hiber-
nating myocardium, medical treatments in non-obstructive CAD, such as CAS, patients
may similarly improve left ventricular diastolic and systolic function.

2. Epidemiology

Framingham Heart Study has demonstrated that, from the 1950s onwards, the role
of myocardial ischemia and infarction has developed substantially [44,45], placing great
emphasis on the prevention of HF through the prevention of myocardial ischemia and
infarction. Despite the fact that the cumulative incidence of HF is similar between both
genders, women are approximately 65% less likely than men to develop HFrEF, partic-
ularly in their younger years [45–47], while HFpEF is twice as common in women than
men, which results from physiologic differences between the two genders [48]. On the
other hand, survival after a diagnosis of HF, irrespective of HFrEF or HFpEF, has shown
modest improvement in the 21st century and lags behind other serious conditions, such
as cancer [49]. Hence, contributing factors require further clarification, among which CAS
is becoming important. There are large variations in CAS prevalence across the world, as
CAS frequency is greater in Japan than in west countries [50]. The prevalence of CAS is
high (40%) among patients showing evanescent, resolving ST-segment elevation admitted
to Japanese hospitals [51]. Moreover, using provocative testing, CAS of more than two
coronary arteries appears more frequently in Japanese (24.3%) [52] and Taiwanese pop-
ulations (19.3%) [53] than in Caucasians (7.5%) [54]. On the other hand, men are more
likely than women to develop CAS both in East Asia and Western countries [51,53]. Most
CAS appears in people aged 40 to 70 years and the prevalence declines after the age of
70 years [27,51,53]. Several studies have demonstrated that CAS prevalence in patients
without obstructive CAD is around 50% in angina and, specifically, 57% in acute coronary
syndrome in Asia [55–57]. Among provocative tests using intracoronary acetylcholine for
functional vasomotor abnormalities in acute coronary syndrome without obstructive CAD,
79% of individuals demonstrate a positive finding in Japan [58], whereas the results are
positive in 16% of French [59] and 49% of German [57] patients. Notably, CAS diagnosis
can be challenging due to pretreatment with antispastic nitroglycerin or calcium channel
antagonists, refraining from coronary constrictors, and changes in disease activity. Ad-
ditionally, contemporary trends of CAS prevalence tend to decline in Japan because of
reduced performance of misperceived time-consuming provocative tests, or extensive use
of statins and calcium channel antagonists [58].

CAS is an exceptionally complex multifactorial disease in which smoking, inflamma-
tion, metabolic, psychosocial, and physical factors come into play. Although it was reported
more than 20 years ago [50], the racial differences in coronary vasomotion disorders be-
tween Asian and Caucasian populations remain controversial. First, previous studies show
that epicardial CAS is more often recognized in Japanese and Taiwanese people than in
Caucasian populations, while CMD is typically observed in Caucasian patients, which may
be because Japanese and Taiwanese cardiologists have performed spasm provocation test-
ing actively for 30 and 20 years, respectively, in patients with nonobstructive CAD, whereas
most Caucasian cardiologists do not perform provocative testing for nonobstructive CAD



Int. J. Mol. Sci. 2023, 24, 7530 5 of 35

in the cardiac catheterization laboratory [60]. However, for an unknown reason, some
Taiwanese cardiologists are resistant to acknowledging the existence of CAS, which affects
patients’ physical and psychological quality of life, and as a result, oppose performing
provocative testing for the diagnosis of CAS. Second, various diagnostic procedures are
performed worldwide, such as intravenous ergonovine-provoked >70% luminal reduc-
tion in France [61] and intracoronary acetylcholine-provoked >75% luminal reduction
in Germany [57]. Third, according to a Japanese study [62], intracoronary acetylcholine
administration time is crucial to provoke CAS. Slow injection of acetylcholine for 3 min
may induce microvascular CAS, whereas rapid injection of acetylcholine for 20–30 s may
provoke epicardial CAS, leading to inconsistency in the prevalence and incidence of CAS
between Japanese and Caucasian patients. Fourth, Japanese cardiologists have stated that in
some European institutions, acetylcholine testing without pacemakers is employed, which
may cause bradycardia or cardiac arrest in the right coronary artery rendering difficult
interpretation of provocative testing. If Caucasian cardiologists perform provocative testing
with pacemakers similar to Japanese cardiologists, the prevalence and incidence of CAS
may be higher than ever thought. However, in Taiwanese specialists’ experiences without
implementing pacemakers when performing provocative testing using the bolus injections
of ergonovine, there has been no cardiac arrest but only rarely mild bradycardia, which
can quickly return to normal after immediate intracoronary administration of nitroglyc-
erin once CAS occurs [63,64]. Fifth, the definition of positive epicardial CAS is different
among previous Japanese, Taiwanese, and Caucasian studies [60]. For example, the def-
inition of provoked CAS is a reduction of >50% [65], >70% [61,66,67], >75% [57,68–71],
>90% [24,51,71,72], or 99–100% [73] in luminal diameter compared with postintracoronary
nitroglycerin. Sixth, among all the clusters of CAS risk factors, the predominant factors that
cause CAS in Asian patients may be different from those in white patients. Notably, it is es-
timated that nearly 1 billion people globally, most of whom are Asians, carry the Glu504Lys
polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene [74]. This ALDH2 mutant
is significantly associated with a high level of high-sensitivity C-reactive protein [75], which
is a risk factor for CAS. In conclusion, while previous studies demonstrate that existence
of racial heterogeneity in coronary vasomotor response [50], the prevalences of CAS and
CAS-related HF (CASHF) in different populations are largely unknown.

In the US, while the incidence and prevalence of HF are increased [11,76], the age-
specific incidence of HF might be reduced, but to a lesser degree in HFpEF compared with
HFrEF [77]. A UK study showed that the age-adjusted incidence of HF fell by 7% between
2002 and 2014, whereas the absolute incidence of HF increased by 12%, and prevalent HF
increased by 23% [78]. This growth in the absolute number indicates population aging,
reduced mortality from cardiovascular diseases, including MI [78], and the increasing
prevalence of risk factors. Given that approximately 50% of HFrEF cases can be attributed
to ischemia [79], a new diagnosis of HFrEF frequently needs an assessment for underlying
CAD. Despite the fact that individual-level factors (eg, old age, serious comorbidities, non-
candidates, or no preference for coronary revascularization) should be evaluated before
referral, coronary angiography remains the gold standard for diagnosis of obstructive
CAD [80]. In addition to epicardial CAD, microvascular CAD is becoming widespread
and often under-recognized [81]; hence, both epicardial and microvascular CAD, clinically
overt or silent, acute or chronic, can result in decreased perfusion, myocardial damage, and
further reduced myocardial function.

3. Clinical Features of CASHF

Until recently, patients with non-obstructive CAD were often inappropriately reas-
sured due to assuming a favorable prognosis without further investigation, although clinical
features may require coronary angiography. However, ischemia with non-obstructive CAD
(INOCA) is a non-benign condition correlated with an equivalent incidence of adverse
events as well as poor quality of life compared to obstructive CAD [82]. INOCA is defined
as when patients present with symptoms and signs suggesting ischemia but are found to
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have no obstructive CAD at coronary angiography [83]. Indeed, this phenomenon is a
primary cause of myocardial ischemia and is linked to a high risk of MI, decompensated
HF, stroke, and unexpected sudden death [84–90]. On the other hand, CAS-related angina
is common [27,91], although not as frequent as classic Heberden’s angina. While in the
Taiwanese general population, the prevalence of CAS and obstructive CAD over 12 years
of follow-up is 0.067% and 8.7%, respectively [92], the prevalence of CAS in other racial
populations needs to be clarified and the frequency of CAS diagnosis might be increased
when careful criteria are applied for its detection [91]. In Japan, although non-invasive
provocation tests such as hyperventilation tests and cold pressor tests decreased remark-
ably in 2014, diagnosis by invasive provocation tests and the occurrence of CAS-related
angina increased in 2014 compared with 2008, albeit not significantly [93]. CAS provocation
tests using left-to-right coronary sequential evaluation were employed in just 30% of the
Japanese hospitals; hence, although 40% of the centers were dissatisfied with standard
spasm provocation tests, the majority of the hospitals confirmed the necessity of CAS
provocation tests in the future [93]. As a result, considering that (1) CAS can cause resting
angina with S-T segment depression and/or pseudonormalization of T waves; (2) asymp-
tomatic CAS-induced angina is common [91,94]; and (3) cold-induced angina may arise
from CAS [95], the incidence of CAS-induced myocardial ischemia could be doubtlessly
much higher than that of the public perception indicated by the clinical presentation.

In clinical practice, angina pectoris results from a temporary myocardial oxygen-
supply-demand imbalance [96,97], causing 2 types of ischemia, exertional demand ischemia
and non-exertional supply ischemia [98]. Because coronary disorders are dynamic [99], non-
obstructive CAD might become flow-limiting stenosis if the vascular tone is increased [99],
and hence increased oxygen demand might not always precede myocardial ischemia [100].
In this regard, endothelial dysfunction makes up about two-thirds of symptomatic pa-
tients of INOCA and a smaller percentage of “MI with non-obstructive CAD” (MINOCA).
The clinical spectrum of INOCA includes epicardial CAS, microvascular CAS, or mixed
epicardial/microvascular CAS [19]. Microvascular CAS can cause myocardial necrosis,
mild elevations of cardiac troponin, subtle left ventricular contractile abnormalities [101],
and early-stage HF [102]. Previous studies showed that microvascular CAS could be
demonstrated not only in angina patients with normal epicardial coronary arteries but
also in HFpEF [4,103–105]; hence, angina and dyspnea can appear at 2 extremes in the
presence of a continuum of disease contributing to the development of microvascular CAS
and HFpEF [106]. Furthermore, 30–48% of in-patients receiving the optimal treatment
for HFrEF <45% have provoked epicardial CAS [23,24,67,72]. While the prevalence of
hypertension and smoking are higher in epicardial CAS-related than non-CAS-related
HFrEF [24], more research is required to evaluate the risk factors of epicardial CASHFrEF.

Various arrhythmias, especially ventricular premature complex, more often appear
in >50% of CAS-induced angina than in classic Heberden’s angina pectoris [39,107], albeit
through unknown mechanisms but possibly involving QT dispersion in CAS-induced
cardiac arrest and syncope [108]. While the severity of CAS has no relationship with the
occurrence of these arrhythmias, ventricular arrhythmias occur more frequently during
anterior wall ischemia [109]; however, right CAS-induced ventricular arrhythmias are not
uncommon (Figure 2). Besides, ventricular fibrillation (VF) complicating CAS is responsible
for sudden death with morphologically normal coronary arteries in autopsies, as previously
reported [110]. Although cardioversion is always required to terminate VF, VF induced by
CAS, epicardial or microvascular, rarely terminates spontaneously [50,80] (Figures 3 and 4).
Additionally, in a study of patients who had implanted cardioverter defibrillators, VF was
asymptomatic in 43% and nonsustained in 40% of episodes [111]. The probability of syncope
or pre-syncope is 25% and 62% when VF is <10 and ≥10 s, respectively [111]. On the other
hand, about 40% of CAS-related inferolateral J wave and VF does not cause angina at the
first VF, and could have been misinterpreted as early repolarization syndrome [112], which
in the younger age group is associated with features of CAS such as lower systolic blood
pressure and lower heart rate [113]. Therefore, CAS is essential and should be included



Int. J. Mol. Sci. 2023, 24, 7530 7 of 35

in the differential diagnosis of syncope and early repolarization syndrome, prompting
optimal medical management.

Figure 2. Epicardial CAS-induced ventricular ectopics: 24 h Holter monitor, electrocardiograms,
pressure tracing, and right coronary arteriogram in a 53-year-old female presenting with frequent
palpitation and unstable rest angina. (A) A 24 h Holter monitor showed sinus rhythm with runs of
ventricular ectopics in singles and couplets without preceding ST segment changes; (B) simultaneous
lead I, II, III electrocardiogram and systemic arterial pressure tracing during intracoronary ergonovine
testing; (C) baseline angiographically normal right coronary artery with minimal plaquing; (D) middle
spasm (arrow) immediately after intracoronary administration of 45 µg ergonovine. Ventricular
ectopics in singles and one couplet occurred at the same time; (E) the CAS and ventricular ectopics
were relieved after intracoronary administration of 200 µg nitroglycerin. The patient’s consciousness
remained clear throughout the examination.
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Figure 3. Epicardial CAS-induced VF: electrocardiograms, pressure tracing, and right coronary
arteriogram in a 50-year-old male with unstable angina, presenting after wakening with rest angina
at night. (A) Simultaneous lead I, II, aVR electrocardiogram, and systemic arterial pressure tracing
during intracoronary ergonovine testing; (B) baseline angiographically normal right coronary artery
with minimal plaquing; (C) ostial spasm (arrow) immediately after intracoronary administration
of 15 µg ergonovine; (D) in 10 s, the ostial spasm recovered spontaneously, multi-focal spasms
appeared in the proximal and middle portion, and ventricular fibrillation occurred at the same time
for 10 s and recovered spontaneously without intervention; (E) multi-focal spasms were relieved after
intracoronary administration of 100 µg nitroglycerin. The patient’s consciousness remained clear
throughout the examination. (Reproduced from [63], with permission of the publisher).

On the other hand, extreme CAS may cause life-threatening pulseless electrical activity
or asystole without the occurrence of ventricular tachycardia or VF [50], which, when
involving all of the three epicardial coronary arteries, can suddenly stop heartbeat due to
pulseless electrical activity and flash freeze the whole myocardium immediately, leading to
invisible coronary flow [114] and, despite intracoronary administration of nitroglycerin,
prolonged contrast retention in the coronary arteries. While extended continuous cardiac
massage is effective to resolve CAS-related pulseless electrical activity [114], cardiac pacing
or implantable cardioverter defibrillator may not be feasible for the recovery of viable
muscle from frozen myocardium during pulseless electrical activity, and may result in
unexplained death [114,115]. Furthermore, ischemia of the sinus node or atrioventricular
node arteries due to CAS can affect the development of pulseless electrical activity or
asystole [114]. Taken together, without the induction of ventricular arrhythmias, CAS can
directly result in pulseless electrical activity or asystole.
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Figure 4. Microvascular CAS-induced VF: electrocardiograms (green line), pressure tracing (purple
line), and right coronary arteriogram in a 75-year-old male with unstable rest angina. (A) Simulta-
neous lead I, II, III electrocardiogram and systemic arterial pressure tracing during intracoronary
ergonovine testing; (B,C) baseline angiographically normal right coronary artery with minimal
plaquing (white and red arrows); (D,E) microvascular spasm (white and red arrows) immediately
after intracoronary administration of 45 µg ergonovine. Ventricular fibrillation occurred at the same
time for 17 s and recovered spontaneously without intervention; (F,G) microvascular spasms were
relieved after intracoronary administration of 200 µg nitroglycerin (white and red arrows). The
patient’s consciousness remained clear throughout the examination.

4. Pathogenesis

CAS not only causes remarkable progression of CAD but also demonstrates a “jump-
up” phenomenon in as short as 25 min in a swine model [116], in which CAS superimposed
on minimal coronary stenosis can rapidly progress to total atherosclerotic obstruction,
resulting in MI [117]. In a pig model, the phenomenon can be explained by that CAS of
abrupt rather than gradual onset can cause intramural hemorrhage in the plaque’s neovas-
culature and the subsequent sudden progression of organic coronary stenosis, leading to
MI [118]. Most importantly, while smoking, age, C-reactive protein (CRP) [50], ALDH2
deficiency [119], and lipoprotein(a) [120] are risk factors for CAS, CAS is not associated with
the classic risk factors for CAD [50,121], such as diabetes mellitus, hypertension [53], hy-
percholesterolemia [50,121] and obesity [50,121], suggesting pathophysiological differences
exist between CAS and CAD. While risk factors in an individual usually exist together
and have a cumulative and interactive effect to increase a person’s chance of getting CAS
(Figure 5), precipitating factors refer to a specific event, which may act in the same patient
to cause the onset of CAS in various circumstances. Notably, while older rather than
younger people are more likely to develop CAS, smoking in the younger compared with
their older analogs has a more powerful effect on CAS occurrence [122]. In addition, as
smoking and age appear to have a more important role in men [123], CAS risk factors may
be gender-specific.

The relaxation and contraction of vascular smooth muscle cells are regulated primarily
through dephosphorylation and phosphorylation of the myosin light chain, respectively.
CMD is characterized by impaired microvascular smooth muscle cell dilation, which can
ultimately lead to HFpEF [124]. In addition, elevated Rho-kinase activity of smooth muscle
cells favors contraction by directly increasing sensitization of the myosin light chain to
Ca2+ and indirectly augmenting phosphorylation of the myosin light chain [125]. The
Rho-kinase activity in vascular smooth muscle cells is elevated after wrapping the coronary
arteries with interleukin (IL)-1β beads in a pig CAS model [125–127]. Other animal models
of spontaneous CAS include KATP mutant or SUR2 KATP knockout mice, suggesting
that loss of function of KATP channels can induce hypercontraction of smooth muscle
cells without atherosclerosis [128,129]. Mice lacking α1H T-type calcium channels show a



Int. J. Mol. Sci. 2023, 24, 7530 10 of 35

normal contraction of coronary arteries but decreased response in acetylcholine-induced
relaxation [130]. Together, these models reveal that hyperreactivity of vascular smooth
muscle cells can cause CAS via various pathways, whereas their clinical relevance in
humans remains largely unknown.

Figure 5. Risk factors and precipitating factors are represented by rectangles and circles, respectively,
for CAS. (Adapted from [33], with permission of the publisher).

The majority of CASHF patients present with a less severe phenotype (stages A and
B) than overt HF, among which stage A is for patients at risk for HF but without current
or prior symptoms or signs of HF and structural or biomarker evidence of heart disease,
and stage B is for patients without current or prior symptoms or signs of HF but evidence
of structural heart disease or abnormal cardiac function, or elevated natriuretic peptide
levels [131], underscoring the importance of understanding risk factors for CAS to prevent
the future burden of HF. Among the risk factors of CAS [132], smoking (relative risk 1.47)
is independently associated with incident HF [133]. While no circulatory factor impeding
oxygen supply to the heart such as fixed coronary stenosis or exercise is responsible for
eliciting CAS-related angina, from the onset of the electrocardiographic abnormalities to the
start of their reversion, the mean heart rate and arterial blood pressure are decreased, and
isovolumic contraction time is lengthened, reducing the left ventricular performance [134]

Inflammation has been shown to account for the dissimilarities in cardiac remodeling
between HFpEF and HFrEF. While HFpEF is linked to concentric hypertrophy, adverse
remodeling in HFrEF is often due to ischemia-induced progressive loss of cardiomyocytes,
with a patchy distribution of replacement fibrosis of dead cells by collagen, leading to LV
dilatation and maladaptive remodeling [135–138]. Furthermore, because pathophysiologi-
cal differences exist between HFpEF and HFrEF, the inflammatory biomarkers, including
CRP and IL-6, are higher in HFpEF than in HFrEF, while markers of cardiomyocyte injury,
such as high-sensitivity troponin T and brain natriuretic peptides, are higher in HFrEF than
in HFpEF [139].
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Chronic myocardial dysfunction resulting from hypoperfusion, hibernation, or both,
may also increase the risk of HF [140,141]. Subjects with both epicardial CAD and CMD
may have chronic hypoperfusion-associated inflammation and fibrosis, resulting in in-
creased myocardial stiffness. Similarly, episodic coronary hypoperfusion such as CAS may
cause myocardial functional impairment for hours to days (myocardial stunning) [142].
Studies with positron emission tomography [143] and single photon emission computed
tomography [144] show decreased blood flow and glucose uptake in myocardial areas that
concomitantly have decreased systolic function. In addition, ventricular diastolic dysfunc-
tion appears in both experimental [145] and clinical ischemia [146]. Of note, the decrease in
coronary vasodilator reserve is proportional to extent of arterial luminal stenosis [147,148].
Consequently, myocardium with normal resting blood flow may have decreased exer-
cise blood flow and may display decreased glucose metabolism on positron emission
tomography during exercise and a concomitant decrease in ventricular function.

As associated researchers at the National Human Genome Research Institute unlock
the mysteries of the complete set of the human genome, almost every disease has a genetic
component [149], which is the case with CAS in that a mutation in the ALDH2 gene is
believed to be the cause [150] and associated with Asian flush syndrome. Mizuno Y et al.,
showed that Asians with defective ALDH2*2 alleles have a higher risk of CAS. They also
found that the defective gene positively interacts with the detrimental effects of smoking
on stronger vasoconstriction than each factor alone by increasing reactive aldehydes [151].
Furthermore, other Japanese studies show that the mutant ALDH2*2 allele carriers com-
pared with subjects with the ALDH2*1/1 genotype have higher frequencies of more severe
CAS-related myocardial injury [119,152].

The mechanisms of coronary vasomotor disorders can be endothelium-dependent or
endothelium-independent [19]. While endothelium-dependent dysfunction results from
an endothelium-derived disparity between relaxing factors, e.g., nitric oxide (NO), and
constrictors, e.g., endothelin [19], endothelium-independent function relies on vascular
myocyte tone [19]. Endothelial dysfunction, as in CAS, reduces the bioavailability of nitric
oxide (NO), cyclic guanosine monophosphate, and protein kinase G in adjacent cardiomy-
ocytes [153], contributing to myocardial fibrosis and HFpEF [154,155]. While during HF
development, the initial inflammatory response is a protective reaction to tissue injury, it
may lead to irreversible damage when the inflammation is prolonged. Pathologic features,
common to all cardiomyopathies irrespective of origin, include ventricular hypertrophy,
fibrosis, scarring, and dilatation [102]. This phenomenon was investigated in 2 animal
models of congestive cardiomyopathy: the hereditary cardiomyopathic Syrian hamster and
the hypertensive-diabetic rat [102]. In both the genetic and the acquired disease models,
there was focal myocytolytic necrosis with the subsequent healing with focal scars, ven-
tricular hypertrophy, ventricular dilatation with congestive HF, and, finally, death [102].
In both diseases, the microcirculation of the animal hearts had been studied by the use
of silicone rubber perfusions; microvascular CAS was demonstrated early in the disease
associated with small areas of myocytolytic necrosis and subsequent fibrosis [102]. Because
the distance between cardiomyocytes and endothelial cells is fewer than 3 µm [19], allow-
ing for sufficient blood supply and bidirectional influences, both myocardial fibrosis- and
hypertrophy-induced subendocardial ischemia may cause left ventricular diastolic dysfunc-
tion and longitudinal systolic abnormalities, leading to remodeling and HFpEF, which may
reciprocally trigger subendocardial ischemia and endothelial dysfunction in return [156].
Collectively, although myocardial ischemia directly contributes to HFpEF [157], the causes
and mechanisms contributing to HF as well as CASHF, albeit largely unknown, are likely
multifactorial (Table 1).
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Table 1. Proposed mechanisms of coronary artery spasm-related heart failure.

Etiology Mechanism

A. Cardiomyocyte

1. Hypertrophy

(1) Cardiomyocyte apoptosis, necrosis, degeneration, and interstitial fibrosis are
partially compensated by hypertrophy involving DNA synthesis and
transcription [158].

(2) Activation of the Akt pathway with the subsequent inhibitory phosphorylation of
glycogen synthase kinases-3β [159], and phosphorylation of
calmodulin-dependent kinase II (CamKII) [159].

(3) Release of angiotensin-II and endothelin-1 [159].
2. Impaired excitation-contraction

coupling
(1) Impaired calcium uptake by sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2a
(2) Uncontrolled calcium efflux through ryanodine receptors [160].

3. Inflammation

(1) During myocardial inflammation, while infiltrating macrophages in the
myocardium are the major source of inflammatory cytokines, cardiomyocytes, and
fibroblasts can also produce cytokines [161].

(2) Cardiomyocytes can transform into a proinflammatory and profibrotic secretory
phenotype, forming a complex autocrine system between molecular pathways that
lead to cell death [162].

(3) Increased paracrine secretion of tumor necrosis factor-α (TNF- α) via
transcriptional regulation of activator protein-1 (AP-1) and nuclear factor-κB [163].

(4) Increased transforming growth factor-β (TGF-β) production [164], activating the
renin–angiotensin–aldosterone system [159].

(5) Increased IL-6 production [165], but not IL-1β [166].

4. Fibrosis (1) Increased synthesis of matrix metalloproteinases (MMPs) due to suppression of
MMP inhibitors [167].

B. Non-cardiomyocyte

1. Fibroblast

(1) During myocardial inflammation, while infiltrating macrophages in the
myocardium are the major source of inflammatory cytokines, cardiomyocytes, and
fibroblasts can also produce cytokines such as TNF-α and IL-6 [161].

(2) Under pathological conditions such as MI, fibroblasts are activated and
differentiate into myofibroblasts in a large proportion, expressing features of
smooth muscle cells such as contractile protein α-smooth muscle actin
(α-SMA), [168]. Myofibroblasts are key sources of proinflammatory cytokines and
the extracellular matrix and highly responsive to cytokines, including TNF-α, IL-6,
and IL-1β [169].

(3) Deposition of type I and III collagen, extracellular matrix cross-linking, myocardial
stiffness, and diastolic dysfunction [170], resulting in Impaired contractility,
arrhythmias, local microfibrillations, and systolic dysfunction [171].

(4) Increased synthesis of matrix metalloproteinases (MMPs) due to the
downregulation of MMP inhibitors [167].

2. Monocytes/Macrophages
(1) Monocytes/macrophages, fibroblasts, and cardiomyocytes all increaseTNF-α

expression through different transcriptional regulatory systems including the
activator protein-1 (AP-1)and NF-κB [163].

3. Endothelial cell

(1) Proinflammatory secretion [172] of IL-6 and TNF-α [173]. Most IL-1β production
is localized to endothelial cells and interstitial macrophages rather than
cardiomyocytes [166].

(2) Directly transdifferentiating into myofibroblasts in a small proportion [174], or
performing endothelial-to-mesenchymal transition, generating cells that express
endothelial markers while gaining fibroblast-like characteristics [174].

(3) Complement C1q tumor necrosis factor-related protein (CTRP)-9 overexpression
to upregulate hypertrophy [175].

4. Lymphocyte (1) Activation of fibroblasts in the myocardium [176].

5. Mast cell (1) Activation of fibroblasts in the myocardium [177].
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Table 1. Cont.

Etiology Mechanism

C. Inflammation

(1) A systemic inflammatory biomarker C-reactive protein has both diagnostic and
prognostic values to predict the risk of developing HFpEF and subsequent
cardiovascular events. However, previous results are conflicting [178].

(2) During myocardial inflammation, while infiltrating macrophages in the
myocardium are the major source of inflammatory cytokines, cardiomyocytes, and
fibroblasts can also produce cytokines [161].

(3) In HF, irrespective of left ventricular ejection fraction, inflammatory cytokines are
consistently elevated [179], among which tumor necrosis factor-α, transforming
growth factor-β and family of interleukins including IL-1β, -6, -12, -8, and -18 are
the most greatly induced following cardiac damage [180].

(4) Inflammatory cytokines directly decrease contractility by inhibiting
sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) [181].

D. Metabolism

(1) Reduction of adenosine triphosphate and phosphocreatine concentrations,
impairing fatty acid oxidation and mitochondrial carbohydrate metabolism [182].

(2) In the normal heart, the peroxisome proliferator-activated receptors (PPARs),
mainly PPAR-α and PPAR-β, and their coactivator PGC-1α provide a more
efficient pathway for aerobic energy production [183]. In ischemia [184],
hypertrophy [185], and HF [186], the PGC-1α expression is decreased, resulting in
decreased fatty acid utilization and increased glucose oxidation [187].

(3) PPARs-related PI3K/Akt pathway and its downstream targets, including glycogen
synthase kinase-3β (GSK-3β), AMP-activated protein kinase (AMPK), and
mammalian target of rapamycin (mTOR), are important in myocardial metabolism.
Akt phosphorylation inhibits GSK-3β and AMPK activity, reducing energy
production [188]. mTOR overexpression had decreased interstitial fibrosis in
hypertrophy [189]

E. MicroRNAs (1) Among the most examined miRNAs directly involved in cardiac fibrosis,
miR-133a, miR-29, and the miR-21 families play a critical role [159,190].

F. Mitochondria

(1) Increased mitochondrial reactive oxygen species by angiotensin II through
activation of ERK1/2 in mice, partly responsible for cardiac fibrosis and
hypertrophy [191].

(2) Downregulation of genes involved in mitochondrial biogenesis, such as PGC-1α
and PGC-1β, p38-mitogen-activated protein kinases (MAPK), and mitochondrial
transcription factor A (TFAM), contributing to cardiac dilatation [192–195].

G. Autophagy

(1) Autophagy exerts cardioprotection in several cardiovascular diseases such as MI;
however, prolonged activation may be detrimental [196], suggesting that the
results of adaptive autophagic responses are determined by not only the
autophagic intensity and duration but also other related signaling pathways.

H. Apoptosis
(1) Activated by ROS and upregulated downstream of angiotensin-II G-protein

coupled receptor (GPCR) signaling, CAMKII mediates calcium dysregulation,
triggering apoptosis [197].

I. Genetics
(1) The mutant ALDH2*2 allele carriers compared to subjects with the ALDH2*1/1

genotype have higher frequencies of more severe CAS-related myocardial
injury [119,152].

4.1. Microvascular CASHF

Several cardiac and systemic disorders, such as HFpEF, brain small-vessel disease,
diabetes, hypertension, chronic inflammatory and autoimmune diseases, and chronic kid-
ney disease can develop INOCA [198,199]. In most of these patients, close relationships
exist between microvascular dysfunction and atherosclerotic epicardial CAD [198,199]. In
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early diabetic rats, the coronary microvascular focal and segmental constrictions occur
when prostacyclin and nitric oxide production is prevented, which, if left untreated in
advanced diabetes, will progress to irreversible microvascular damage [200]. On the other
hand, while CMD does not develop atheroma in accord with epicardial atherosclerosis,
coronary microcirculation in patients carrying cardiovascular risk factors can evolve into
structural and functional atherosclerotic-like changes [19], presenting as either vasodilator
abnormality and/or microvascular CAS [19]. Furthermore, CMD can occur in the absence
or presence of obstructive epicardial CAD [201]. As a result, the CMD-related myocardial
ischemias are unlike those attributable to epicardial flow-limiting stenosis, in which the re-
gional ischemia perfused by the obstructed epicardial artery is homogeneously distributed,
resulting in regional wall motion abnormality [19]. In contrast, myocardial ischemia in
CMD may appear as patchy and not entail all microvessels originating from an epicardial
artery, causing symptoms without wall motion abnormalities [202], or as a generalized
phenomenon resulting in diffuse perfusion and wall motion abnormalities, and thereby
HFrEF with a normal result on noninvasive stress imaging tests.

Circulating factors, such as fibrocytes, circulating monocyte-derived cells, and fibrob-
lasts, might regulate the effects of microvascular CAS favoring the development of left
ventricular fibrosis and hypertrophy [203]. While fibrocytes are recruited to chronically
injured myocardium in cardiac remodeling in mice, treatment with serum amyloid P
decreased fibrocyte accumulation and fibrosis [204]. Another modulatory factor, atrial
natriuretic peptide, may induce phosphorylation of Smad proteins, thus inhibiting their nu-
clear translocation and binding to TGF-Smad responsive elements in the promoter regions
of extra-cellular matrix genes [205]. An auxiliary potential mechanism, as proposed by
Pepine et al. [206], involves repetitive cycles of ischemia-reperfusion such as in CAS that
impede cardiac myocyte relaxation thereby causing diastolic dysfunction and HFpEF.

In addition, endothelial dysfunction associated with inflammation reduces the content
of cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and transforming
growth factor (TGF)-β in cardiomyocytes and microvascular NO bioavailability, all of which
are involved in the physiological modulation of cardiac hypertrophy and stiffness [207–210]
Besides, NO reduction inhibits cGMP and TGF-β functions, favoring conversion of en-
dothelial cells into mesenchymal cells such as fibroblasts [210–212]. Overall, these changes
promote hypertrophy, fibrosis, and the subsequent development of left ventricular dias-
tolic dysfunction.

4.2. Epicardial CASHF

Although epicardial atherosclerosis may induce endothelial dysfunction of CMD,
atherosclerotic CMD may in reverse accelerate the development of epicardial atherosclerosis
through decreased blood flow and wall shear stress, leading to progressive epicardial
endothelial dysfunction [213] and thrombus formation [214]. Similarly, CAS involving
epicardial and microvascular arteries is therefore considered the expression of the same
CAS development sharing a common pathophysiological milieu that affects the entire
coronary circulation [215]. A substantial body of evidence suggests that subjects with
microvascular angina have 2 important extra features contributing to angina symptoms:
(1) hyperreactivity of smooth muscle cells to microvascular constrictor stimuli; (2) enhanced
awareness of cardiac pain-provoking stimuli. Indeed, a significant number of patients
with microvascular angina have microvascular CAS, which is angina accompanied by
ST-segment depression after the intracoronary acetylcholine provocative testing [106].

A previous study using substance P, a pure endothelial-dependent vasodilator, demon-
strates that in patients with variant angina, endothelial dysfunction at sites of CAS is not
necessarily present [216]. Furthermore, in variant angina, several studies fail to show
endothelial dysfunction in non-CAS coronary arteries as well as in peripheral arteries [217],
and other studies also did not show the higher prevalence of NO synthase polymorphisms-
associated endothelial dysfunction [218]. Altogether, an impairment of endothelium-
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mediated vasodilation appears unlikely to cause CAS by itself, although it might facilitate
the effects of coronary vasoconstrictors “CAS prone” individuals [219].

CAS, particularly multi-focal spasms [23], causes myocardial necrosis via reperfusion
injury [220], leading to reduced diastolic relaxation during angina [221], and the subsequent
development of HFpEF and HFrEF [23–25,67,72]. Of note, left ventricular dysfunction
may recover in about 2 min to baseline when the electrocardiographic abnormalities start
returning to the pre-CAS state [36,134].

Takotsubo cardiomyopathy is an acute and reversible form of unexpected physical
and emotional distress-related HFrEF featuring symptoms and signs of acute MI without
CAD, in which the apex of the left ventricle balloon enlarges to resemble a takotsubo,
a Japanese octopus pot [222]. Despite the syndrome more frequently occurring in older
women than in men [222], it can affect people of any age, including a newborn after delivery
distress with catecholamine-mediated cardiac toxicity [223]. Precipitating mechanisms are
multifactorial and complex, including microvascular and epicardial CAS [222], genetics,
and thyroid disorders [224]. Stress activates the sympathetic nervous system to release
circulatory catecholamines and the hypothalamic-pituitary-adrenal axis to release circu-
latory glucocorticoids [225]. While initially protective for the heart, glucocorticoids not
only increase plasma levels of catecholamines by inhibiting uptake but also induce cardiac
supersensitivity to catecholamines, leading to an enhanced β-adrenoceptor signal transduc-
tion system [225]. Excessive catecholamines induce diminished apical and enhanced basal
wall motion of the left ventricle due to the apicobasal adrenoceptor gradient [224]. Fur-
thermore, low catecholamine levels stimulate cardiac Ca2+ movements, whereas excessive
catecholamine levels induce intracellular Ca2+ overload in cardiomyocytes, resulting in car-
diac dysfunction [226]. On the other hand, under stressful conditions, high catecholamine
levels are oxidized to form oxyradicals, which can cause CAS [225]. Few cases of Takotsubo
cardiomyopathy due to an angiographically confirmed focal, single vessel, or multivessel
CAS have been reported. A retrospective analysis in 10 of 48 (21%) Takotsubo cardiomy-
opathy cases have shown positive provocative CAS, 5 of whom involved both right and
left coronary arteries [227]. Angelini reported 4 cases of Takotsubo cardiomyopathy in
which echocardiographic apical ballooning or similar symptoms could be reproduced by
provocative CAS [228]. Moreover, it has also been demonstrated that alternate recurrent
CAS and Takotsubo cardiomyopathy can exist in the same individual [229]. These ob-
servations underscore the importance of CAS as a culprit process underlying Takotsubo
cardiomyopathy and the targeted treatments accordingly. Further studies will provide
critical insights into this unique issue.

4.3. Cellular and Animal Models of Takotsubo Cardiomyopathy, CAS, and Microvascular CASHrEF

Since the late 1800s, because of the similarity in disease processes among animals and
humans, animal models began to be developed and help elucidate the connection between
dietary cholesterol and atherosclerotic progression [230]. Since then, the inflammatory and
immunological nature of atherosclerosis has been revealed by several studies in patients
and experimental models, underscoring the importance of inflammation in CAD, as well
as in CAS. Investigation of disease-modifying mechanisms in these models will be crucial
for developing future diagnostics and therapy against CAS as well as CASHF. We provide
an introduction to experimental models that are used for CAS studies and the research
techniques that can be utilized (Table 2). Whether these models can be used for CASHF
experiments remains to be elucidated.
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Table 2. Proposed models of takotsubo cardiomyopathy and coronary artery spasm.

Models Mimicry of Human
Disease Year Author Comments

A. Cellular

1. Human Car-
diomyocytes
Derived from
Induced
Pluripotent
Stem Cells
(hiPSC-CMs)

Takotsubo
cardiomyopathy

2022 Fan et al. [224] Catecholamine-treated
hiPSC-CMs or Takotsubo
cardiomyopathy-specific
iPSC-CMs mimic
characteristics in line with
those found in subjects
with Takotsubo
cardiomyopathy.
Additionally, Takotsubo
cardiomyopathy
-iPSC-CMs provide a
feasible and valid cell
source for research of
pathophysiological
mechanisms, drug tests,
ion channels, and gene
functions.

Characteristics:
For the first time, after treatment with high levels of
catecholamines hiPSC-CMs generated from 2 Takotsubo
cardiomyopathy patients showed increased
β-adrenergic signaling in iPSC-CMs [231].

2. Patient
monocyte-
derived
macrophage

CAS 2018
and
2022

Hung et al. [232] and Lin et al. [233]
Characteristics:

(1) Monocyte Isolation from Patient Peripheral Blood
Mononuclear Cells:

After overnight fasting just before angiography, blood
was collected in tubes and centrifuged for 20 minutes at
room temperature. After removing the top layer
without disturbing the red bottom layer, the opaque
middle layer carrying the mononuclear cells was
carefully transferred to a new tube. The mononuclear
cells were washed and isolated using magnetic beads
and cell sorting. Isolated monocyte purity was assessed
and resuspended in Invitrogen™ TRIzol™ reagent. The
total RNA extract was stored at −80 ◦C until use.

(2) Monocyte Differentiation to Macrophage:

For differentiation of monocytes to macrophages,
monocytes were enriched by allowing adherence in an
incubator. While nonadherent cells were discarded,
adherent monocytes were washed. Afterward, the
macrophage medium was used for monocyte
differentiation into macrophages. M1 macrophages
were obtained by treatment with lipopolysaccharides
and interferon-γ, while M2 macrophages were obtained
by treatment with IL-4.

B. Animal
1. Rabbit aortic

strips
CAS 1980 Henry et al. [234]

Characteristics:
Both male and female New Zealand White rabbits
weighing between 2.0 and 2.5 kg were assigned
randomly to 2 dietary groups. One group was
maintained on standard pellets, and the other received
2% cholesterol pellets for 9–10 weeks. Then the rabbits
were sacrificed and the descending thoracic aorta was
quickly excised and cut into strips, then mounted for
the measurement of isometric force in an organ bath.
Spasm was provoked in atherosclerotic arteries by
ergonovine and phenylephrine but not serotonin.
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Table 2. Cont.

Models Mimicry of Human
Disease Year Author Comments

2. Hamster Hereditary
microvascular
CASHFrEF

1982 Factor et al. [220]

Verapamil completely
prevented myocardial
necrosis and fibrosis and
possibly the ultimate
development of
ventricular failure in the
Syrian hamster.

Characteristics:
Both male and female Syrian hamsters of the BIO 53.58
strain obtained from Telaco laboratory were evaluated,
predominantly at 30, 50, and 150 ± 14 days of age. A
few hamsters were also studied at 90 and 210 days of
age. Each cardiomyopathic hamster was compared
with an age- and sex-matched noncardiomyopathic
control shipped in the same batch. Hamsters were fed
standard chow. To elucidate the pathogenesis of
microvascular CAS, perfusion of silicone rubber
solutions revealed numerous areas of microvascular
constriction, diffuse vessel narrowing, and luminal
irregularity. Pretreatment of young hamsters with
verapamil during the period when they developed
myocardial necrosis prevented myocytolytic lesions
and abolished microvascular hyperreactivity. Hence,
focal, transient CAS of small blood vessels, probably
secondary to vasoactive substances, may cause
myocytolytic necrosis in this model.

3. Dog CAS 1982 Noguchi et al. [235]
Characteristics:
Dogs of either sex weighing 14–22 kg were anesthetized
with intravenous sodium pentobarbital (25 mg/kg
avenously). To obtain maximal vasoconstriction in dogs,
0.4 mg/dog of ergonovine maleate was given
intravenously as a bolus. All drugs were diluted with
isotonic sodium chloride solution (saline).

1984 Kawachi et al. [236] 1. >50% of coronary
narrowing is
necessary to induce
regional myocardial
ischemia during
stress in humans
and >85% at rest in
experimental
animals.

2. Ergonovine induced
up to only a 40%
reduction of
coronary luminal
diameter, which
was too mild to
satisfy CAS criteria
of >50% of coronary
narrowing to cause
myocardial
ischemia. As a
result, dogs are a
difficult animal to
produce CAS.

Characteristics:
In mongrel dogs, selective coronary endothelial
denudation by means of cardiac catheterization of
either the left anterior or circumflex coronary artery
was repeated twice at 1 month intervals. Thereafter, a
high-cholesterol diet (20 g/day) was given for 3 and 6
months. No CAS was provoked by intravenous
ergonovine before or immediately after endothelial
denudation, but a significant reduction in the luminar
diameter at the denuded sites, compared with the
non-denuded site and the contralateral coronary
arteries, was noted angiographically in 1–6 months. A
progressive intensity of vasoconstriction in the denuded
site after ergonovine was noted for up to 6 months.
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Table 2. Cont.

Models Mimicry of Human
Disease Year Author Comments

4. Pig CAS 1983 Shimokawa et al. [237]
Characteristics:
Endothelium denudation:
Male Gottingen miniature swine (4–6 months of age;
11–22 kg body weight) were fed on a diet containing 2%
cholesterol for 3 months after they were subjected to
endothelial balloon denudation of the left circumflex
coronary artery. CAS was defined as the transient
excess vasoconstriction that subsides either
spontaneously or after the administration of
nitroglycerin and that is characterized by a decrease of
>75% in coronary diameter compared with that after the
intravenous nitroglycerin (20 µg/kg). CAS was
provoked by intracoronary or intravenous histamine in
doses of 100 to 400 µg. Ergonovine or serotonin was
ineffective to produce CAS. CAS occurred only in the
denuded portion of the left circumflex coronary artery.

1986 Egashira et al. [238]
The degree of
hypercholesterolemia did
not affect the provocation
of CAS by histamine
in pigs.

Characteristics:
Thirty-six disease-free male Göttingen miniature pigs that
were 4–6 months old and weighed 13–21 kg were fed
low-cholesterol regular swine chow before the
experiment. The intracoronary histamine-induced CAS
before endothelial denudation in 5 of 36 consecutive pigs

1996 Shimokawa et al. [239]
Characteristics:
Endothelium non-denudation:
Male Yorkshire pigs, 2–4 months old and weighing
20–30 kg, were used. They were sedated with
intramuscular administration of ketamine
hydrochloride (12.5 mg/kg) and anesthetized with
intravenous sodium pentobarbital (25 mg/kg). The
proximal left anterior and circumflex coronary artery
adventitia was treated with IL-1β-bound beads for
1–4 weeks. Intracoronary serotonin, histamine, or
platelet-activating factor caused CAS at the
IL-1β-treated segment, but not at the control site.
Treatment of the adventitia with platelet-derived
growth factor also mimicked the effect of IL-1β [240].

5. Rat Acquired
microvascular
CASHFrEF

1985 Sonnenblick et al. [102]

This model will allow
specific drug therapy to be
designed to prevent the
progression of
microvascular CASHFrEF.

Characteristics:

(1) In this acquired hypertensive diabetic rat model,
initial focal myocyte necrosis was followed by
focal scars, ventricular hypertrophy, dilatation,
HFrEF, and finally death. Microvascular CAS
associated with small myocyte necrosis had been
shown at an early stage, which then underwent
fibrosis.

(2) Because (1) the coronary microcirculation is
organized as end-capillary loops without
connections in the dogs and humans,
(2) pretreatment of dogs with phentolamine
before embolization prevented myocardial
necrosis, and (3) 25–50 µm microspheres being
embolized to the coronary microcirculation of
dogs and rats leads to focal myocardial necrosis
remarkably similar to the cardiomyopathic
hamster and the hypertensive-diabetic rat,
suggesting that focal myocardial necrosis in
hypertensive diabetic rats is caused not only by
microembolization but also microvascular CAS.
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Table 2. Cont.

Models Mimicry of Human
Disease Year Author Comments

Acquired
microvascular CAS

2013 Pearson et al. [241]
Characteristics:
Male Sprague Dawley rats aged 7 weeks old received
either a vehicle injection of sodium citrate or
streptozotocin to induce type I diabetes. All rats were
given food and water ad libitum. Three weeks after
vehicle or streptozotocin injection all rats underwent
angiography.
Endothelium-dependent and -independent response:
Serial angiograms were documented at the end of 5 min
infusions of vehicle, acetylcholine, and sodium
nitroprusside, during vehicle infusion 30 min after
inhibited production of both nitric oxide and
prostacyclin with Nω-nitro-l-arginine methyl ester and
sodium meclofenamate, respectively. A final image
series was recorded 10 min after administration of
fasudil hydrochloride.

6. Mice CAS 1999 Kinjo et al. [242]
Characteristics:
The mouse p122RhoGAP/DLC-1 cDNA was subcloned
into a plasmid. The resultant recombinant construct
was then microinjected into the pronuclei of fertilized
mouse embryos at the single-cell stage to produce
transgenic mice (C57BL/6J strain). Then experiments
were conducted at the age of 20–30 weeks. After the
mice were anesthetized via intraperitoneal drugs
injection, then the hearts were quickly excised and
transfused via a cannula placed just distal of the intact
aortic valve. Coronary arteries were perfused by either
ergometrine for 20 min or vehicle, followed by the
infusion of Microfil, a liquid latex medium. Coronary
angiography with the Microfilms were obtained by
X-Ray Inspection Systems

2002 Kakkar et al. [129]

No genetic mutation is
noted in association with
amino acid substitution of
SUR in 9 Japanese CAS
patients [243].

Characteristics:
The 2B isoform of SUR2 (SUR2B) was amplified from a
mouse heart cDNA library and placed between the
terminal 441 base pairs (bp) of the SM22α promoter and
the bovine growth hormone termination and
polyadenylation signal sequence. The plasmid
(SM22-SUR2B) was injected into fertilized oocytes.
Spontaneous CAS and sudden death in SUR2 KATP null
mice arise from a coronary artery vascular smooth
muscle-extrinsic process.

2003 Chen et al. [130] Their relevance to CAS in
humans remains to be
elucidated.

Characteristics:
Mice lacking α1H T-type calcium channels have reduced
relaxation in response to acetylcholine.

2006 Chutkow et al. [128] No genetic mutation is
noted in association with
amino acid substitution of
SUR in 9 Japanese CAS
patients [243].

Characteristics:
Episodic CAS and hypertension develop in the absence of
SUR2 KATP channels in SUR2 gene-targeted mice (SUR2–/–).

2007 Malester et al. [244]

No mutation that alters
primary structure of Kir6.1
is detected in 19 Japanese
[245] or 18 Italian [246]
patients with CAS.

Characteristics:
A transgenic mouse model was generatedto specifically
target endothelial KATP channels by expressing a
dominant negative Kir6.1 subunit only in the
endothelium. There was no evidence of increased
susceptibility to ergonovine-induced CAS, but basal
endothelin-1 release was significantly elevated in the
coronary effluent from these hearts. Spontaneous
coronary spasm occurred and consequently led to
sudden death.
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Table 2. Cont.

Models Mimicry of Human
Disease Year Author Comments

2012 Shibutani et al. [247]
Characteristics:
The R257H variant PLC-δ1 cDNA was subcloned into
the plasmid pBsKS(-) including a 4.7-kb fragment of the
mouse α-smooth muscle actin promoter. The resultant
recombinant construct was microinjected into the
pronuclei of fertilized mouse embryos at the single-cell
stage to generate transgenic mice (C57BL/6 strain). The
experiments were conducted at the age of 20–30 weeks.
After anesthesia, ergometrine maleate in two doses
(15 and 50 mg/kg) was administered into the mice’s
jugular vein over 10 min. The electrocardiogram lead II
before and after ergometrine injection was continuously
recorded. ST-segment changes, specifically elevation,
were in comparison with the baseline
electrocardiograms.

2013 Yamada et al. [248]

The relevance of SMP30 to
CAS in humans remains to
be elucidated.

Characteristics:
SMP30 knockout mice bred from C57BL/6 mice were
generated by a gene-targeting technique. Wild-type
C57BL/6 and SMP30 knockout mice (age 8–10 weeks,
weight 22.5 ± 2.6 g) were used for the experiments.
After the mice were anesthetized with an
intraperitoneal drug injection, acetylcholine was
administered through a catheter from the cervical artery
to the aortic sinus in the SMP30 knockout and
wild-type mice. The standard limb leads, aVR, aVL, and
aVF were recorded constantly by an electrocardiograph
at 1-min intervals.

It stands to reason that the investigator must acknowledge the limitations of animal
models so as to construct and interpret relevant experiments cautiously when extrapolated
to humans. Problems in cross-species extrapolation and local differences in the arteries are
well known. The response of the coronary artery in dogs appeared to be different from that
in humans [116]. Isolated vessels often do not respond in the same way in vitro as in situ,
even in the same species. Although, often, only part of the disease is triggered in the animal
during an experiment, even studying these partial processes may help understand the
course and mechanisms of a disease. Genetically modified mice are playing an increasingly
important role in this type of research.

5. Treatment

Traditionally, unless contraindicated, HFrEF should be treated with β-blocker, an-
giotensin receptor–neprilysin inhibitor, angiotensin-converting enzyme inhibitor, or an-
giotensin receptor blocker, with the addition of a mineralocorticoid receptor antagonist
in patients with prominent symptoms [80], while Ivabradine and hydralazine/isosorbide
dinitrate may also be considered in the management of HFrEF [249]. More recently, sodium-
glucose cotransporter 2 inhibitors have much-improved disease outcomes, dramatically
reducing cardiovascular and all-cause mortality regardless of diabetic state, and veri-
ciguat, a stimulator of soluble guanylate cyclase, reduces inpatient admissions for high-risk
HFrEF [80]. Device therapies may have benefits for specific subpopulations of HFrEF [80].
On the contrary, medication classes that are efficacious in HFrEF have been less so in
HFpEF, decreasing the risk of inpatient admissions but not cardiovascular or all-cause
mortality in HFpEF [249]. These observations underline the significance of non-cardiac
comorbidities and underscore the complexity of pathophysiological mechanisms, both
cardiac and non-cardiac, underpinning HFpEF [249].

CASHF cannot be improved by interventional revascularization, and medications
are the cornerstones of treatment. Although the interplay of epicardial and microvascular
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CAS and associated risk factors are clinically relevant and represents a critical differen-
tiator for what may constitute specific therapeutic strategies in CASHF, the CAS-induced
abnormal regional wall motion, dilated left ventricular and reduced systolic function
improved 6 months to >1 year by medications, including calcium channel blockers and ni-
trate/nicorandil [23,72]. HFrEF, e.g., dilated cardiomyopathy in Syrian hamsters [220,250]
and in German patients [251], with CMD possibly caused by CAS, can be improved through
vasodilator effect by the medical treatment with verapamil and diltiazem, respectively.
Of note, while auxiliary diltiazem in suspected CAS-related dilated cardiomyopathy has
mortality benefits, improved symptoms, and hemodynamics by reducing afterload, arrhyth-
mias, and catecholamine levels [251], diltiazem in individuals with infarction-related HFrEF
has a dismal prognosis [252]. On the other hand, calcium channel blockers in non-ischemic
HFrEF are not recommended as first-line therapy. Hence, although first-generation calcium
channel blockers (except amlodipine and felodipine), dihydropyridine, and nondihydropy-
ridine, should be limited in non-CAS-induced HFrEF because of no functional, mortality,
or outcome benefits [253], if HFrEF patients have provoked CAS, calcium channel blockers
might improve myocardial ischemia due to CAS [23,67]. Future research is needed to
investigate the potential therapeutic role of calcium channel blockers in CASHFrEF. In
contrast, the use of β-blockers in CASHFrEF may aggravate CAS [25]. Finally, although
fasudil, a Rho-kinase inhibitor, prevents acetylcholine-induced CAS and associated my-
ocardial ischemia [254], its role in CASHF remains unknown. Additionally, patients with
CAS-related dilated cardiomyopathy have a higher prevalence of atrial fibrillation than
those without CAS [67% vs. 8% (p < 0.05)] [67]. Therefore, dilated cardiomyopathy with
atrial fibrillation is probably an indication to identify CAS [67]. Taken together, although no
guideline addresses the therapeutic significance of calcium channel blockers in CASHF [24],
the differential diagnosis of dilated cardiomyopathy or HFrEF should include CAS since
calcium channel blockers are potentially promising medical options [24,72].

Notwithstanding established treatments for CAD, some patients suffer from refractory
symptoms. The soluble guanylate cyclase stimulator riociguat, licensed for pulmonary
hypertension treatment, has been reported to resolve recurrent and refractory CAS-induced
angina [255]. The drug inhibited the acetylcholine provocation of epicardial CAS, and
resulted in a remarkably satisfactory long-term (10 months) effect on perceived well-
being [255], suggesting that the soluble guanylate cyclase pathway is a potential novel
therapeutic target in CAS. However, randomized controlled clinical trials are necessary to
strengthen this presupposition.

In acute MI, although prompt coronary reperfusion is the most effective way to limit
myocardial injury, the subsequent cardiomyocyte apoptosis, adverse left ventricular remod-
eling, and, finally, ischemic HF, the medical therapies of the subsequent tissue inflammation
and its following suppression and resolution, remains largely unknown [171]. Among
dietary phytochemicals that are naturally plant-derived and have been investigated to offer
some protection against chronic diseases, garcinol demonstrates potential drug treatment
effects in in vitro studies, such as its anti-inflammatory, anti-oxidative, and anti-cancer
properties [256]. In rat models with isoproterenol-induced HFrEF, garcinol treatment in-
creased the heart rate and improved the maximum rate of increase in pressure (+dp/dtmax),
maximum rate of decrease in pressure (−dp/dtmax), ejection fraction, and systolic pres-
sure in the left ventricle [257]. We have previously demonstrated that garcinol suppresses
lipoprotein(a)-induced oxidative stress and inflammatory cytokines by α7-nicotinic acetyl-
choline receptor-mediated inhibition of p38 MAPK/NF-κB signaling in cardiomyocyte
AC16 cells and isoproterenol-induced acute MI mice [258]. These observations suggest that
garcinol may effectively prevent cardiomyocyte apoptosis.

Although inflammation can be a cause–effect event of HF and, hence, a therapeutic
target, clinical trials evaluating anti-inflammatory treatments failed to produce adequate
relief; however, it is as yet uncertain what targeted anti-inflammatory therapy in distinct
sub-phenotypes of HF such as CASHF will prove to be successful [259]. Potential targeted
anti-inflammatory therapies include the inhibition of IL-1β, IL-6, and galectin-3 [259]. In
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CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) trial, subjects
who were canakinumab-responsive (as reflected by a decrease in C-reactive protein) had
a significant drop in HF hospitalizations and the composite of HF hospitalizations and
all-cause mortality by 38% and 32%, respectively, compared with placebo [260]. Although
anti-IL-6 therapies have been approved for rheumatologic and inflammatory disorders,
including tocilizumab, siltuximab, and sarilumab, no clinical trial yet investigates the
effects of IL-6 inhibitors in HF patients [259]. In experimental preclinical studies, pharma-
cologic inhibition of galectin-3 through the utilization of either modified citrus pectin or
N-acetyllactosamine avoids myocardial and renal fibrosis and dysfunction [261,262], which
may warrant further investigation in HF. Among anti-inflammatory agents, NSAID use has
previously been linked to an increased risk of hypervolemia, blood pressure elevation [263],
and HF [264]. In large-scale clinical trials, anti-TNF-α agents did not prevent HF [265].
Taken together, to date, clinical trials of directed anticytokine and anti-inflammatory treat-
ments for HF have proved mostly unsuccessful [259], and the effects of these therapies
have yet studied in CASHF. Of note, because cytokines can become cardioprotective in
certain conditions, the timing (acute or chronic phase following MI) and intensity of the cell
type-specific inhibition (leukocytes, cardiac fibroblasts or cardiomyocytes) must be taken
into account in developing anti-inflammatory therapies [169].

6. Conclusions

CAS is common, though it is still unsolved, and deserves the same fast action as
CAD. Because CAS can cause rapid plaque progression of CAD and the development
of acute coronary syndrome, including MI, underrecognized CAS is concerned with the
health of the individuals and population as a whole, as well as with the health implications
of the economic and social policies, and investment in health policies. While medical
care can prolong survival and improve prognosis after the occurrence of CAD and HF,
more important is to identify ill people afflicted with CAS before the potential subsequent
development of CAD and HF in the first place. It has been demonstrated that after the HF
condition is stabilized, the provocative testing for CAS can be safely performed. Treatment
should be started early once CAS is diagnosed. On the other hand, while HF treatment
aims to control the symptoms and slow down the progression, CASHF is one of a few
conditions in that medical therapy may reverse HF. Furthermore, patients with CASHFrEF
may have associated atrial fibrillation.

CAS has been a multifactorial disorder that cannot be attributed to a single factor alone
(Figure 6). In addition, because vascular smooth muscle cell hyperreactivity is a nonspecific
reaction and CAS-induced angina is not improved by rest, CAS-related angina can occur
under different situations in the same patient. As a consequence, identifying CAS is crucial
in clinical practice because the therapeutic strategies between CAS and obstructive CAD are
different, and calcium channel blockers are needed to improve the left ventricular function
of CASHFrEF. Accordingly, it is of paramount importance to administer intracoronary ni-
troglycerin adequately before coronary interventions to distinguish spontaneous CAS from
obstructive CAD, thus limiting vascular damage to all layers and preventing unnecessary
interventions. Finally, we agree with the Japanese cardiologists to recommend upgrading
the pharmacological CAS provocative testing to Class I in the guidelines in patients with
angina but without obstructive CAD throughout the world.
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Figure 6. Graphical abstract depicting the multifactorial molecular and cellular mechanisms involved
in the initiation and progression of CAS and CAS-related preclinical HF to clinical overt HF. The
development of CAS can be contributed to by smoking, CRP, and Lp(a). Fasudil, Tocilizumab,
Garcinol, and Riociguat are potential disease-modifying therapies of CAS [196,197,201,252]. The
reversible nature of CASHF is suggested and represented by a reciprocal relationship and a positive
feedback loop between epicardial and microvascular CAS. Solid arrows: direct activating interac-
tions; Dashed arrow: indirect activating interactions; Blunt arrows: inhibition. Ach: acetylcholine;
α7-nAChR: α7-nicotinic acetylcholine receptor; CHRNA7: α7-nAChR protein coding gene; CamKII:
calmodulin-dependent kinase II; CAS: coronary artery spasm; CRP: C-reactive protein; HFpEF: heart
failure with reduced ejection fraction; HFrEF: heart failure with reduced ejection fraction; ICAM-1: in-
tercellular adhesion molecule 1; IL-6: Interleukin-6; INOCA: ischemia with non-obstructive coronary
artery disease; Lp(a): lipoprotein(a); MINOCA: myocardial infarction with non-obstructive coronary
artery disease; p38MAPK: p38 mitogen-activated protein kinase; VCAM-1: vascular cell adhesion
molecule 1.
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Avoiding cigarette smoking and alcohol with concomitant appropriate dosing and
timing of calcium antagonists remain the mainstay of CAS therapy. Besides, instead of
treating a specific physical condition, we should focus on the whole person’s health. Anxi-
ety and depression confer high risks for CAS-related myocardial ischemia. In Taiwanese
patients, anxiety is associated with a remarkably 5-fold increased risk of incident CAS [92],
suggesting that simple assessment tools can be used for patients at risk for CAS to evaluate
mental health well-being, and treatments of psychological disorders can have a beneficial
impact on CAS [266]. Because recurrent angina events are commonly observed in CAS, fur-
ther investigation is needed and important to help better clarify the responsible molecular
mechanisms and manage CAS more effectively.
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