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Peptidases represent a large family of hydrolases present in all living organisms, which
catalyze the degradation of peptide bonds in different biological processes [1]. In total,
2% of all protein-coding genes encode peptidases and their homologues in all kinds of
organisms, and there are almost 600 active and putative peptidases in the human genome.
Peptidases are involved in the degradation of off-function proteins in lysosomes, cytosol,
plasma membranes, or in extracellular space; however, they may also have regulatory
roles controlling biological processes crucial for cell homeostasis. In addition to being
involved in normal protein turnover, their irregular function has been associated with
a number of pathological processes, including cancer, neurodegenerative, immune and
cardiovascular disorders, rheumatoid arthritis, osteoarthritis, atherosclerosis, periodontitis,
pancreatitis, osteoporosis, diseases of the insufficient lysosomal degradation of proteins,
and more. In view of the recent COVID-19 pandemic, the function of peptidases in viral
uptake and replication has been exposed, and several approaches to targeting viral or host
peptidases are suggested as tools for the prevention and treatment of disease. In this Special
Issue, Geiger et al. [2] present a novel pyridyl indole ester and peptidomimetics as potent
inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)’s main
protease. In the paper, they analyzed the impact of these compounds on viral replication
and demonstrated that they act in a cell-line-specific way. They further investigated three
compounds in human precision-cut lung slices and observed donor-dependent antiviral
activity. The results show that not only host cell proteolytic profile but also the sensitivity
of viral peptidases for inhibition determine the viral uptake and replication in certain
cell types.

In addition to viral infection and promotion, the peptidases are involved in several
other parasites, such as the protozoan Trypanosoma brucei rhodesiense, which causes Human
African Trypanosomiasis, also known as sleeping sickness, leading to meningoencephalitis.
The cathepsin L-like cysteine peptidase in the parasite is involved in the penetration of
the blood–brain barrier, and its activity is modulated by the chagasin-family endogenous
inhibitor of cysteine peptidases (ICP). By using CP-null (∆icp) mutants and wild-type
strains, Costa et al. [3] demonstrated that ICP plays a pivotal role in T. b. rhodesiense,
allowing the parasite to suppress host vasculature activation, myeloid cell recruitment, and the
production of inflammatory cytokines with consequences to parasite fitness and survival.

Interestingly, cathepsin L-like peptidase was also found in pest insects from the family
of Tenebrionidae, representing 72% of the total expression level of cysteine peptidase genes
in the insect larvae gut. Cathepsin L (NCBI ID NP_001164001) (TcCathL1) appears to be
the main cysteine digestive peptidase in T. castaneum and plays an important role in the
initial steps of food protein digestion [4], including gluten proteins (gliadins) of wheat rich
in proline and glutamine. Dvoryakova et al. [5] describe the expression of cathepsin L as a
proenzyme (rpTcCathL1) and its processing to the mature enzyme and provide a detailed
characterization of the mature enzyme’s properties and its ability to efficiently hydrolyze
different immunogenic gliadin peptides. They propose cathepsin L as a drug candidate for
the enzyme therapy of various types of gluten intolerance.

Additional pest peptidases, i.e., proline-specific peptidases (PSPs) in the midgut of
the larvae of agricultural pests Tenebrio molitor and Tribolium castaneum, have also been
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proposed as candidates for the enzymatic therapy of celiac disease and gluten intolerance
by Tereshchenkova et al. [6].

Bacterial peptidases represent a large group of enzymes with a high potential in
biotechnology, food industry, and crop protection. In most cases, their 3D structure as
well as their detailed functions still remain unknown. In this Special Issue, Petrenko et al.
present the crystal structure of bacterial oligopeptidase B from Serratia proteamaculans
(SpOpB) in a complex with a chloromethyl ketone inhibitor and discuss the similarities and
differences between protozoan and bacterial enzymes [7]. Furthermore, Li et al. [8]. present
the role of bacterial ε-PL-degrading enzyme (pldII) on the antibacterial effect of ε-Poly-L-
lysine (ε-PL). ε-PL is a widely used antibacterial peptide polymerized of 25–35 L-lysine
residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. The
authors utilized the integrative plasmid pSET152-based CRISPRi system to transcriptionally
repress the pldII ε-PL and showed that its repression improves the antibacterial effect of the
ε-PL product.

Three papers, selected for publication in this Special Issue, highlight new issues in
blood coagulation and fibrinolysis cascades, classical topics of peptidase investigations.
In a review paper, Plawinski et al. [9] present the mechanisms of plasminogen reception
and activation at the surface of cell-derived microvesicles, and new actors in fibrinolysis
and proteolysis. Microvesicles therefore provide a catalytic surface for plasmin genera-
tion potentially relevant in pathological settings, such as inflammation, atherosclerosis,
angiogenesis, and tumor growth. In atherosclerotic plaques, the plasmin generation on
macrovesicles could regulate the cell apoptosis/angiogenesis balance, influencing the
plaque vulnerability. The question arises whether profibrinolytic microvesicles are in an
equilibrium with pro-coagulant microvesicles, ensuring a balanced hemostasis, leading to
the maintenance of vascular patency.

The homeostasis of the coagulation–fibrinolysis system is based on a delicate balance
between proteases and their activators and inhibitors. As shown by Pablo-Moreno et al. [10],
one molecule, such as coagulation factor V, can perform both a procoagulant and an
anticoagulant function. The authors explained the dual role of factor V and stressed that
the discovery of cost therapies of factor V deficiency has stretched out over too many years.

Factor-VII-activating protease (FSAP) is another serine peptidase involved in the
regulation of hemostasis and inflammation. Extracellular histones are involved in the
conversion of latent pro-FSAP into active FSAP, which has been shown, among other
functions, to also regulate endothelial permeability. Cui et al. [11] investigated whether
FSAP neutralizes the permeability-related effects of histones released upon tissue injury
or inflammation and explored the effect of the serine protease domain (SPD) of FSAP
on histone-induced endothelial permeability in vitro. The effect of the wild-type (WT)–
SPD–FSAP was compared to the inactive MI–SPD–FSAP, as well as the role of TLR-2 and
-4. Histones upregulated the expression of TLR-2, but not TLR-4, in HUVEC cells, and
WT–SPD–FSAP abolished the upregulation of TLR-2 expression. The inhibition of histone-
mediated permeability may be an important function of FSAP with relevance to sepsis,
trauma, and stroke.

Two further review papers are included in this Special Issue. The first [12] is focused
on the role of legumain in the regulation of biological processes and in the pathogenesis of
various malignant and nonmalignant diseases, including cancer, bone remodeling, cardio-
vascular and cerebrovascular diseases, fibrosis, aging and senescence, and neurodegenera-
tive diseases. The second [13] describes SUMO modification as one of post-translational
regulation processes in eukaryotes. In this process, SUMO protease is responsible for the
maturation of the SUMO precursor and the deconjugation of the SUMO protein from modi-
fied proteins by cleaving behind the C-terminal Gly–Gly motif. The authors systematically
analyzed the specificity of the S. cerevisiae SUMO protease (Ulp1) on the cleavage of the
C-terminal motif.

To summarize, this Special Issue presents only a small view of the research activities
on the role and function of the proteolytic system in physiological processes and on their
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harmful functions in diseases; however, it uncovers the complexity of protein degradation
and highlights the need of further extensive studies to fully understand proteolytic pro-
cesses. The new knowledge can strengthen the potential of these enzymes as targets for the
development of new diagnostic and therapeutic tools for the better treatment of a variety
of related diseases.
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