
Citation: Koehler Leman, J.; Künze,

G. Recent Advances in NMR Protein

Structure Prediction with ROSETTA.

Int. J. Mol. Sci. 2023, 24, 7835.

https://doi.org/10.3390/

ijms24097835

Academic Editors: Gyula Batta and

Orsolya Tőke
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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying
the structure and dynamics of proteins in their native state. For high-resolution NMR structure
determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for
proteins with high molecular weight or a complex architecture. Computational modeling techniques
can complement sparse NMR datasets (<1 restraint per residue) with additional structural information
to elucidate protein structures in these difficult cases. The Rosetta software for protein structure
modeling and design is used by structural biologists for structure determination tasks in which
limited experimental data is available. This review gives an overview of the computational protocols
available in the Rosetta framework for modeling protein structures from NMR data. We explain
the computational algorithms used for the integration of different NMR data types in Rosetta. We
also highlight new developments, including modeling tools for data from paramagnetic NMR and
hydrogen–deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are
discussed to complement and improve structure predictions made by the current state-of-the-art
AlphaFold2 program using NMR-guided Rosetta modeling.

Keywords: Rosetta; NMR spectroscopy; protein structure prediction; molecular modeling; chemical
shifts; residual dipolar couplings; pseudocontact shifts; paramagnetic relaxation enhancements

1. Introduction

NMR spectroscopy is a powerful method for characterizing protein structures at high
resolution in the liquid or solid state. Currently, the Protein Databank (PDB) [1] includes
about 7% (>12,400) protein structures and about 11.5% (>1700) nucleic acid structures (DNA
and RNA) that were determined by NMR spectroscopy. NMR structure determination
typically relies on a large number of structural restraints derived from different NMR data
sources, such as atom pair distance restraints, angle restraints, or orientation restraints [2].
Restraints (also called “constraints” in Rosetta jargon) are used for model scoring and
imply the use of an energy function. They are used to guide a structure search algorithm,
such as simulated annealing, molecular dynamics, or Monte Carlo optimization, producing
an ensemble of structures that best satisfy the NMR restraints [3]. However, for large
proteins in solution, (>25 kDa) NMR datasets can be sparse because of low signal-to-noise
ratios, low spectral resolution, or difficulties in obtaining an unambiguous assignment of
the NMR signals [4,5]. For solid-state NMR spectroscopy, protein size is not a problem per
se [6], but difficulties can arise, e.g., from peak broadening and difficulties in distinguishing
NMR signals owing to intra- vs. intermolecular NMR signals in protein complexes [7–9].
In these challenging structure determination cases, computational modeling is necessary
to supplement sparse NMR restraint sets with other sources of structural information.
While the field of structural biology has been revolutionized by AlphaFold2 [10], predicting
de novo structures with high accuracy in many cases [11], NMR data are still needed
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for structure validation. Furthermore, some types of proteins, e.g., amyloids, disordered
proteins, and proteins in low-populated states, cannot be predicted with AlphaFold2 [12,13]
but can be studied by NMR spectroscopy [14].

Sophisticated software packages are needed to automate NMR structure generation.
Several cycles of spectral assignment, restraint generation, and structure calculation are
usually run to resolve ambiguities in the NMR data and to obtain a converged structural en-
semble with high precision and accuracy. Some of the most frequently used NMR software
packages for biomolecular structure determination include ARIA [15,16], CYANA [17],
ASDP [18], Xplor-NIH [19,20], NMRFAM-Sparky [21], and Rosetta [22]. These programs
come with additional tools to process and analyze the NMR data prior to the structure
calculations and to check the quality of the generated models afterward. To simplify instal-
lation, maintenance, and usage of these software tools and to improve the reproducibility
of the computational workflows, dedicated software environments such as NMRbox [23]
and CCPN [24,25], or web-accessible services such as GeNMR [26], ARIAWeb [27], and
PONDEROSA-C/S [28] have been developed.

A component of many NMR toolchains is Rosetta [22,29], which in itself is a compila-
tion of biomolecular modeling algorithms that can calculate physically realistic structural
models of proteins and other biomolecules with and without NMR data. Only a few struc-
tural biomolecular modeling frameworks have similar capabilities to Rosetta, spanning
applications in structure prediction and modeling with experimental data to protein design
and small-molecule drug discovery. Rosetta can be used to predict protein structures from
sparse NMR data [30–35] because the latter is complemented by sophisticated biomolecular
modeling algorithms. The use of biomolecular modeling algorithms distinguishes Rosetta
from many other NMR programs that rely on the availability of a large number of NMR
restraints to obtain a confident structural model. In addition, Rosetta integrates algorithms
that use data from several other biophysical experiments, such as electron densities from
cryo-electron microscopy (cryo-EM) [36–39] or X-ray crystallography [40,41], small-angle
X-ray scattering (SAXS) [42,43], and mass spectrometry (MS) [44–47]. This comprehensive
toolbox makes it possible to predict structures of large proteins or protein complexes via
an integrative structural biology approach. Many of these Rosetta tools can be run via
web-accessible servers [48–51], which facilitates the use of Rosetta by non-specialist users.

In this review, we summarize the NMR tools available in Rosetta, describe the un-
derlying theory and implementation, and explain new tools using NMR data that were
introduced in the last six years. We highlight recent studies combining Rosetta with NMR
spectroscopy, including integrative structural biology studies on large complexes, and
provide a perspective on synergies between NMR-data-guided Rosetta and AlphaFold2,
which can be exploited in the future.

2. Basic Rosetta Algorithms and Scoring Procedures

While the specific structure calculation approaches used by different Rosetta tools vary,
many protocols use a Monte Carlo Metropolis sampling algorithm to efficiently traverse the
conformational search space. Backbone and side chain sampling is performed in separate
calculation steps, using precomputed peptide fragment or rotamer libraries, respectively, to
quickly model the backbone or side chain conformational preferences. Another distinction
is made between low-resolution (or “centroid”) and high-resolution (or “full-atom”) modes.
In the low-resolution mode, the side chain of each residue is represented by a super atom
(“centroid”). This reduces the degrees of freedom that need to be sampled but preserves
the chemical features of the amino acid residue. A typical low-resolution sampling protocol
involves the folding of the protein-main chain by replacing the existing backbone with
a peptide fragment with altered conformation. A fragment denotes a continuous stretch
of protein backbone with a structure defined by its φ, ψ, and ω torsion angles. In the
high-resolution mode, all atoms, including main chain and side chain atoms, are present.
A typical sidechain optimization protocol is the Rosetta Packer, which runs a Monte Carlo-
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simulated annealing protocol to find the combination of sidechain conformations with the
lowest energy.

The original Rosetta de novo structure prediction algorithm developed by Simons
and Baker [52] predicts 3D structures of proteins by the assembly of short, usually 3- and
9-mer amino acid residue fragments via a Monte Carlo procedure and evaluates models
with the Rosetta scoring function. Only the amino acid sequence is needed as input to the
de novo folding algorithm. In addition, Rosetta provides other algorithms for different
structure prediction tasks. If structures of homologous proteins are available, they can
serve as templates for modeling using the Rosetta comparative modeling (RosettaCM) [53]
method, usually achieving better accuracy than de novo structure prediction. Moreover,
RosettaLigand [54], RosettaDock [55], and Rosetta FlexpPepDock [56] were developed for
predicting the structures of protein–ligand, protein–protein, and protein–peptide complexes.
All these algorithms can be guided with the help of experimental data. The most recent
Rosetta structure prediction methods, trRosetta [57] and RoseTTAFold [58] differ from
the classical Rosetta Monte Carlo algorithm and use instead artificial neural networks
(ANNs). trRosetta uses a neural network to generate inter-residue distance, angle, and
dihedral restraints for an input protein sequence [57]. Quasi-Newton minimization is then
used to optimize the conformation of the amino acid chain into a fold consistent with
the restraints. The trRosetta calculation is faster and provides more accurate structure
predictions than the fragment assembly protocol. Only a few ten to hundred model
structures need to be calculated to reach convergence in the prediction, compared to a few
thousand trial structures that need to be calculated in the fragment assembly protocol.
Structure predictions with even higher accuracies than those possible with trRosetta can
be achieved with RoseTTAFold [58]. RoseTTAFold utilizes a network with 1D, 2D, and
3D attention tracks, which communicate sequence, distance, and coordinate information
about the protein to each other. RoseTTAFold has been used to predict hundreds of new
structures, including those of protein complexes [59].

An integral part of every Rosetta modeling protocol is the Rosetta scoring function. It
is a linear combination of score terms that include physics-based and statistically derived
potentials from known structures. The score terms describe energy components coming
from, e.g., van der Waals interactions, hydrogen bonds, electrostatic interactions, disulfide
bonds, residue solvation, and backbone and side chain torsion angle preferences. A detailed
review of the current REF2015 Rosetta scoring function was published by Alford et al. [60].
The REF2015 scoring function is compatible with canonical and noncanonical L-α-amino
acids, D-α-amino acids, and peptoids. Scoring functions for nucleic acids [61], membrane
proteins [62–65], and carbohydrates [66] have also been added to Rosetta.

3. A Brief History of NMR Methods in Rosetta

Rosetta has been used extensively for NMR-data-assisted protein structure prediction.
The original RosettaNMR method used backbone chemical shifts (CSs) to find structurally
similar peptide fragments in the PDB, which were assembled by a Monte Carlo algorithm
guided by nuclear Overhauser effect (NOE) distance restraints [67]. This approach was
later extended by Rohl and Baker to use residual dipolar couplings (RDCs) for structure
prediction [68]. Meiler and Baker demonstrated that RosettaNMR could be used to predict
the structures of small proteins from unassigned NMR spectral data using an iterative cycle
of model generation guided by partial NMR peak assignments and spectral reassignment
using newly generated models [69]. This approach was later extended with the CS-Rosetta
method for structure prediction of larger proteins up to 25 kDa molecular weight from
backbone-only CSs, RDCs, and amide NOEs [30–32,70]. NMR CS data are highly valuable
for fragment selection and for validation of model quality. However, CS-Rosetta is still
limited to small proteins owing to computational bottlenecks. Improvements could be
achieved by the integration of additional NMR data with orthogonal information content
and by using more advanced search algorithms. The size limit was later pushed up to
40 kDa with the help of more powerful computational sampling algorithms [32,33,71,72],
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such as Resolution-Adapted Structural RECombination (RASREC) [73] or Protein align-
ments Obtained by Matching Of Nmr Assignments (POMONA) [72], which was used for
CS-based comparative modeling of larger proteins.

Additional Rosetta methods were developed for paramagnetic NMR data to take advan-
tage of their value as long-range restraints for protein 3D fold determination. Schmitz et al. [74]
combined backbone pseudocontact shift (PCS) data with Rosetta for structure prediction.
Yagi et al. [75] extended this approach to PCS datasets from multiple tagging sites, which
has been termed GPS-Rosetta, due to the fact that the position of a nucleus can be deter-
mined with PCS data collected on three or more tagging sites by triangulation, similar to
the global positioning system. Künze et al. [76] generalized and extended this framework
to include other paramagnetic NMR data (RDCs induced by alignment by paramagnetic
metal ions, paramagnetic relaxation rates) and used them in other structure determination
protocols, including protein–protein docking and protein–ligand docking, in addition to
de novo folding. Hartlmüller et al. [77] developed a Rosetta method for paramagnetic
relaxation enhancements (PREs) caused by paramagnetic cosolute molecules, referred to as
solvent PREs (sPREs) (see Section 6.2).

The CS-Rosetta approach has also been used for RNAs (called CS-Rosetta-RNA).
Sripakdeevong et al. [78] integrated 1H CS data with Rosetta de novo modeling of RNAs.
Using a benchmark set of 28 RNA motifs, including 11 blind prediction targets, CS-Rosetta-
RNA could recover structures with accuracies of 0.6 to 2.0 Å for 18 RNAs.

In recurring community-wide benchmarks such as the CASD-NMR (Critical Assess-
ment of automated Structure Determination by NMR) experiment [79,80] or the data-
assisted modeling category of the CASP (Critical Assessment of protein Structure Pre-
diction) experiment [34,35], Rosetta ranked among the best-performing methods. This
demonstrates the strength of Rosetta in combining NMR data with sophisticated biomolec-
ular modeling algorithms.

4. Available NMR Data Implementations

Figure 1 summarizes the NMR data types, which can currently be used in Rosetta
calculations, and depicts their structural information content and the corresponding Rosetta
methods. Table 1 gives further details about their algorithmic implementation and lists
references where the development and application of these methods were first described.

Table 1. NMR data types available for protein structure prediction with Rosetta.

NMR Data Type Implementation Type in Rosetta References—
Original Method

References—
Other Examples

CSs
Selection of protein backbone fragments for Rosetta fragment
assembly algorithm. Scoring of protein structures by comparison of
experimental and back-calculated CSs.

[30,81] [31–33,70]

CSs
Identification of template structures for Rosetta comparative
modeling by matching of experimental and back-calculated CS
assignments.

[72] [82,83]

HDX

Scoring of protein structures by comparison of experimental and
model-predicted protection factors or HDX strength categories.
HDX score is a linear combination of residue flexibility and solvent
exposure metrics.

[44,45]

NOEs/PREs
Rosetta distance constraints with user-defined distance range and
potential function. Grouping of constraints into ambiguous
distance constraints is possible.

[32,33,67] [34,35]

PCSs

Scoring of protein structures by comparison of experimental and
back-calculated PCSs. Determination of lanthanide position and ∆χ
tensor via grid search and singular value decomposition or least
squares fitting procedure.

[74–76] [84–86]
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Table 1. Cont.

NMR Data Type Implementation Type in Rosetta References—
Original Method

References—
Other Examples

PCSs Iterative regeneration of a backbone fragment library from models
with good fit to PCS data for successive rounds of de novo folding. [85]

RDCs
Scoring of protein structures by comparison of experimental and
back-calculated RDCs. Determination of alignment tensor by
singular value decomposition or least-squares fitting procedure.

[32,33,68] [42,70,71]

sPREs

Scoring of protein structures by calculating the correlation between
experimental and back-calculated sPREs. The predicted sPREs are
obtained by r−6 summation over all grid positions around a protein
structure, which are accessible to the paramagnetic probe.

[77]

CSs are sensitive and highly reproducible NMR observables, which provide insights
into protein secondary structure and side chain conformations, but also hydrogen bonding,
residue solvation, and other parameters [87–89]. Isotropic CSs are strongly dependent on
the local backbone geometry (i.e., φ/ψ angles) and indicative of the secondary structure
type [90–92], which is the basis for their use in the Rosetta fragment-picking algorithm. The
experimental CSs, as well as CS-derived torsion angle and secondary structure predictions,
are compared to a database of high-resolution structures to select matching backbone
fragments [30,81]. In addition to their use in the fragment selection step, CSs can be used
for model validation by augmentation of the Rosetta scoring function. A score term repre-
senting the difference between experimental and back-calculated CSs (predicted, e.g., with
SPARTA+ [93], SHIFTX2 [94], or PROSHIFT [95]) is used to rescale the Rosetta score to
identify models that are biophysically realistic and in agreement with the experimental data.
In the case of homology modeling, CSs can be used to supplement sequence information
and optimize query-to-template alignment in case of low sequence identities [72], thereby
supporting Rosetta comparative modeling (RosettaCM [53]).

For the incorporation of NOEs and CS-derived torsion angles, Rosetta has a flex-
ible restraint system (termed “constraints” in Rosetta jargon). Rosetta allows defining
constraints with different geometries (distances, angles, torsions) and different potential
functions. To avoid introducing artifacts into structural models caused by erroneous or
misassigned NMR data, the weight of different constraints can be adjusted according
to their confidence levels. For example, for high-confidence NOE distance constraints,
a flat-bottom potential is typically used, whereas, for low-confidence distance constraints,
a sigmoidal function is a better choice. The sigmoidal function has a negative score value
when the constraint is satisfied but is zero when the distance grows much larger than
the defined reference distance. Therefore, large constraint violations (e.g., due to incor-
rectly assigned NOEs) will not negatively bias the structure calculation. Constraints are
defined in a Rosetta-specific, line-based file format (detailed documentation available un-
der: https://rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
(accessed on 15 March 2023)). The CS-Rosetta toolbox (https://csrosetta.chemistry.ucsc.edu
(accessed on 15 March 2023)) provides scripts that facilitate the conversion of NMR-STAR
and other file formats into Rosetta-specific file formats.

https://rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
https://csrosetta.chemistry.ucsc.edu
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the respective NMR data type. The middle column illustrates the structural information encoded by 
the NMR data, and the right column shows the sampling or scoring method through which the 
NMR data are used in Rosetta, as described in the main text. 

Figure 1. NMR data types that can be used in Rosetta calculations and their algorithmic implementa-
tion in Rosetta. The left column schematically depicts the spectral observables used to measure the
respective NMR data type. The middle column illustrates the structural information encoded by the
NMR data, and the right column shows the sampling or scoring method through which the NMR
data are used in Rosetta, as described in the main text.
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For simultaneous, automatic NOESY cross-peak assignment and structure generation,
the autoNOE–Rosetta protocol was developed by Lange et al. [96,97]. AutoNOE–Rosetta
combines the RASREC protocol for automatic structure calculation with algorithms for
automatic NOE assignment, such as network anchoring [98], ambiguous restraints gen-
eration [99], restraint combination [98], and structure-dependent and independent peak
calibration. Starting from CS assignments and unassigned NOESY peak lists, autoNOE–
Rosetta can determine NOE cross-peak assignments and generate structural models without
manual user intervention. This integrated approach maximizes the number of structural
restraints that can be obtained from the NOE data and ensures the self-consistency of the
distance restraints. AutoNOE–Rosetta was found to be quite robust against erroneous
NMR data and could generate accurate models even in cases of incomplete NOE peak lists
and partially incorrect CS assignments [97].

1H-1H NOEs provide short-range distance information and are typically combined
with long-range restraints obtained from RDCs, PCSs, or PREs that report on the global
structure. RDCs encode the orientation of inter-nuclear bond vectors (e.g., N-H, Cα-
Hα) with respect to an overall alignment frame. RDCs provide long-range orientational
restraints, e.g., on the orientation of secondary structure elements or protein domains in
multi-domain proteins [100]. They have been used for structure refinement [101] and de
novo structure determination [102,103] in various strategies. Models can be scored with
RDCs via a so-called WholeStructureEnergy method in Rosetta. This is a special C++ class
in the Rosetta source code used for scoring a model with RDCs, PCSs, sPREs, or other data
types. Given a model generated, e.g., in a Monte Carlo trial step, the alignment tensor
is calculated by singular value decomposition or least-squares fitting procedures, and
the correctness of the structural model is evaluated using the quality of the fit between
experimental and back-calculated RDCs. Sparse RDC datasets (with and without CSs) and
sparse NOE datasets made structure calculations of proteins up to 25 kDa with Rosetta
possible [32].

Paramagnetic relaxation enhancements (PREs) are obtained from the analysis of nu-
clear spin relaxation rates in samples containing a paramagnetic tag, which is typically
site-specifically attached to the protein, and then compared to the diamagnetic reference
sample [104]. Similar to NOEs, PREs show an r−6 distance dependence, and PRE distance
restraints can be used in Rosetta through the constraint system. However, due to the larger
magnetic moment of the unpaired electron of the paramagnetic tag, PREs can be detected
over longer distances and can complement the short-ranging NOE restraints [104]. Solvent
PREs (sPREs) are a special form of PRE data that are obtained in experiments using para-
magnetic cosolutes that interact with the protein surface non-covalently [105,106]. sPREs
provide qualitative information about residue surface accessibility and the global protein
fold and are used in Rosetta via a WholeStructureEnergy method [77] (see Section 6.2).

Pseudocontact shifts (PCSs) are obtained from the chemical shift changes in samples
containing a paramagnetic metal ion (e.g., a lanthanide (Tb3+, Dy3+)) compared to protein
samples loaded with a diamagnetic metal (e.g., Lu3+). Several metal ion-chelating tags for
the site-specific introduction of paramagnetic metal ions into proteins have been developed
(see reviews [107,108] and references therein). Furthermore, tagging strategies using non-
canonical amino acids and bio-orthogonal labeling reactions (e.g., click chemistry) have
been applied [107,109], offering advantages in terms of selectivity and sample stability.
However, the preparation of paramagnetically tagged proteins for the measurement of
multiple PCS datasets is labor-intensive and requires testing multiple labeling positions to
make sure that the protein structure will not be perturbed by the tag.

In contrast to NOEs and PREs, PCSs show an r−3 distance dependence and are also de-
pendent on the orientation of the nuclear spin–metal connection vector relative to the frame
of the anisotropic magnetic susceptibility (∆χ) tensor of the metal ion [84,110]. By immobi-
lizing the metal ion in the protein, this geometric information can be related to the protein
coordinate system, and thus, PCSs can provide a valuable source of structural information.
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PCSs have facilitated the structure determination in several Rosetta protocols, including de
novo folding, protein–protein docking, and protein–ligand docking [74–76,85,86].

More recently, hydrogen–deuterium exchange (HDX) data, which are a measure of
residue solvent accessibility and local flexibility, were implemented in Rosetta [44,45] (see
Section 6.1). Similar to RDCs, PCSs, and sPREs, HDX data are used via a WholeStructureEn-
ergy method.

5. Structure Prediction with Chemical Shift Data in Rosetta

CSs are a prerequisite for NMR studies and are obtained in the early stages of a struc-
ture determination project. CSs can be converted to the backbone and side chain torsion
angle restraints using programs such as TALOS+ [111] and TALOS-N [112], which also
provide accurate secondary structure predictions. Due to their high detection sensitivity
and structural information content [88,89], CSs are favorable restraints for guiding Rosetta
structure prediction. A detailed description of the CS-Rosetta approach can be found in
the references [113,114]. Here, we present a short summary of the basic functionalities of
CS-Rosetta as well as some recent examples in which CS-Rosetta was crucial for gaining
insights into biologically important protein structures.

The original CS-Rosetta method [30] used the fragment picker of the Molecular Frag-
ment Replacement (MFR) method of the NMRPipe software [115]. The MFR method
selected fragments from a database of high-resolution structures based on three scores:
(1) the chemical shift difference between the target protein and database structure (CS
score), (2) the sequence identity between the target and database proteins (Profile score),
and (3) the probability of the database φ/ψ angles given the target sequence (Rama score).
Vernon et al. [81] developed a more advanced and robust CS fragment picker for Rosetta3,
which further improved the MFR fragment picker. In addition to the CS, Profile, and Rama
scores, two more score terms were added to the current CS fragment picker: (1) the TALOS-
SS-similarity score, which evaluates the difference between the CS-derived, TALOS+-
predicted [111] secondary structure of a residue in the target protein and the secondary
structure of matching residues in the database proteins, and (2) the Phi/Psi-SquareWell
score, which is calculated by comparing the CS-derived φ/ψ predictions with the φ/ψ
values of a candidate fragment. These score terms take advantage of the accurate secondary
structure and torsion angle predictions from TALOS+ [111] and improve the quality of the
CS-Rosetta fragments [81].

CSs are also used in the RosettaCM/POMONA protocol [72], which uses CSs for
improving the accuracy of query-to-template alignments within RosettaCM [53] for com-
parative modeling with multiple template structures. In the low-sequence-identity range,
the quality of POMONA alignments was considerably better than the one generated by
the sequence-based alignment program HHSearch [116] but not as good as the one from
DALI [117], which is designed to find structurally similar proteins, regardless of amino
acid sequence. CS-RosettaCM/POMONA calculations were also used for the structure
elucidation of membrane proteins [82,83].

CS-Rosetta has become a widely used method in the structural biology community,
especially for proteins where only backbone assignments are available, and complete side
chain assignments cannot be obtained. Web-accessible servers for CS-Rosetta, hosted,
e.g., by the Biological Magnetic Resonance Data Bank (BMRB) (https://csrosetta.bmrb.
io/ (accessed on 15 March 2023)) and the Bax group (https://spin.niddk.nih.gov/bax/
nmrserver/csrosetta/ (accessed on 15 March 2023)), make the method easy to use by non-
specialists. Thus, CS-Rosetta has been a preferred method for structure calculations on
membrane proteins or large protein assemblies.

Rosetta NMR structure calculations of membrane proteins can make use of the Roset-
taMP framework [64], which includes fast-to-calculate scoring functions for membrane
environments. The implicit membrane solvent model of RosettaMP captures important
properties of biological membranes, e.g., hydrophobic thickness, lipid composition, bilayer
anisotropy, and the presence of water-filled pores or holes in membrane proteins [65].

https://csrosetta.bmrb.io/
https://csrosetta.bmrb.io/
https://spin.niddk.nih.gov/bax/nmrserver/csrosetta/
https://spin.niddk.nih.gov/bax/nmrserver/csrosetta/
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This improves the modeling and design of membrane–protein structural features such
as transmembrane helix packing and alignment, the position of aromatic residues at the
water–membrane interface, and the presence of polar channels or cavities in membrane
proteins that can be permeated by ions or small molecules.

Zhao et al. [118] computed the structure of Aquaporin Z (AqpZ) by CS-Rosetta to
investigate its biological mechanism. AqpZ is an integral membrane protein that facilitates
the transport of water across E. coli cell membranes. The ensemble of AqpZ models was
highly converged and revealed that the side chain of the selectivity filter gate residue
Arg189 is stabilized in a conformation parallel to the membrane normal by two hydrogen
bonds, suggesting that the protein is permanently open under the synthetic membrane
composition conditions of the NMR experiment [118].

Li et al. [119] combined solid-state NMR data and CS-Rosetta calculations to determine
the structure of Diacylglycerol kinase (DgkA) in phospholipid bilayers (Figure 2). DgkA
is an all-helical, trimeric membrane protein (42 kDa) that is responsible for the ATP-
dependent phosphorylation of diacylglycerol to phosphatidic acid. Guided by the CSs as
well as PRE data obtained within and between monomers, the Rosetta calculations yielded
a well-defined trimeric structure. The structure deviated from the solution structure of
DgkA in micelles but was similar to the structure determined by X-ray crystallography
(Figure 2) [119]. The study highlights that the membrane mimetic environment has an
important influence on the structure of all-helical membrane proteins.
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Large circles represent transmembrane helices. “L” and “N” are used to mark the isotopically labeled
and non-labeled monomers, respectively. (B) Folding energy landscape represented by the Rosetta
score-vs.-RMSD plot for DgkA. The RMSD is calculated with respect to the lowest energy structure
(red dot). (C) Ensemble of 10 CS-Rosetta models of DgkA with the best score. (D) Comparison of the
CS-Rosetta model of DgkA reconstituted in E. coli membrane total extracts (magenta) with the one
in lipidic cubic phase determined by X-ray crystallography (cyan) (PDB: 3ZE4) [74], viewed from
the cytoplasm and periplasm. Reprinted (adapted) with permission from [119]. Creative Commons
Attribution 4.0 International License.

Bender et al. [120] developed models of the peptide hormone ghrelin bound to the
growth hormone secretagogue receptor 1a (GHSR), which is a class A G protein-coupled
receptor. The authors employed an integrative structure biology approach, combining
solid-state NMR spectroscopy, site-directed mutagenesis, and Rosetta modeling. Solid-state
NMR CS data obtained on 13C-labeled ghrelin in the receptor-bound state were used as
backbone restraints in an iterative comparative modeling and flexible peptide docking
protocol to develop a model of the ghrelin-GHSR complex. The ensemble of models was
validated against mutational data.

6. Recent Developments of NMR Modeling Methods in Rosetta

In the following sections, we will describe recent developments in Rosetta that were
undertaken to add support for additional NMR data types, such as HDX data as well
as NMR data obtained from paramagnetic tags (e.g., PCSs) or paramagnetic cosolutes
(e.g., sPREs). In addition, a few landmark studies demonstrating the combination of
Rosetta with solid-state NMR data and other types of biophysical data for integrative
modeling of larger proteins and protein complexes will be highlighted.

6.1. Hydrogen–Deuterium Exchange (HDX)

NMR experiments that measure HDX data offer advantages because they have a higher
throughput compared to X-ray crystallography, cryo-EM, or a full panel of NMR ex-
periments required for protein 3D structure determination. HDX data contain informa-
tion about protein structure [121,122], protein dynamics [123,124], and protein binding
sites [125] but have low resolution and are insufficient on their own for full structure
determination. HDX NMR experiments provide a map of residue-specific HDX rates which
are influenced by regional flexibility and residue solvent exposure at the amide hydrogen
position [126]. Computational modeling is needed to generate model structures that can be
compared to HDX data. Previous studies [127–132] demonstrated that sophisticated sam-
pling methods (such as MD simulations) are needed to match structures to the experimental
HDX data, as well as to better understand the factors influencing the HD exchange. HDX
data measured from MS have also been used for computational structure prediction [133]
and for protein–protein docking [134,135].

Marzolf and coworkers [44] developed a computational methodology to incorporate
HDX NMR data into de novo protein structure prediction with Rosetta. The authors intro-
duced a new HDX NMR score term to the Rosetta energy function. The scoring algorithm
considers model features that provide estimates of local residue flexibility and solvent
exposure. The energy of short-range and long-range backbone–backbone hydrogen bonds
(hbond_sr_bb, hbond_lr_bb) and backbone–sidechain hydrogen bonds (hbond_bb_sc),
as well as the order score [136,137], were used to quantify residue flexibility. The latter
is a Rosetta-calculated score for residue disorder, with higher values indicating higher
disorder [137]. They found that lower HDX rates correlate with stronger hydrogen bond
energy and lower order score. The other factor affecting the HDX rate is solvent exposure,
which was quantified using the amide group neighbor count and relative residue solvent
accessible surface area (rSASA). They also found expected correlations, such as decreased
amide group HDX rates with increased neighbor atom counts and decreased rSASA. The
authors defined the HDX score as a weighted sum of the Rosetta score and the score com-
ponents for solvent accessibility (neighbor count, rSASA) and regional flexibility (hydrogen
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bond energy, order score). The individual score components were calculated based on the
deviation of the calculated metrics for a Rosetta model relative to the distribution observed
in protein X-ray structures. If the exposure or flexibility parameters of a residue’s amide
group in a Rosetta model agreed with the distribution of the parameters in the crystal struc-
tures, the residue was rewarded using a term-specific scoring function, with those opposite
penalized. The performance of the HDX NMR protocol was examined on 38 proteins with
available experimental HDX NMR data. The model RMSD to the corresponding crystal
structure over the whole benchmark set improved by 1.4 Å on average, including seven
proteins with an improvement of greater than 4 Å and one protein with an improvement
of more than 11 Å (Figure 3). The model RMSD for core residues improved by 0.9 Å on
average, with an improvement as high as 10.5 Å, indicating that the improvement was
not only occurring in disordered regions. This study emphasizes that HDX NMR data
are highly useful for improving the scoring and selection of models from computational
structure prediction in Rosetta.
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Figure 3. Rosetta structure prediction with HDX data. (A) Correlations of the NMR HDX protection
factor (PF) with neighbor count (NC) (left) and order score (OS) (right). Linear regression lines
are shown in red. Reprinted with permission from [45]. Copyright 2022 Elsevier. (B) Lowest-
scoring models of protein horse milk lysozyme (PDB: 2EQL) and bovine β-lactoglobulin (PDB: 3BLG)
filtered without (red) and with (blue) HDX NMR data are compared to the crystallographic reference
structures (gray). (C) Score-vs.-RMSD plots of Rosetta models of 2EQL and 3BLG scored without (red)
and with (blue) HDX NMR data. Reprinted with permission from [44]. Copyright 2021 American
Chemical Society.

The previous scoring method by Marzolf [44] used HDX strength categories (i.e., strong,
medium, or weak protection) for correlation with structural features instead of actual HDX
rates. Nguyen et al. [45] extended the HDX NMR scoring method in Rosetta by using
explicit quantitative protection factors (PFs), which report on the HDX rates in the structure
calculation. PFs are defined as the ratio of the sequence-dependent intrinsic HDX rate
constant to the observed exchange rate constant. Backbone amides with higher PF are
expected to be less flexible (i.e., participate strongly in hydrogen bonding) and/or have less
solvent exposure. From observed correlations between PFs, residue flexibility, and exposure
metrics (Figure 3A), the authors developed a scoring method to predict HDX PFs from
structures using linear regression, with the difference between experimental and predicted
values incorporated as a score term. Method performance was evaluated on a benchmark
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set of 10 proteins, and an average RMSD improvement of the selected models of 5.1 Å was
observed. The number of cases in which the selected model had an RMSD below 5.5 Å
increased from 7/10 without HDX restraints to 9/10 in the presence of HDX restraints.

6.2. Paramagnetic NMR

Paramagnetic NMR data (PCSs, PREs, and RDCs in paramagnetically aligned samples)
provide valuable structural restraints and are used for many applications in structural
biology and drug discovery, which have been reviewed before [84,110,138–142]. Among
the three paramagnetic NMR data types, PCSs are particularly useful. They can be detected
over long distances (up to 40 Å [143], and with more rigid tags even up to 70 Å [138],
due to their r−3 dependence), encode additional orientation information, and can be
measured with high accuracy from the chemical shift difference between the diamagnetic
and paramagnetic NMR spectra. The groups of Otting and Huber first demonstrated the
potential of combining PCS restraints with Rosetta [74,75,144]. Künze et al. refactored and
generalized Rosetta to include all three paramagnetic NMR data types in one common
framework and extended the application range of the framework [76]. It is now possible to
use PCSs, RDCs, and PREs together with local NMR restraints (CSs, NOEs) for de novo
modeling, comparative modeling, protein–protein and protein–ligand docking, modeling
of symmetric complexes, and more tasks.

Solvent PREs (sPREs) were introduced into Rosetta by Hartlmüller et al. [77]. sPREs
carry surface accessibility information and can be induced by paramagnetic cosolutes,
e.g., Gd3+ chelates such as Gd (DTPA-BMA) or nitroxides such as PROXYL derivatives,
which are added to the biomolecule sample [106]. The authors presented a protein structure
prediction approach in which the distance-to-surface information encoded by the sPRE data
is used to assess the correctness of the predicted protein 3D fold [77]. For computational
efficiency, a fast-to-compute, grid-based scoring method, in which a trial model is compared
to a 3-dimensional grid of sPRE probe positions, was developed. Grid positions that have
no spatial overlap with the protein structure are considered accessible to the sPRE probe.
The sPRE rate of a protein atom is then predicted by summing the contributions to the PRE
rate at the accessible grid points over the integration radius. The sPRE data back-calculated
from the model is then compared to the experimental sPRE data using the Spearman
correlation coefficient and converted into a score. The sPRE score was found to be a good
indicator of model accuracy, especially in the centroid stage of protein structure prediction.
Over a wide Cα-RMSD range of 3–20 Å, the sPRE score showed a high correlation with the
RMSD value, indicating that it can efficiently evaluate the accuracy of the global fold of
a protein, while in the high-resolution range (Cα-RMSD < 2 Å) the Rosetta score showed
a better performance. The sPRE data improved conformational sampling and scoring in
CS-Rosetta, leading to higher accuracy and convergence in structural models, effectively
increasing the size limit of CS-Rosetta. The sPRE-CS-Rosetta method was robust to noisy
and sparse sPRE data, which suggests that it can be useful for the structure determination
of larger proteins with incomplete resonance assignments and sparse datasets.

The developers of the sPRE-CS-Rosetta method also demonstrated that the application
range of sPRE data could be further extended to other biomolecular structure determi-
nation tasks. Hartlmüller et al. applied sPRE data to the high-resolution refinement of
RNA structures [145] and the detection of transient structures in intrinsically disordered
proteins [105], albeit using alternative NMR software packages.

6.3. Integrative Structural Biology on Protein Complexes

Pioneering work combining solid-state NMR (ssNMR) spectroscopy, cryo-EM, and
Rosetta modeling was conducted by Loquet et al. [146]. Using an integrative structural
biology approach, the authors determined the structure of the large Salmonella typhimurium
type III secretion needle system. Rosetta provided a general framework to integrate
the different sources of structural information. A total of 521 NMR distance restraints
(359 intrasubunit and 162 intersubunit restraints) were collected from the 13C-13C ssNMR
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spectra. Scanning transmission electron microscopy (STEM) measurements and the inter-
subunit distance restraints indicated that the number of subunits was ~5.7 per helix turn or
11 subunits per two helix turns. Rosetta Fold-and-Dock calculations [147], guided by the
helical symmetry of the filament and the intra- and intersubunit ssNMR restraints, yielded
a well-converged NMR ensemble with an average pairwise RMSD of 2.1 Å. Two rounds
of structure calculations were performed, the first round using only unambiguous axial
and intramolecular restraints to resolve some initial ambiguities in the NMR data and the
second round using all restraints. Demers et al. [148] applied a similar integrative structural
biology approach to the type III secretion needle system from Shigella flexneri, using nearly
1000 ssNMR restraints and a 7.7 Å low-resolution cryo-EM density map. Furthermore,
low-resolution shape information from SAXS data and sparse NOE and RDC sets were
combined with Rosetta modeling by Rossi et al. [42] to elucidate the oligomerization mode
of symmetric proteins.

The combination of ssNMR spectroscopy and Rosetta is a favorable combination
of methods to obtain the structure of noncrystalline, high-molecular-weight assemblies.
Morag et al. [149] demonstrated this for the M13 bacteriophage capsid and could obtain
structural models of the repeating unit of the 14 MDa capsid using Rosetta modeling
and structural restraints from magic angle spinning (MAS) ssNMR data. In the M13
bacteriophage, the capsid is composed of several thousand identical copies of a major
coat protein arranged in a helical array surrounding the core of circular ssDNA. Two-
dimensional 13C-13C CORD and 13C-13C DARR MAS NMR spectra were used to acquire
structural restraints. CS-Rosetta Fold-and-Dock calculations [147] were then used to derive
an atomic quaternary structure model of the M13 phage capsid. In total, 95 unambiguous
intersubunit restraints and 160 intrasubunit restraints were collected and used in Rosetta
modeling. The Rosetta capsid models revealed details of the subunit packing and showed
that the capsid consists of stacked pentameric rings with a rise of ~16 Å and a tilt of
~36◦ between consecutive pentamers. Interestingly, the structure shows that 80 of the
95 intersubunit restraints define a major hydrophobic pocket that is important for stabilizing
the subunit packing and that is highly conserved.

More recently, the structures of the large BBSome complex (>400 kDa) [150] and the
BAF complex bound to the nucleosome core particle (>1 MDa) [151] were determined using
integrative structural modeling with Rosetta. The use of complementary experimental data
and Rosetta modeling was key because the resolution of the cryo-EM maps was insufficient
to deduce the subunit 3D organization. The subunit structures were obtained by Rosetta
comparative or de novo modeling and assembled in the cryo-EM map guided by Rosetta’s
electron density score [40,41] and residue pair distance restraints. While the distance
restraints used in these studies were derived by cross-linking MS, they are used through
the same Rosetta constraint framework as NOE or PRE data. These examples highlight
that Rosetta provides high flexibility in combining different types of experimental data and
allows for building integrative modeling protocols. The Rosetta-determined BBSome [150]
and BAF complex structures [151] could inform on the subunit binding interactions and
possible mechanisms of action of disease-related missense mutations.

7. Future Directions

The structural biology community has experienced major breakthroughs in highly
accurate protein structure prediction in the last two years due to the development of Al-
phaFold2 [10] and related deep learning methods such as RoseTTAFold [58], ESMFold [152]
and OmegaFold [153]. The accuracy that can be reached by those methods is comparable
to that of experimental structures in some cases [11]. Surprisingly, for some proteins, the
AlphaFold2-generated model was found to match the experimental NMR data as well as or
better than the corresponding high-resolution crystal structure [154] or an expert-generated,
conventional NMR structure [155]. These results show that AlphaFold2 models can be
an accurate representation of the solution conformation of proteins and helpful for guiding
the analysis of experimental NMR data. As a result, high-quality protein models are now
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available that cover the full human proteome [11] and more [156]. Still, there are several
synergies between deep learning structure prediction methods and NMR-guided modeling,
which can be further exploited.

7.1. Augmentation of Deep Learning Methods with NMR Data

One possible direction of development can be the incorporation of NMR data directly
into the neural network prediction process. Next to using the NMR data in a sequen-
tial manner to validate or post-process computationally predicted models, certain NMR
data could also be directly incorporated in the network architectures of RoseTTAFold
or AlphaFold2. Recently, Stahl et al. developed AlphaLink [157], a modified version of
AlphaFold2 that incorporates MS cross-linking (XL) data into the AlphaFold2 network
architecture. The XL contact restraints complement and refine the evolutionary-based
contact information, and, in return, the co-evolutionary contacts suppress noisy XL data.
AlphaLink offers improved performance compared to AlphaFold2 in cases of challenging
targets such as proteins with shallow multiple sequence alignments (MSAs) or multiple
conformational states [157]. The authors note that their approach is also applicable to other
types of experimental distance information (e.g., NOEs). Moreover, Watson et al. [158]
have shown that the RoseTTAFold neural network can be modified for other prediction
tasks (e.g., protein design), which could offer the possibility to fine-tune the network using
structural information from NMR.

7.2. Modeling of Alternative Conformational States

In some cases, AlphaFold2 can deliver structure predictions representing more than
one conformational state for the same target protein. Using different strategies for prepar-
ing the input information for AlphaFold2, such as subsampling of sequences from the
MSA created for the target protein [159], iterative masking of columns in the MSA (by in
silico mutation to alanine) [160], or providing template structures in different states [161],
allowed generating ensembles of dissimilar models with AlphaFold2. The combination
of AlphaFold2 and NMR spectroscopy promises to be a powerful approach for assess-
ing the accuracy and functional relevance of these AlphaFold2 ensembles and for better
understanding protein structural dynamics [162]. For instance, NMR relaxation disper-
sion experiments can report on protein conformational changes occurring on the µs-ms
timescale [163]. These methods can deliver CS information on alternative minor states and
on the interconversion rate between the ground state and the minor state. The CS data can
be used to identify models from the AlphaFold2 ensemble that best represent the weakly
populated conformational state. Subsequently, CS-Rosetta calculations can be employed
to refine the model to high accuracy, as shown by Fenwick et al. [164]. In addition to CS
data, PCSs, and other paramagnetic NMR data [104] could also be used to detect lowly
populated states using relaxation dispersion [165] or chemical exchange saturation transfer
(CEST) experiments [166]. Pilla et al. demonstrated a Rosetta workflow for modeling
conformational changes using sparse PCS datasets obtained on the closed and open forms
of the 27 kDa dengue virus serotype 2 NS2B-NS3 protease [144]. Similar workflows can be
applied to refine AlphaFold2 models towards a state that reflects the experimental NMR
measurements. These protein models can be extremely helpful to obtain insight into the
molecular function of the lowly populated conformational states, which often play roles in,
e.g., enzyme catalysis, ligand binding, or molecular recognition [167,168].

7.3. Modeling of Disordered Proteins and Protein Fibrils

Another area where Rosetta and NMR can meaningfully complement AlphaFold2
is the modeling of structurally disordered protein regions. Within the human proteome,
about 30% of regions are disordered [169,170], and they frequently interact with other
proteins and function as hubs in protein interaction networks. Protein regions with a low
confidence score in AlphaFold2, indicated by low predicted Local Distance Difference
Test (pLDDT) scores, are almost always disordered. This makes AlphaFold2’s pLDDT
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score a rigorous metric for identifying disordered regions in proteins [11,171]. However,
the extended chain depiction of low-confidence regions visible in AlphaFold2 models is
not an accurate representation of the structure of disordered domains. It is well known
from NMR and SAXS measurements that disordered regions can contain many transient
conformations and adopt compact states, especially when they undergo liquid/liquid
phase separation [172,173]. While in silico modeling of disordered proteins has largely
been carried out using MD simulations, some Monte Carlo methods in Rosetta have
also been applied to disordered regions. Wang et al. modeled disordered regions by
increasing the repulsive interactions and turning off attractive forces between residues in
disordered regions and with the rest of the protein [174]. Ferrie et al. used the FloppyTail
algorithm [175] to model disordered parts of proteins [176]. The fragment picker was also
used to predict the local conformational preference of intrinsically disordered proteins with
and without CS information [177].

Some disordered proteins can form amyloid fibrils under certain conditions, repre-
senting another challenging prediction case for AlphaFold2 [13]. In particular, AlphaFold2
fails to predict the structural polymorphism that is characteristic of some amyloid-forming
proteins, such as the tau protein. The tau fibril structures found in different tau patholo-
gies reveal a diversity of folds, which cannot be reasoned from the protein sequence
alone [178,179]. However, structures of amyloid fibrils are accessible for characterization
by solid-state NMR spectroscopy, providing restraints for Rosetta structural calculations,
as shown for Aβ [180–182] and α-synuclein [183].

In summary, NMR-guided Rosetta modeling and AlphaFold2 exhibit synergies, which
can be exploited to create powerful method workflows. Structural insights on proteins ob-
tained from these simulations will advance our understanding of their biological functions
and provide a basis for modifying protein functions for biotechnological and pharmaceuti-
cal applications.

Author Contributions: Conceptualization, G.K. and J.K.L.; investigation, G.K. and J.K.L.; data
curation, G.K. and J.K.L.; writing—original draft preparation, G.K.; writing—review and editing, G.K.
and J.K.L.; visualization, G.K. and J.K.L. All authors have read and agreed to the published version
of the manuscript.

Funding: J.K.L. is funded by the Flatiron Institute as part of the Simons Foundation. This work
was funded by the Open Access Publishing Fund of Leipzig University, supported by the German
Research Foundation within the program Open Access Publication Funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank.

Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]
2. Driscoll, P.C. Structure Determination by NMR: Overview. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 2488–2495. ISBN 978-3-642-16712-6.
3. Guntert, P. Calculation of Structures from NMR Restraints. In Protein NMR Spectroscopy: Practical Techniques and Applications; John

Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 159–192. ISBN 978-1-119-97200-6.
4. Jiang, Y.; Kalodimos, C.G. NMR Studies of Large Proteins. J. Mol. Biol. 2017, 429, 2667–2676. [CrossRef] [PubMed]
5. Danmaliki, G.I.; Hwang, P.M. Solution NMR Spectroscopy of Membrane Proteins. Biochim. Biophys. Acta (BBA)—Biomembr. 2020,

1862, 183356. [CrossRef]
6. Reif, B.; Ashbrook, S.E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 2. [CrossRef]

[PubMed]
7. Mandala, V.S.; Williams, J.K.; Hong, M. Structure and Dynamics of Membrane Proteins from Solid-State NMR. Annu. Rev. Biophys.

2018, 47, 201–222. [CrossRef]
8. Liu, J.; Wu, X.; Zeng, Y.; Hu, Z.; Lu, J. Solid-State NMR Studies of Amyloids. Structure 2023, 31, 230–243. [CrossRef]
9. Habenstein, B.; Loquet, A. Solid-State NMR: An Emerging Technique in Structural Biology of Self-Assemblies. Biophys. Chem.

2016, 210, 14–26. [CrossRef]

https://doi.org/10.1093/nar/28.1.235
https://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1016/j.jmb.2017.07.007
https://www.ncbi.nlm.nih.gov/pubmed/28728982
https://doi.org/10.1016/j.bbamem.2020.183356
https://doi.org/10.1038/s43586-020-00002-1
https://www.ncbi.nlm.nih.gov/pubmed/34368784
https://doi.org/10.1146/annurev-biophys-070816-033712
https://doi.org/10.1016/j.str.2023.01.005
https://doi.org/10.1016/j.bpc.2015.07.003


Int. J. Mol. Sci. 2023, 24, 7835 16 of 22

10. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

11. Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al.
Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [CrossRef]

12. Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208.
[CrossRef]

13. Pinheiro, F.; Santos, J.; Ventura, S. AlphaFold and the Amyloid Landscape. J. Mol. Biol. 2021, 433, 167059. [CrossRef] [PubMed]
14. Gibbs, E.B.; Cook, E.C.; Showalter, S.A. Application of NMR to Studies of Intrinsically Disordered Proteins. Arch. Biochem. Biophys.

2017, 628, 57–70. [CrossRef] [PubMed]
15. Linge, J.P.; Habeck, M.; Rieping, W.; Nilges, M. ARIA: Automated NOE Assignment and NMR Structure Calculation. Bioinformatics

2003, 19, 315–316. [CrossRef] [PubMed]
16. Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T.E.; Nilges, M. ARIA2: Automated NOE Assignment and Data

Integration in NMR Structure Calculation. Bioinformatics 2007, 23, 381–382. [CrossRef]
17. Güntert, P.; Buchner, L. Combined Automated NOE Assignment and Structure Calculation with CYANA. J. Biomol. NMR 2015,

62, 453–471. [CrossRef] [PubMed]
18. Huang, Y.J.; Tejero, R.; Powers, R.; Montelione, G.T. A Topology-Constrained Distance Network Algorithm for Protein Structure

Determination from NOESY Data. Proteins 2006, 62, 587–603. [CrossRef]
19. Schwieters, C.D.; Kuszewski, J.J.; Tjandra, N.; Clore, G.M. The Xplor-NIH NMR Molecular Structure Determination Package.

J. Magn. Reson. 2003, 160, 65–73. [CrossRef]
20. Bermejo, G.A.; Schwieters, C.D. Protein Structure Elucidation from NMR Data with the Program Xplor-NIH. Methods Mol. Biol.

2018, 1688, 311–340. [CrossRef]
21. Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced Software for Biomolecular NMR Spectroscopy. Bioinformatics

2015, 31, 1325–1327. [CrossRef]
22. Leman, J.K.; Weitzner, B.D.; Lewis, S.M.; Adolf-Bryfogle, J.; Alam, N.; Alford, R.F.; Aprahamian, M.; Baker, D.; Barlow, K.A.;

Barth, P.; et al. Macromolecular Modeling and Design in Rosetta: Recent Methods and Frameworks. Nat. Methods 2020, 17,
665–680. [CrossRef]

23. Maciejewski, M.W.; Schuyler, A.D.; Gryk, M.R.; Moraru, I.I.; Romero, P.R.; Ulrich, E.L.; Eghbalnia, H.R.; Livny, M.; Delaglio, F.;
Hoch, J.C. NMRbox: A Resource for Biomolecular NMR Computation. Biophys. J. 2017, 112, 1529–1534. [CrossRef] [PubMed]

24. Vranken, W.F.; Boucher, W.; Stevens, T.J.; Fogh, R.H.; Pajon, A.; Llinas, M.; Ulrich, E.L.; Markley, J.L.; Ionides, J.; Laue, E.D. The
CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline. Proteins Struct. Funct. Bioinform. 2005, 59,
687–696. [CrossRef]

25. Skinner, S.P.; Fogh, R.H.; Boucher, W.; Ragan, T.J.; Mureddu, L.G.; Vuister, G.W. CcpNmr AnalysisAssign: A Flexible Platform for
Integrated NMR Analysis. J. Biomol. NMR 2016, 66, 111–124. [CrossRef]

26. Berjanskii, M.; Tang, P.; Liang, J.; Cruz, J.A.; Zhou, J.; Zhou, Y.; Bassett, E.; MacDonell, C.; Lu, P.; Lin, G.; et al. GeNMR: A Web
Server for Rapid NMR-Based Protein Structure Determination. Nucleic Acids Res. 2009, 37, W670–W677. [CrossRef]

27. Allain, F.; Mareuil, F.; Ménager, H.; Nilges, M.; Bardiaux, B. ARIAweb: A Server for Automated NMR Structure Calculation.
Nucleic Acids Res. 2020, 48, W41–W47. [CrossRef] [PubMed]

28. Lee, W.; Stark, J.L.; Markley, J.L. PONDEROSA-C/S: Client–Server Based Software Package for Automated Protein 3D Structure
Determination. J. Biomol. NMR 2014, 60, 73–75. [CrossRef] [PubMed]

29. Bender, B.J.; Cisneros, A., 3rd; Duran, A.M.; Finn, J.A.; Fu, D.; Lokits, A.D.; Mueller, B.K.; Sangha, A.K.; Sauer, M.F.;
Sevy, A.M.; et al. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016, 55, 4748–4763. [CrossRef]

30. Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J.M.; Liu, G.H.; Eletsky, A.; Wu, Y.B.; Singarapu, K.K.; Lemak, A.; et al.
Consistent Blind Protein Structure Generation from NMR Chemical Shift Data. Proc. Natl. Acad. Sci. USA 2008, 105, 4685–4690.
[CrossRef]

31. Shen, Y.; Vernon, R.; Baker, D.; Bax, A. De Novo Protein Structure Generation from Incomplete Chemical Shift Assignments.
J. Biomol. NMR 2009, 43, 63–78. [CrossRef]

32. Raman, S.; Lange, O.F.; Rossi, P.; Tyka, M.; Wang, X.; Aramini, J.; Liu, G.; Ramelot, T.A.; Eletsky, A.; Szyperski, T.; et al. NMR
Structure Determination for Larger Proteins Using Backbone-Only Data. Science 2010, 327, 1014–1018. [CrossRef]

33. Lange, O.F.; Rossi, P.; Sgourakis, N.G.; Song, Y.; Lee, H.W.; Aramini, J.M.; Ertekin, A.; Xiao, R.; Acton, T.B.; Montelione, G.T.; et al.
Determination of Solution Structures of Proteins up to 40 KDa Using CS-Rosetta with Sparse NMR Data from Deuterated Samples.
Proc. Natl. Acad. Sci. USA 2012, 109, 10873–10878. [CrossRef]

34. Ovchinnikov, S.; Park, H.; Kim, D.E.; Liu, Y.; Wang, R.Y.; Baker, D. Structure Prediction Using Sparse Simulated NOE Restraints
with Rosetta in CASP11. Proteins 2016, 84 (Suppl. S1), 181–188. [CrossRef] [PubMed]

35. Kuenze, G.; Meiler, J. Protein Structure Prediction Using Sparse NOE and RDC Restraints with Rosetta in CASP13. Proteins 2019,
87, 1341–1350. [CrossRef] [PubMed]

36. Wang, R.Y.; Kudryashev, M.; Li, X.; Egelman, E.H.; Basler, M.; Cheng, Y.; Baker, D.; DiMaio, F. De Novo Protein Structure
Determination from Near-Atomic-Resolution Cryo-EM Maps. Nat. Methods 2015, 12, 335–338. [CrossRef]

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1016/j.jmb.2021.167208
https://doi.org/10.1016/j.jmb.2021.167059
https://www.ncbi.nlm.nih.gov/pubmed/34023402
https://doi.org/10.1016/j.abb.2017.05.008
https://www.ncbi.nlm.nih.gov/pubmed/28502465
https://doi.org/10.1093/bioinformatics/19.2.315
https://www.ncbi.nlm.nih.gov/pubmed/12538267
https://doi.org/10.1093/bioinformatics/btl589
https://doi.org/10.1007/s10858-015-9924-9
https://www.ncbi.nlm.nih.gov/pubmed/25801209
https://doi.org/10.1002/prot.20820
https://doi.org/10.1016/S1090-7807(02)00014-9
https://doi.org/10.1007/978-1-4939-7386-6_14
https://doi.org/10.1093/bioinformatics/btu830
https://doi.org/10.1038/s41592-020-0848-2
https://doi.org/10.1016/j.bpj.2017.03.011
https://www.ncbi.nlm.nih.gov/pubmed/28445744
https://doi.org/10.1002/prot.20449
https://doi.org/10.1007/s10858-016-0060-y
https://doi.org/10.1093/nar/gkp280
https://doi.org/10.1093/nar/gkaa362
https://www.ncbi.nlm.nih.gov/pubmed/32383755
https://doi.org/10.1007/s10858-014-9855-x
https://www.ncbi.nlm.nih.gov/pubmed/25190042
https://doi.org/10.1021/acs.biochem.6b00444
https://doi.org/10.1073/pnas.0800256105
https://doi.org/10.1007/s10858-008-9288-5
https://doi.org/10.1126/science.1183649
https://doi.org/10.1073/pnas.1203013109
https://doi.org/10.1002/prot.25006
https://www.ncbi.nlm.nih.gov/pubmed/26857542
https://doi.org/10.1002/prot.25769
https://www.ncbi.nlm.nih.gov/pubmed/31292988
https://doi.org/10.1038/nmeth.3287


Int. J. Mol. Sci. 2023, 24, 7835 17 of 22

37. DiMaio, F.; Song, Y.; Li, X.; Brunner, M.J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T.C.; Cheng, Y.; Baker, D. Atomic-Accuracy
Models from 4.5-Å Cryo-Electron Microscopy Data with Density-Guided Iterative Local Refinement. Nat. Methods 2015, 12,
361–365. [CrossRef] [PubMed]

38. Wang, R.Y.; Song, Y.; Barad, B.A.; Cheng, Y.; Fraser, J.S.; DiMaio, F. Automated Structure Refinement of Macromolecular
Assemblies from Cryo-EM Maps Using Rosetta. eLife 2016, 5, e17219. [CrossRef] [PubMed]

39. Frenz, B.; Walls, A.C.; Egelman, E.H.; Veesler, D.; DiMaio, F. RosettaES: A Sampling Strategy Enabling Automated Interpretation
of Difficult Cryo-EM Maps. Nat. Methods 2017, 14, 797–800. [CrossRef]

40. DiMaio, F.; Terwilliger, T.C.; Read, R.J.; Wlodawer, A.; Oberdorfer, G.; Wagner, U.; Valkov, E.; Alon, A.; Fass, D.; Axelrod, H.L.; et al.
Improved Molecular Replacement by Density- and Energy-Guided Protein Structure Optimization. Nature 2011, 473, 540–543.
[CrossRef]

41. DiMaio, F.; Echols, N.; Headd, J.J.; Terwilliger, T.C.; Adams, P.D.; Baker, D. Improved Low-Resolution Crystallographic Refinement
with Phenix and Rosetta. Nat. Methods 2013, 10, 1102–1104. [CrossRef]

42. Rossi, P.; Shi, L.; Liu, G.; Barbieri, C.M.; Lee, H.W.; Grant, T.D.; Luft, J.R.; Xiao, R.; Acton, T.B.; Snell, E.H.; et al. A Hybrid
NMR/SAXS-Based Approach for Discriminating Oligomeric Protein Interfaces Using Rosetta. Proteins 2015, 83, 309–317.
[CrossRef]

43. Sønderby, P.; Rinnan, Å.; Madsen, J.J.; Harris, P.; Bukrinski, J.T.; Peters, G.H.J. Small-Angle X-Ray Scattering Data in Combination
with RosettaDock Improves the Docking Energy Landscape. J. Chem. Inf. Model. 2017, 57, 2463–2475. [CrossRef] [PubMed]

44. Marzolf, D.R.; Seffernick, J.T.; Lindert, S. Protein Structure Prediction from NMR Hydrogen–Deuterium Exchange Data. J. Chem.
Theory Comput. 2021, 17, 2619–2629. [CrossRef] [PubMed]

45. Nguyen, T.T.; Marzolf, D.R.; Seffernick, J.T.; Heinze, S.; Lindert, S. Protein Structure Prediction Using Residue-Resolved Protection
Factors from Hydrogen-Deuterium Exchange NMR. Structure 2022, 30, 313–320.e3. [CrossRef]

46. Aprahamian, M.L.; Chea, E.E.; Jones, L.M.; Lindert, S. Rosetta Protein Structure Prediction from Hydroxyl Radical Protein
Footprinting Mass Spectrometry Data. Anal. Chem. 2018, 90, 7721–7729. [CrossRef] [PubMed]

47. Drake, Z.C.; Seffernick, J.T.; Lindert, S. Protein Complex Prediction Using Rosetta, AlphaFold, and Mass Spectrometry Covalent
Labeling. Nat. Commun. 2022, 13, 7846. [CrossRef]

48. Kim, D.E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis Using the Robetta Server. Nucleic Acids Res. 2004, 32,
W526–W531. [CrossRef]

49. London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock Web Server—High Resolution Modeling
of Peptide–Protein Interactions. Nucleic Acids Res. 2011, 39, W249–W253. [CrossRef]

50. Moretti, R.; Lyskov, S.; Das, R.; Meiler, J.; Gray, J.J. Web-Accessible Molecular Modeling with Rosetta: The Rosetta Online Server
That Includes Everyone (ROSIE). Protein Sci. 2018, 27, 259–268. [CrossRef]

51. Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The TrRosetta Server for Fast and Accurate
Protein Structure Prediction. Nat. Protoc. 2021, 16, 5634–5651. [CrossRef]

52. Simons, K.T.; Kooperberg, C.; Huang, E.; Baker, D. Assembly of Protein Tertiary Structures from Fragments with Similar Local
Sequences Using Simulated Annealing and Bayesian Scoring Functions. J. Mol. Biol. 1997, 268, 209–225. [CrossRef]

53. Song, Y.; DiMaio, F.; Wang, R.Y.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative Modeling
with RosettaCM. Structure 2013, 21, 1735–1742. [CrossRef]

54. Meiler, J.; Baker, D. ROSETTALIGAND: Protein-Small Molecule Docking with Full Side-Chain Flexibility. Proteins 2006, 65,
538–548. [CrossRef]

55. Gray, J.J.; Moughon, S.; Wang, C.; Schueler-Furman, O.; Kuhlman, B.; Rohl, C.A.; Baker, D. Protein-Protein Docking with
Simultaneous Optimization of Rigid-Body Displacement and Side-Chain Conformations. J. Mol. Biol. 2003, 331, 281–299.
[CrossRef] [PubMed]

56. Raveh, B.; London, N.; Schueler-Furman, O. Sub-Angstrom Modeling of Complexes between Flexible Peptides and Globular
Proteins. Proteins 2010, 78, 2029–2040. [CrossRef]

57. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved Protein Structure Prediction Using Predicted
Interresidue Orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [CrossRef] [PubMed]

58. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al.
Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876.
[CrossRef]

59. Humphreys, I.R.; Pei, J.; Baek, M.; Krishnakumar, A.; Anishchenko, I.; Ovchinnikov, S.; Zhang, J.; Ness, T.J.; Banjade, S.;
Bagde, S.R.; et al. Computed Structures of Core Eukaryotic Protein Complexes. Science 2021, 374, eabm4805. [CrossRef] [PubMed]

60. Alford, R.F.; Leaver-Fay, A.; Jeliazkov, J.R.; O’Meara, M.J.; DiMaio, F.P.; Park, H.; Shapovalov, M.V.; Renfrew, P.D.; Mulligan, V.K.;
Kappel, K.; et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017,
13, 3031–3048. [CrossRef]

61. Chou, F.-C.; Kladwang, W.; Kappel, K.; Das, R. Blind Tests of RNA Nearest-Neighbor Energy Prediction. Proc. Natl. Acad. Sci.
USA 2016, 113, 8430–8435. [CrossRef]

62. Yarov-Yarovoy, V.; Schonbrun, J.; Baker, D. Multipass Membrane Protein Structure Prediction Using Rosetta. Proteins 2006, 62,
1010–1025. [CrossRef]

https://doi.org/10.1038/nmeth.3286
https://www.ncbi.nlm.nih.gov/pubmed/25707030
https://doi.org/10.7554/eLife.17219
https://www.ncbi.nlm.nih.gov/pubmed/27669148
https://doi.org/10.1038/nmeth.4340
https://doi.org/10.1038/nature09964
https://doi.org/10.1038/nmeth.2648
https://doi.org/10.1002/prot.24719
https://doi.org/10.1021/acs.jcim.6b00789
https://www.ncbi.nlm.nih.gov/pubmed/28853875
https://doi.org/10.1021/acs.jctc.1c00077
https://www.ncbi.nlm.nih.gov/pubmed/33780620
https://doi.org/10.1016/j.str.2021.10.006
https://doi.org/10.1021/acs.analchem.8b01624
https://www.ncbi.nlm.nih.gov/pubmed/29874044
https://doi.org/10.1038/s41467-022-35593-8
https://doi.org/10.1093/nar/gkh468
https://doi.org/10.1093/nar/gkr431
https://doi.org/10.1002/pro.3313
https://doi.org/10.1038/s41596-021-00628-9
https://doi.org/10.1006/jmbi.1997.0959
https://doi.org/10.1016/j.str.2013.08.005
https://doi.org/10.1002/prot.21086
https://doi.org/10.1016/S0022-2836(03)00670-3
https://www.ncbi.nlm.nih.gov/pubmed/12875852
https://doi.org/10.1002/prot.22716
https://doi.org/10.1073/pnas.1914677117
https://www.ncbi.nlm.nih.gov/pubmed/31896580
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1126/science.abm4805
https://www.ncbi.nlm.nih.gov/pubmed/34762488
https://doi.org/10.1021/acs.jctc.7b00125
https://doi.org/10.1073/pnas.1523335113
https://doi.org/10.1002/prot.20817


Int. J. Mol. Sci. 2023, 24, 7835 18 of 22

63. Barth, P.; Schonbrun, J.; Baker, D. Toward High-Resolution Prediction and Design of Transmembrane Helical Protein Structures.
Proc. Natl. Acad. Sci. USA 2007, 104, 15682–15687. [CrossRef] [PubMed]

64. Alford, R.F.; Leman, J.K.; Weitzner, B.D.; Duran, A.M.; Tilley, D.C.; Elazar, A.; Gray, J.J. An Integrated Framework Advancing
Membrane Protein Modeling and Design. PLoS Comput. Biol. 2015, 11, e1004398. [CrossRef] [PubMed]

65. Alford, R.F.; Fleming, P.J.; Fleming, K.G.; Gray, J.J. Protein Structure Prediction and Design in a Biologically Realistic Implicit
Membrane. Biophys. J. 2020, 118, 2042–2055. [CrossRef] [PubMed]

66. Labonte, J.W.; Adolf-Bryfogle, J.; Schief, W.R.; Gray, J.J. Residue-Centric Modeling and Design of Saccharide and Glycoconjugate
Structures. J. Comput. Chem. 2017, 38, 276–287. [CrossRef]

67. Bowers, P.M.; Strauss, C.E.M.; Baker, D. Denovo Protein Structure Determination Using Sparse NMR Data. J. Biomol. NMR 2000,
18, 311–318. [CrossRef]

68. Rohl, C.A.; Baker, D. De Novo Determination of Protein Backbone Structure from Residual Dipolar Couplings Using Rosetta.
J. Am. Chem. Soc. 2002, 124, 2723–2729. [CrossRef]

69. Meiler, J.; Baker, D. Rapid Protein Fold Determination Using Unassigned NMR Data. Proc. Natl. Acad. Sci. USA 2003, 100,
15404–15409. [CrossRef]

70. Sgourakis, N.G.; Lange, O.F.; DiMaio, F.; Andre, I.; Fitzkee, N.C.; Rossi, P.; Montelione, G.T.; Bax, A.; Baker, D. Determination of
the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. J. Am. Chem. Soc.
2011, 133, 6288–6298. [CrossRef]

71. Thompson, J.M.; Sgourakis, N.G.; Liu, G.; Rossi, P.; Tang, Y.; Mills, J.L.; Szyperski, T.; Montelione, G.T.; Baker, D. Accurate Protein
Structure Modeling Using Sparse NMR Data and Homologous Structure Information. Proc. Natl. Acad. Sci. USA 2012, 109,
9875–9880. [CrossRef]

72. Shen, Y.; Bax, A. Homology Modeling of Larger Proteins Guided by Chemical Shifts. Nat. Methods 2015, 12, 747–750. [CrossRef]
73. Lange, O.F.; Baker, D. Resolution-Adapted Recombination of Structural Features Significantly Improves Sampling in Restraint-

Guided Structure Calculation. Proteins Struct. Funct. Bioinform. 2012, 80, 884–895. [CrossRef] [PubMed]
74. Schmitz, C.; Vernon, R.; Otting, G.; Baker, D.; Huber, T. Protein Structure Determination from Pseudocontact Shifts Using

ROSETTA. J. Mol. Biol. 2012, 416, 668–677. [CrossRef] [PubMed]
75. Yagi, H.; Pilla, K.B.; Maleckis, A.; Graham, B.; Huber, T.; Otting, G. Three-Dimensional Protein Fold Determination from Backbone

Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites. Structure 2013, 21, 883–890. [CrossRef] [PubMed]
76. Kuenze, G.; Bonneau, R.; Leman, J.K.; Meiler, J. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints.

Structure 2019, 27, 1721–1734.e5. [CrossRef]
77. Hartlmüller, C.; Göbl, C.; Madl, T. Prediction of Protein Structure Using Surface Accessibility Data. Angew. Chem. Int. Ed. 2016,

55, 11970–11974. [CrossRef]
78. Sripakdeevong, P.; Cevec, M.; Chang, A.T.; Erat, M.C.; Ziegeler, M.; Zhao, Q.; Fox, G.E.; Gao, X.; Kennedy, S.D.; Kierzek, R.; et al.

Structure Determination of Noncanonical RNA Motifs Guided by 1H NMR Chemical Shifts. Nat. Methods 2014, 11, 413–416.
[CrossRef]

79. Rosato, A.; Bagaria, A.; Baker, D.; Bardiaux, B.; Cavalli, A.; Doreleijers, J.F.; Giachetti, A.; Guerry, P.; Güntert, P.; Herrmann, T.; et al.
CASD-NMR: Critical Assessment of Automated Structure Determination by NMR. Nat. Methods 2009, 6, 625–626. [CrossRef]

80. Rosato, A.; Vranken, W.; Fogh, R.H.; Ragan, T.J.; Tejero, R.; Pederson, K.; Lee, H.-W.; Prestegard, J.H.; Yee, A.; Wu, B.; et al. The
Second Round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013. J. Biomol.
NMR 2015, 62, 413–424. [CrossRef]

81. Vernon, R.; Shen, Y.; Baker, D.; Lange, O.F. Improved Chemical Shift Based Fragment Selection for CS-Rosetta Using Rosetta3
Fragment Picker. J. Biomol. NMR 2013, 57, 117–127. [CrossRef]

82. Zhang, X.; Zhang, Y.; Tang, S.; Ma, S.; Shen, Y.; Chen, Y.; Tong, Q.; Li, Y.; Yang, J. Hydrophobic Gate of Mechanosensitive Channel
of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J. Phys. Chem. B 2021, 125, 2477–2490.
[CrossRef]

83. Ye, Y.; Tyndall, E.R.; Bui, V.; Tang, Z.; Shen, Y.; Jiang, X.; Flanagan, J.M.; Wang, H.-G.; Tian, F. An N-Terminal Conserved Region in
Human Atg3 Couples Membrane Curvature Sensitivity to Conjugase Activity during Autophagy. Nat. Commun. 2021, 12, 374.
[CrossRef] [PubMed]

84. Koehler, J.; Meiler, J. Expanding the Utility of NMR Restraints with Paramagnetic Compounds: Background and Practical Aspects.
Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 360–389. [CrossRef] [PubMed]

85. Pilla, K.B.; Otting, G.; Huber, T. Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large
Proteins. J. Mol. Biol. 2016, 428, 522–532. [CrossRef] [PubMed]

86. Chen, W.N.; Nitsche, C.; Pilla, K.B.; Graham, B.; Huber, T.; Klein, C.D.; Otting, G. Sensitive NMR Approach for Determining
the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. J. Am. Chem. Soc. 2016, 138, 4539–4546. [CrossRef]
[PubMed]

87. Wagner, G.; Pardi, A.; Wuethrich, K. Hydrogen Bond Length and Proton NMR Chemical Shifts in Proteins. J. Am. Chem. Soc. 1983,
105, 5948–5949. [CrossRef]

88. Mielke, S.P.; Krishnan, V.V. Characterization of Protein Secondary Structure from NMR Chemical Shifts. Prog. Nucl. Magn. Reson.
Spectrosc. 2009, 54, 141–165. [CrossRef]

89. Wishart, D.S. Interpreting Protein Chemical Shift Data. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 58, 62–87. [CrossRef]

https://doi.org/10.1073/pnas.0702515104
https://www.ncbi.nlm.nih.gov/pubmed/17905872
https://doi.org/10.1371/journal.pcbi.1004398
https://www.ncbi.nlm.nih.gov/pubmed/26325167
https://doi.org/10.1016/j.bpj.2020.03.006
https://www.ncbi.nlm.nih.gov/pubmed/32224301
https://doi.org/10.1002/jcc.24679
https://doi.org/10.1023/A:1026744431105
https://doi.org/10.1021/ja016880e
https://doi.org/10.1073/pnas.2434121100
https://doi.org/10.1021/ja111318m
https://doi.org/10.1073/pnas.1202485109
https://doi.org/10.1038/nmeth.3437
https://doi.org/10.1002/prot.23245
https://www.ncbi.nlm.nih.gov/pubmed/22423358
https://doi.org/10.1016/j.jmb.2011.12.056
https://www.ncbi.nlm.nih.gov/pubmed/22285518
https://doi.org/10.1016/j.str.2013.04.001
https://www.ncbi.nlm.nih.gov/pubmed/23643949
https://doi.org/10.1016/j.str.2019.08.012
https://doi.org/10.1002/anie.201604788
https://doi.org/10.1038/nmeth.2876
https://doi.org/10.1038/nmeth0909-625
https://doi.org/10.1007/s10858-015-9953-4
https://doi.org/10.1007/s10858-013-9772-4
https://doi.org/10.1021/acs.jpcb.0c07487
https://doi.org/10.1038/s41467-020-20607-0
https://www.ncbi.nlm.nih.gov/pubmed/33446636
https://doi.org/10.1016/j.pnmrs.2011.05.001
https://www.ncbi.nlm.nih.gov/pubmed/22027343
https://doi.org/10.1016/j.jmb.2016.01.007
https://www.ncbi.nlm.nih.gov/pubmed/26778618
https://doi.org/10.1021/jacs.6b00416
https://www.ncbi.nlm.nih.gov/pubmed/26974502
https://doi.org/10.1021/ja00356a056
https://doi.org/10.1016/j.pnmrs.2008.06.002
https://doi.org/10.1016/j.pnmrs.2010.07.004


Int. J. Mol. Sci. 2023, 24, 7835 19 of 22

90. Wishart, D.S.; Sykes, B.D.; Richards, F.M. The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein
Secondary Structure through NMR Spectroscopy. Biochemistry 1992, 31, 1647–1651. [CrossRef]

91. Wishart, D.S.; Sykes, B.D. The 13C Chemical-Shift Index: A Simple Method for the Identification of Protein Secondary Structure
Using 13C Chemical-Shift Data. J. Biomol. NMR 1994, 4, 171–180. [CrossRef]

92. Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. 1H, 13C, and 15N Random Coil NMR Chemical Shifts of the
Common Amino Acids. I. Investigations of Nearest-Neighbor Effects. J. Biomol. NMR 1995, 5, 67–81. [CrossRef]

93. Shen, Y.; Bax, A. SPARTA+: A Modest Improvement in Empirical NMR Chemical Shift Prediction by Means of an Artificial
Neural Network. J. Biomol. NMR 2010, 48, 13–22. [CrossRef] [PubMed]

94. Han, B.; Liu, Y.; Ginzinger, S.W.; Wishart, D.S. SHIFTX2: Significantly Improved Protein Chemical Shift Prediction. J. Biomol.
NMR 2011, 50, 43–57. [CrossRef] [PubMed]

95. Meiler, J. PROSHIFT: Protein Chemical Shift Prediction Using Artificial Neural Networks. J. Biomol. NMR 2003, 26, 25–37.
[CrossRef] [PubMed]

96. Lange, O.F. Automatic NOESY Assignment in CS-RASREC-Rosetta. J. Biomol. NMR 2014, 59, 147–159. [CrossRef]
97. Zhang, Z.; Porter, J.; Tripsianes, K.; Lange, O.F. Robust and Highly Accurate Automatic NOESY Assignment and Structure

Determination with Rosetta. J. Biomol. NMR 2014, 59, 135–145. [CrossRef]
98. Herrmann, T.; Güntert, P.; Wüthrich, K. Protein NMR Structure Determination with Automated NOE Assignment Using the New

Software CANDID and the Torsion Angle Dynamics Algorithm DYANA. J. Mol. Biol. 2002, 319, 209–227. [CrossRef]
99. Nilges, M.; Macias, M.J.; O’Donoghue, S.I.; Oschkinat, H. Automated NOESY Interpretation with Ambiguous Distance Restraints:

The Refined NMR Solution Structure of the Pleckstrin Homology Domain from b-Spectrin. J. Mol. Biol. 1997, 269, 408–422.
[CrossRef]

100. Chen, K.; Tjandra, N. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. In NMR of Proteins and Small
Biomolecules; Zhu, G., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–67. ISBN 978-3-642-
28917-0.

101. Tjandra, N.; Omichinski, J.G.; Gronenborn, A.M.; Clore, G.M.; Bax, A. Use of Dipolar 1H-15N and 1H-13C Couplings in the
Structure Determination of Magnetically Oriented Macromolecules in Solution. Nat. Struct. Biol. 1997, 4, 732–738. [CrossRef]

102. Hus, J.-C.; Marion, D.; Blackledge, M. De Novo Determination of Protein Structure by NMR Using Orientational and Long-Range
Order Restraints. J. Mol. Biol. 2000, 298, 927–936. [CrossRef]

103. Hus, J.C.; Marion, D.; Blackledge, M. Determination of Protein Backbone Structure Using Only Residual Dipolar Couplings.
J. Am. Chem. Soc. 2001, 123, 1541–1542. [CrossRef]

104. Clore, G.M.; Iwahara, J. Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of
Transient Low-Population States of Biological Macromolecules and Their Complexes. Chem. Rev. 2009, 109, 4108–4139. [CrossRef]
[PubMed]

105. Hartlmüller, C.; Spreitzer, E.; Göbl, C.; Falsone, F.; Madl, T. NMR Characterization of Solvent Accessibility and Transient Structure
in Intrinsically Disordered Proteins. J. Biomol. NMR 2019, 73, 305–317. [CrossRef] [PubMed]

106. Lenard, A.J.; Mulder, F.A.A.; Madl, T. Solvent Paramagnetic Relaxation Enhancement as a Versatile Method for Studying Structure
and Dynamics of Biomolecular Systems. Prog. Nucl. Magn. Reson. Spectrosc. 2022, 132–133, 113–139. [CrossRef]

107. Miao, Q.; Nitsche, C.; Orton, H.; Overhand, M.; Otting, G.; Ubbink, M. Paramagnetic Chemical Probes for Studying Biological
Macromolecules. Chem. Rev. 2022, 122, 9571–9642. [CrossRef] [PubMed]

108. Joss, D.; Häussinger, D. Design and Applications of Lanthanide Chelating Tags for Pseudocontact Shift NMR Spectroscopy with
Biomacromolecules. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114–115, 284–312. [CrossRef]

109. Widder, P.; Berner, F.; Summerer, D.; Drescher, M. Double Nitroxide Labeling by Copper-Catalyzed Azide–Alkyne Cycloadditions
with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy. ACS Chem. Biol. 2019, 14, 839–844.
[CrossRef]

110. Otting, G. Protein NMR Using Paramagnetic Ions. Annu. Rev. Biophys. 2010, 39, 387–405. [CrossRef] [PubMed]
111. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS+: A Hybrid Method for Predicting Protein Backbone Torsion Angles from

NMR Chemical Shifts. J. Biomol. NMR 2009, 44, 213–223. [CrossRef] [PubMed]
112. Shen, Y.; Bax, A. Protein Backbone and Sidechain Torsion Angles Predicted from NMR Chemical Shifts Using Artificial Neural

Networks. J. Biomol. NMR 2013, 56, 227–241. [CrossRef] [PubMed]
113. Nerli, S.; Sgourakis, N.G. CS-ROSETTA. Methods Enzymol. 2019, 614, 321–362. [CrossRef]
114. Nerli, S.; McShan, A.C.; Sgourakis, N.G. Chemical Shift-Based Methods in NMR Structure Determination. Prog. Nucl. Magn.

Reson. Spectrosc. 2018, 106–107, 1–25. [CrossRef] [PubMed]
115. Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A Multidimensional Spectral Processing System

Based on UNIX Pipes. J. Biomol. NMR 1995, 6, 277–293. [CrossRef] [PubMed]
116. Söding, J. Protein Homology Detection by HMM–HMM Comparison. Bioinformatics 2005, 21, 951–960. [CrossRef] [PubMed]
117. Holm, L. DALI and the Persistence of Protein Shape. Protein Sci. 2020, 29, 128–140. [CrossRef]
118. Zhao, Y.; Xie, H.; Wang, L.; Shen, Y.; Chen, W.; Song, B.; Zhang, Z.; Zheng, A.; Lin, Q.; Fu, R.; et al. Gating Mechanism of

Aquaporin Z in Synthetic Bilayers and Native Membranes Revealed by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2018,
140, 7885–7895. [CrossRef]

https://doi.org/10.1021/bi00121a010
https://doi.org/10.1007/BF00175245
https://doi.org/10.1007/BF00227471
https://doi.org/10.1007/s10858-010-9433-9
https://www.ncbi.nlm.nih.gov/pubmed/20628786
https://doi.org/10.1007/s10858-011-9478-4
https://www.ncbi.nlm.nih.gov/pubmed/21448735
https://doi.org/10.1023/A:1023060720156
https://www.ncbi.nlm.nih.gov/pubmed/12766400
https://doi.org/10.1007/s10858-014-9833-3
https://doi.org/10.1007/s10858-014-9832-4
https://doi.org/10.1016/S0022-2836(02)00241-3
https://doi.org/10.1006/jmbi.1997.1044
https://doi.org/10.1038/nsb0997-732
https://doi.org/10.1006/jmbi.2000.3714
https://doi.org/10.1021/ja005590f
https://doi.org/10.1021/cr900033p
https://www.ncbi.nlm.nih.gov/pubmed/19522502
https://doi.org/10.1007/s10858-019-00248-2
https://www.ncbi.nlm.nih.gov/pubmed/31297688
https://doi.org/10.1016/j.pnmrs.2022.09.001
https://doi.org/10.1021/acs.chemrev.1c00708
https://www.ncbi.nlm.nih.gov/pubmed/35084831
https://doi.org/10.1016/j.pnmrs.2019.08.002
https://doi.org/10.1021/acschembio.8b01111
https://doi.org/10.1146/annurev.biophys.093008.131321
https://www.ncbi.nlm.nih.gov/pubmed/20462377
https://doi.org/10.1007/s10858-009-9333-z
https://www.ncbi.nlm.nih.gov/pubmed/19548092
https://doi.org/10.1007/s10858-013-9741-y
https://www.ncbi.nlm.nih.gov/pubmed/23728592
https://doi.org/10.1016/bs.mie.2018.07.005
https://doi.org/10.1016/j.pnmrs.2018.03.002
https://www.ncbi.nlm.nih.gov/pubmed/31047599
https://doi.org/10.1007/BF00197809
https://www.ncbi.nlm.nih.gov/pubmed/8520220
https://doi.org/10.1093/bioinformatics/bti125
https://www.ncbi.nlm.nih.gov/pubmed/15531603
https://doi.org/10.1002/pro.3749
https://doi.org/10.1021/jacs.8b03446


Int. J. Mol. Sci. 2023, 24, 7835 20 of 22

119. Li, J.; Shen, Y.; Chen, Y.; Zhang, Z.; Ma, S.; Wan, Q.; Tong, Q.; Glaubitz, C.; Liu, M.; Yang, J. Structure of Membrane Diacylglycerol
Kinase in Lipid Bilayers. Commun. Biol. 2021, 4, 282. [CrossRef]

120. Bender, B.J.; Vortmeier, G.; Ernicke, S.; Bosse, M.; Kaiser, A.; Els-Heindl, S.; Krug, U.; Beck-Sickinger, A.; Meiler, J.; Huster, D.
Structural Model of Ghrelin Bound to Its G Protein-Coupled Receptor. Structure 2019, 27, 537–544. [CrossRef]

121. Frieden, C.; Hoeltzli, S.D.; Ropson, I.J. NMR and Protein Folding: Equilibrium and Stopped-Flow Studies. Protein Sci. 1993, 2,
2007–2014. [CrossRef]

122. Vilar, M.; Wang, L.; Riek, R. Structural Studies of Amyloids by Quenched Hydrogen–Deuterium Exchange by NMR. In Amyloid
Proteins: Methods and Protocols; Sigurdsson, E.M., Calero, M., Gasset, M., Eds.; Methods in Molecular Biology; Humana Press:
Totowa, NJ, USA, 2012; pp. 185–198. ISBN 978-1-61779-551-0.

123. Olofsson, A.; Sauer-Eriksson, A.E.; Öhman, A. Amyloid Fibril Dynamics Revealed by Combined Hydrogen/Deuterium Exchange
and Nuclear Magnetic Resonance. Anal. Biochem. 2009, 385, 374–376. [CrossRef]

124. Ahmed, A.H.; Ptak, C.P.; Fenwick, M.K.; Hsieh, C.-L.; Weiland, G.A.; Oswald, R.E. Dynamics of Cleft Closure of the GluA2
Ligand-Binding Domain in the Presence of Full and Partial Agonists Revealed by Hydrogen-Deuterium Exchange. J. Biol. Chem.
2013, 288, 27658–27666. [CrossRef]

125. Dyson, H.J.; Kostic, M.; Liu, J.; Martinez-Yamout, M.A. Hydrogen–Deuterium Exchange Strategy for Delineation of Contact Sites
in Protein Complexes. FEBS Lett. 2008, 582, 1495–1500. [CrossRef] [PubMed]

126. Yagi-Utsumi, M.; Chandak, M.S.; Yanaka, S.; Hiranyakorn, M.; Nakamura, T.; Kato, K.; Kuwajima, K. Residual Structure of
Unfolded Ubiquitin as Revealed by Hydrogen/Deuterium-Exchange 2D NMR. Biophys. J. 2020, 119, 2029–2038. [CrossRef]
[PubMed]

127. Hilser, V.J.; Freire, E. Structure-Based Calculation of the Equilibrium Folding Pathway of Proteins. Correlation with Hydrogen
Exchange Protection Factors. J. Mol. Biol. 1996, 262, 756–772. [CrossRef] [PubMed]

128. Best, R.B.; Vendruscolo, M. Structural Interpretation of Hydrogen Exchange Protection Factors in Proteins: Characterization of
the Native State Fluctuations of CI2. Structure 2006, 14, 97–106. [CrossRef] [PubMed]

129. McAllister, R.G.; Konermann, L. Challenges in the Interpretation of Protein H/D Exchange Data: A Molecular Dynamics
Simulation Perspective. Biochemistry 2015, 54, 2683–2692. [CrossRef] [PubMed]

130. Petruk, A.A.; Defelipe, L.A.; Limardo, R.G.R.; Bucci, H.; Marti, M.; Turjanski, A.G. Molecular Dynamics Simulations Provide
Atomistic Insight into Hydrogen Exchange Mass Spectrometry Experiments. J. Chem. Theory Comput. 2013, 9, 658–669. [CrossRef]

131. Mohammadiarani, H.; Shaw, V.S.; Neubig, R.R.; Vashisth, H. Interpreting Hydrogen–Deuterium Exchange Events in Proteins
Using Atomistic Simulations: Case Studies on Regulators of G-Protein Signaling Proteins. J. Phys. Chem. B 2018, 122, 9314–9323.
[CrossRef]

132. Martens, C.; Shekhar, M.; Lau, A.M.; Tajkhorshid, E.; Politis, A. Integrating Hydrogen–Deuterium Exchange Mass Spectrometry
with Molecular Dynamics Simulations to Probe Lipid-Modulated Conformational Changes in Membrane Proteins. Nat. Protoc.
2019, 14, 3183–3204. [CrossRef]

133. Tran, M.H.; Schoeder, C.T.; Schey, K.L.; Meiler, J. Computational Structure Prediction for Antibody-Antigen Complexes from
Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook. Front. Immunol. 2022, 13, 859964. [CrossRef]

134. Pandit, D.; Tuske, S.J.; Coales, S.J.; E, S.Y.; Liu, A.; Lee, J.E.; Morrow, J.A.; Nemeth, J.F.; Hamuro, Y. Mapping of Discontinuous
Conformational Epitopes by Amide Hydrogen/Deuterium Exchange Mass Spectrometry and Computational Docking. J. Mol.
Recognit. 2012, 25, 114–124. [CrossRef]

135. Roberts, V.A.; Pique, M.E.; Hsu, S.; Li, S. Combining H/D Exchange Mass Spectrometry and Computational Docking to Derive
the Structure of Protein–Protein Complexes. Biochemistry 2017, 56, 6329–6342. [CrossRef] [PubMed]

136. Kim, S.S.; Seffernick, J.T.; Lindert, S. Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder
Application. J. Phys. Chem. B 2018, 122, 3920–3930. [CrossRef] [PubMed]

137. Seffernick, J.T.; Ren, H.; Kim, S.S.; Lindert, S. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using
Rosetta ResidueDisorder. J. Phys. Chem. B 2019, 123, 7103–7112. [CrossRef]

138. Hass, M.A.; Ubbink, M. Structure Determination of Protein–Protein Complexes with Long-Range Anisotropic Paramagnetic
NMR Restraints. Curr. Opin. Struct. Biol. 2014, 24, 45–53. [CrossRef] [PubMed]

139. Nitsche, C.; Otting, G. Pseudocontact Shifts in Biomolecular NMR Using Paramagnetic Metal Tags. Prog. Nucl. Magn. Reson.
Spectrosc. 2017, 98–99, 20–49. [CrossRef]

140. Softley, C.A.; Bostock, M.J.; Popowicz, G.M.; Sattler, M. Paramagnetic NMR in Drug Discovery. J. Biomol. NMR 2020, 74, 287–309.
[CrossRef]

141. Ravera, E.; Gigli, L.; Fiorucci, L.; Luchinat, C.; Parigi, G. The Evolution of Paramagnetic NMR as a Tool in Structural Biology.
Phys. Chem. Chem. Phys. 2022, 24, 17397–17416. [CrossRef]

142. Müntener, T.; Joss, D.; Häussinger, D.; Hiller, S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem. Rev. 2022, 122,
9422–9467. [CrossRef]

143. Allegrozzi, M.; Bertini, I.; Janik, M.B.L.; Lee, Y.-M.; Liu, G.; Luchinat, C. Lanthanide-Induced Pseudocontact Shifts for Solution
Structure Refinements of Macromolecules in Shells up to 40 Å from the Metal Ion. J. Am. Chem. Soc. 2000, 122, 4154–4161.
[CrossRef]

144. Pilla, K.B.; Leman, J.K.; Otting, G.; Huber, T. Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data.
PLoS ONE 2015, 10, e0127053. [CrossRef]

https://doi.org/10.1038/s42003-021-01802-1
https://doi.org/10.1016/j.str.2018.12.004
https://doi.org/10.1002/pro.5560021202
https://doi.org/10.1016/j.ab.2008.10.034
https://doi.org/10.1074/jbc.M113.495564
https://doi.org/10.1016/j.febslet.2008.03.043
https://www.ncbi.nlm.nih.gov/pubmed/18396165
https://doi.org/10.1016/j.bpj.2020.10.003
https://www.ncbi.nlm.nih.gov/pubmed/33142107
https://doi.org/10.1006/jmbi.1996.0550
https://www.ncbi.nlm.nih.gov/pubmed/8876652
https://doi.org/10.1016/j.str.2005.09.012
https://www.ncbi.nlm.nih.gov/pubmed/16407069
https://doi.org/10.1021/acs.biochem.5b00215
https://www.ncbi.nlm.nih.gov/pubmed/25860179
https://doi.org/10.1021/ct300519v
https://doi.org/10.1021/acs.jpcb.8b07494
https://doi.org/10.1038/s41596-019-0219-6
https://doi.org/10.3389/fimmu.2022.859964
https://doi.org/10.1002/jmr.1169
https://doi.org/10.1021/acs.biochem.7b00643
https://www.ncbi.nlm.nih.gov/pubmed/29099587
https://doi.org/10.1021/acs.jpcb.8b01763
https://www.ncbi.nlm.nih.gov/pubmed/29595057
https://doi.org/10.1021/acs.jpcb.9b04333
https://doi.org/10.1016/j.sbi.2013.11.010
https://www.ncbi.nlm.nih.gov/pubmed/24721452
https://doi.org/10.1016/j.pnmrs.2016.11.001
https://doi.org/10.1007/s10858-020-00322-0
https://doi.org/10.1039/D2CP01838A
https://doi.org/10.1021/acs.chemrev.1c00796
https://doi.org/10.1021/ja993691b
https://doi.org/10.1371/journal.pone.0127053


Int. J. Mol. Sci. 2023, 24, 7835 21 of 22

145. Hartlmüller, C.; Günther, J.C.; Wolter, A.C.; Wöhnert, J.; Sattler, M.; Madl, T. RNA Structure Refinement Using NMR Solvent
Accessibility Data. Sci. Rep. 2017, 7, 5393. [CrossRef] [PubMed]

146. Loquet, A.; Sgourakis, N.G.; Gupta, R.; Giller, K.; Riedel, D.; Goosmann, C.; Griesinger, C.; Kolbe, M.; Baker, D.; Becker, S.; et al.
Atomic Model of the Type III Secretion System Needle. Nature 2012, 486, 276–279. [CrossRef] [PubMed]

147. Das, R.; Andre, I.; Shen, Y.; Wu, Y.; Lemak, A.; Bansal, S.; Arrowsmith, C.H.; Szyperski, T.; Baker, D. Simultaneous Prediction of
Protein Folding and Docking at High Resolution. Proc. Natl. Acad. Sci. USA 2009, 106, 18978–18983. [CrossRef] [PubMed]

148. Demers, J.P.; Habenstein, B.; Loquet, A.; Kumar Vasa, S.; Giller, K.; Becker, S.; Baker, D.; Lange, A.; Sgourakis, N.G. High-
Resolution Structure of the Shigella Type-III Secretion Needle by Solid-State NMR and Cryo-Electron Microscopy. Nat. Commun.
2014, 5, 4976. [CrossRef]

149. Morag, O.; Sgourakis, N.G.; Baker, D.; Goldbourt, A. The NMR–Rosetta Capsid Model of M13 Bacteriophage Reveals a Quadru-
pled Hydrophobic Packing Epitope. Proc. Natl. Acad. Sci. USA 2015, 112, 971–976. [CrossRef]

150. Chou, H.-T.; Apelt, L.; Farrell, D.P.; White, S.R.; Woodsmith, J.; Svetlov, V.; Goldstein, J.S.; Nager, A.R.; Li, Z.; Muller, J.; et al.
The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure 2019, 27, 1384–1394.
[CrossRef]

151. Mashtalir, N.; Suzuki, H.; Farrell, D.P.; Sankar, A.; Luo, J.; Filipovski, M.; D’Avino, A.R.; St. Pierre, R.; Valencia, A.M.;
Onikubo, T.; et al. A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 2020, 183,
802–817. [CrossRef]

152. Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological Structure and
Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. USA 2021, 118,
e2016239118. [CrossRef]

153. Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-Resolution de Novo Structure
Prediction from Primary Sequence. bioRxiv 2022. [CrossRef]

154. Zweckstetter, M. NMR Hawk-Eyed View of AlphaFold2 Structures. Protein Sci. 2021, 30, 2333–2337. [CrossRef]
155. Tejero, R.; Huang, Y.J.; Ramelot, T.A.; Montelione, G.T. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR

Structures. Front. Mol. Biosci. 2022, 9, 877000. [CrossRef] [PubMed]
156. Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al.

AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-
Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [CrossRef] [PubMed]

157. Stahl, K.; Graziadei, A.; Dau, T.; Brock, O.; Rappsilber, J. Protein Structure Prediction with in-Cell Photo-Crosslinking Mass
Spectrometry and Deep Learning. Nat. Biotechnol. 2023; ahead of print. [CrossRef]

158. Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al.
Broadly Applicable and Accurate Protein Design by Integrating Structure Prediction Networks and Diffusion Generative Models.
bioRxiv 2022. [CrossRef]

159. del Alamo, D.; Sala, D.; Mchaourab, H.S.; Meiler, J. Sampling Alternative Conformational States of Transporters and Receptors
with AlphaFold2. eLife 2022, 11, e75751. [CrossRef] [PubMed]

160. Stein, R.A.; Mchaourab, H.S. SPEACH_AF: Sampling Protein Ensembles and Conformational Heterogeneity with Alphafold2.
PLoS Comput. Biol. 2022, 18, e1010483. [CrossRef]

161. Heo, L.; Feig, M. Multi-State Modeling of G-Protein Coupled Receptors at Experimental Accuracy. Proteins Struct. Funct. Bioinform.
2022, 90, 1873–1885. [CrossRef]

162. Laurents, D.V. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front.
Mol. Biosci. 2022, 9, 906437. [CrossRef]

163. Sauerwein, A.C.; Hansen, D.F. Relaxation Dispersion NMR Spectroscopy. In Protein NMR: Modern Techniques and Biomedical
Applications; Berliner, L., Ed.; Biological Magnetic Resonance; Springer: Boston, MA, USA, 2015; pp. 75–132. ISBN 978-1-4899-
7621-5.

164. Fenwick, R.B.; Oyen, D.; van den Bedem, H.; Dyson, H.J.; Wright, P.E. Modeling of Hidden Structures Using Sparse Chemical
Shift Data from NMR Relaxation Dispersion. Biophys. J. 2021, 120, 296–305. [CrossRef]

165. Hass, M.A.S.; Liu, W.-M.; Agafonov, R.V.; Otten, R.; Phung, L.A.; Schilder, J.T.; Kern, D.; Ubbink, M. A Minor Conformation of
a Lanthanide Tag on Adenylate Kinase Characterized by Paramagnetic Relaxation Dispersion NMR Spectroscopy. J. Biomol. NMR
2015, 61, 123–136. [CrossRef]

166. Ma, R.S.; Li, Q.F.; Wang, A.D.; Zhang, J.H.; Liu, Z.J.; Wu, J.H.; Su, X.C.; Ruan, K. Determination of Pseudocontact Shifts of
Low-Populated Excited States by NMR Chemical Exchange Saturation Transfer. Phys. Chem. Chem. Phys. 2016, 18, 13794–13798.
[CrossRef]

167. Vallurupalli, P.; Kay, L.E. Complementarity of Ensemble and Single-Molecule Measures of Protein Motion: A Relaxation
Dispersion NMR Study of an Enzyme Complex. Proc. Natl. Acad. Sci. USA 2006, 103, 11910–11915. [CrossRef] [PubMed]

168. Zintsmaster, J.S.; Wilson, B.D.; Peng, J.W. Dynamics of Ligand Binding from 13C NMR Relaxation Dispersion at Natural
Abundance. J. Am. Chem. Soc. 2008, 130, 14060–14061. [CrossRef] [PubMed]

169. Ward, J.J.; Sodhi, J.S.; McGuffin, L.J.; Buxton, B.F.; Jones, D.T. Prediction and Functional Analysis of Native Disorder in Proteins
from the Three Kingdoms of Life. J. Mol. Biol. 2004, 337, 635–645. [CrossRef] [PubMed]

https://doi.org/10.1038/s41598-017-05821-z
https://www.ncbi.nlm.nih.gov/pubmed/28710477
https://doi.org/10.1038/nature11079
https://www.ncbi.nlm.nih.gov/pubmed/22699623
https://doi.org/10.1073/pnas.0904407106
https://www.ncbi.nlm.nih.gov/pubmed/19864631
https://doi.org/10.1038/ncomms5976
https://doi.org/10.1073/pnas.1415393112
https://doi.org/10.1016/j.str.2019.06.006
https://doi.org/10.1016/j.cell.2020.09.051
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1002/pro.4175
https://doi.org/10.3389/fmolb.2022.877000
https://www.ncbi.nlm.nih.gov/pubmed/35769913
https://doi.org/10.1093/nar/gkab1061
https://www.ncbi.nlm.nih.gov/pubmed/34791371
https://doi.org/10.1038/s41587-023-01704-z
https://doi.org/10.1101/2022.12.09.519842
https://doi.org/10.7554/eLife.75751
https://www.ncbi.nlm.nih.gov/pubmed/35238773
https://doi.org/10.1371/journal.pcbi.1010483
https://doi.org/10.1002/prot.26382
https://doi.org/10.3389/fmolb.2022.906437
https://doi.org/10.1016/j.bpj.2020.11.2267
https://doi.org/10.1007/s10858-014-9894-3
https://doi.org/10.1039/C6CP01127F
https://doi.org/10.1073/pnas.0602310103
https://www.ncbi.nlm.nih.gov/pubmed/16880391
https://doi.org/10.1021/ja805839y
https://www.ncbi.nlm.nih.gov/pubmed/18834120
https://doi.org/10.1016/j.jmb.2004.02.002
https://www.ncbi.nlm.nih.gov/pubmed/15019783


Int. J. Mol. Sci. 2023, 24, 7835 22 of 22

170. Pentony, M.M.; Jones, D.T. Modularity of Intrinsic Disorder in the Human Proteome. Proteins Struct. Funct. Bioinform. 2010, 78,
212–221. [CrossRef]

171. Wilson, C.J.; Choy, W.-Y.; Karttunen, M. AlphaFold2: A Role for Disordered Protein/Region Prediction? IJMS 2022, 23, 4591.
[CrossRef]

172. Martin, E.W.; Hopkins, J.B.; Mittag, T. Chapter Seven—Small-Angle X-Ray Scattering Experiments of Monodisperse Intrinsically
Disordered Protein Samples Close to the Solubility Limit. In Methods in Enzymology; Keating, C.D., Ed.; Liquid-Liquid Phase
Coexistence and Membraneless Organelles; Academic Press: Cambridge, MA, USA, 2021; Volume 646, pp. 185–222.

173. Murthy, A.C.; Fawzi, N.L. The (Un)Structural Biology of Biomolecular Liquid-Liquid Phase Separation Using NMR Spectroscopy.
J. Biol. Chem. 2020, 295, 2375–2384. [CrossRef]

174. Wang, R.Y.-R.; Han, Y.; Krassovsky, K.; Sheffler, W.; Tyka, M.; Baker, D. Modeling Disordered Regions in Proteins Using Rosetta.
PLoS ONE 2011, 6, e22060. [CrossRef]

175. Kleiger, G.; Saha, A.; Lewis, S.; Kuhlman, B.; Deshaies, R.J. Rapid E2–E3 Assembly and Disassembly Enable Processive
Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell 2009, 139, 957–968. [CrossRef]

176. Ferrie, J.J.; Petersson, E.J. A Unified De Novo Approach for Predicting the Structures of Ordered and Disordered Proteins. J. Phys.
Chem. B 2020, 124, 5538–5548. [CrossRef]

177. Christoffer, C.; Kihara, D. IDP-LZerD: Software for Modeling Disordered Protein Interactions. In Protein Structure Prediction;
Kihara, D., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; pp. 231–244. ISBN 978-1-07-160708-4.

178. Scheres, S.H.; Zhang, W.; Falcon, B.; Goedert, M. Cryo-EM Structures of Tau Filaments. Curr. Opin. Struct. Biol. 2020, 64, 17–25.
[CrossRef]

179. Shi, Y.; Zhang, W.; Yang, Y.; Murzin, A.G.; Falcon, B.; Kotecha, A.; van Beers, M.; Tarutani, A.; Kametani, F.; Garringer, H.J.; et al.
Structure-Based Classification of Tauopathies. Nature 2021, 598, 359–363. [CrossRef] [PubMed]

180. Paravastu, A.K.; Leapman, R.D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid
Fibrils. Proc. Natl. Acad. Sci. USA 2008, 105, 18349–18354. [CrossRef] [PubMed]

181. Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in
Alzheimer’s Disease Brain Tissue. Cell 2013, 154, 1257–1268. [CrossRef] [PubMed]

182. Sgourakis, N.G.; Yau, W.-M.; Qiang, W. Modeling an In-Register, Parallel “Iowa” Aβ Fibril Structure Using Solid-State NMR Data
from Labeled Samples with Rosetta. Structure 2015, 23, 216–227. [CrossRef] [PubMed]

183. Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.;
Kendall, A.; et al. Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein. Nat. Struct. Mol. Biol.
2016, 23, 409–415. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/prot.22504
https://doi.org/10.3390/ijms23094591
https://doi.org/10.1074/jbc.REV119.009847
https://doi.org/10.1371/journal.pone.0022060
https://doi.org/10.1016/j.cell.2009.10.030
https://doi.org/10.1021/acs.jpcb.0c02924
https://doi.org/10.1016/j.sbi.2020.05.011
https://doi.org/10.1038/s41586-021-03911-7
https://www.ncbi.nlm.nih.gov/pubmed/34588692
https://doi.org/10.1073/pnas.0806270105
https://www.ncbi.nlm.nih.gov/pubmed/19015532
https://doi.org/10.1016/j.cell.2013.08.035
https://www.ncbi.nlm.nih.gov/pubmed/24034249
https://doi.org/10.1016/j.str.2014.10.022
https://www.ncbi.nlm.nih.gov/pubmed/25543257
https://doi.org/10.1038/nsmb.3194
https://www.ncbi.nlm.nih.gov/pubmed/27018801

	Introduction 
	Basic Rosetta Algorithms and Scoring Procedures 
	A Brief History of NMR Methods in Rosetta 
	Available NMR Data Implementations 
	Structure Prediction with Chemical Shift Data in Rosetta 
	Recent Developments of NMR Modeling Methods in Rosetta 
	Hydrogen–Deuterium Exchange (HDX) 
	Paramagnetic NMR 
	Integrative Structural Biology on Protein Complexes 

	Future Directions 
	Augmentation of Deep Learning Methods with NMR Data 
	Modeling of Alternative Conformational States 
	Modeling of Disordered Proteins and Protein Fibrils 

	References

