Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens
Abstract
:1. Introduction
2. Results
2.1. Peptide Synthesis
2.2. Antibacterial Activity and Hemolysis
2.3. Structure-Activity Relationship
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis
4.2. Antibacterial Assays
4.3. Hemolysis Assays
4.4. Circular Dichroism
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Danmark, 2022. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data 2019, 6, 148. [Google Scholar] [CrossRef]
- Nayab, S.; Aslam, M.A.; Rahman, S.U.; Sindhu, Z.U.D.; Sajid, S.; Zafar, N.; Razaq, M.; Kanwar, R.; Amanullah. A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential. Int. J. Pept. Res. Ther. 2022, 28, 46. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Keynan, Y. Vancomycin revisited-60 years later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- Florin, T.; Maracci, C.; Graf, M.; Karki, P.; Klepacki, D.; Berninghausen, O.; Beckmann, R.; Vázquez-Laslop, N.; Wilson, D.N.; Rodnina, M.V.; et al. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat. Struct. Mol. Biol. 2017, 24, 752–757. [Google Scholar] [CrossRef]
- Krieger, A.K.; Knappe, D.; Öhlmann, S.; Mayer, L.; Eder, I.B.; Köller, G.; Hoffmann, R.; Rieckmann, K.; Baums, C.G. Proline-rich antimicrobial peptide Api137 is bactericidal in porcine blood infected ex vivo with a porcine or human Klebsiella pneumoniae strain. J. Glob. Antimicrob. Resist. 2021, 24, 127–135. [Google Scholar] [CrossRef]
- Andolina, G.; Bencze, L.C.; Zerbe, K.; Müller, M.; Steinmann, J.; Kocherla, H.; Mondal, M.; Sobek, J.; Moehle, K.; Malojčić, G.; et al. A peptidomimetic antibiotic interacts with the periplasmic domain of LptD from Pseudomonas aeruginosa. ACS Chem. Biol. 2018, 13, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.; et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 2010, 327, 1010–1013. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2022, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Nizet, V.; Ohtake, T.; Lauth, X.; Trowbridge, J.; Rudisill, J.; Dorschner, R.A.; Pestonjamasp, V.; Piraino, J.; Huttner, K.; Gallo, R.L. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001, 414, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Fleitas, O.; Franco, O.L. Induced bacterial cross-resistance toward host antimicrobial peptides: A worrying phenomenon. Front. Microbiol. 2016, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Perron, G.G.; Zasloff, M.; Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. B. 2006, 273, 251–256. [Google Scholar] [CrossRef]
- Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Karimi, A.; Fallah, F.; Akhavan, M.M. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cell. Mol. Biol. 2017, 63, 20–32. [Google Scholar] [CrossRef]
- Toniolo, C.; Brückner, H. Peptaibiotics: Fungal Peptides containing α-Dialkyl α-Amino Acids; Wiley-VCD: Weinheim, Germany; Zürich, Switzerland, 2009. [Google Scholar]
- Víglaš, J.; Dobiasová, S.; Viktorová, J.; Ruml, T.; Repiská, V.; Olejníková, P.; Gbelcová, H. Peptaibol-Containing Extracts of Trichoderma atroviride and the Fight against Resistant Microorganisms and Cancer Cells. Molecules 2021, 26, 6025. [Google Scholar] [CrossRef]
- You, J.; Yang, Z.; Stamps, B.W.; Stevenson, B.S.; Du, L.; Mitchell, C.A.; King, J.B.; Pan, N.; Bopassa, J.C.; Cichewicz, R.H.; et al. Unique Amalgamation of Primary and Secondary Structural Elements Transform Peptaibols into Potent Bioactive Cell-Penetrating Peptides. Proc. Natl. Acad. Sci. USA 2017, 114, E8957–E8966. [Google Scholar]
- Lizio, M.G.; Campana, M.; De Poli, M.; Jefferies, D.F.; Cullen, W.; Andrushchenko, V.; Chmel, N.P.; Bouř, P.; Khalid, S.; Clayden, J.; et al. Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis. ChemBioChem 2021, 22, 1656–1667. [Google Scholar] [CrossRef] [PubMed]
- Gatto, E.; Porchetta, A.; Stella, L.; Guryanov, I.; Formaggio, F.; Toniolo, C.; Kaptein, B.; Broxterman, Q.; Venanzi, M. Conformational effects on the electron-transfer efficiency in peptide foldamers based on alpha,alpha-disubstituted glycyl residues. Chem. Biodivers. 2008, 5, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Stoppacher, N.; Neumann, N.K.N.; Burgstaller, L.; Zeilinger, S.; Degenkolb, T.; Brückner, H.; Schuhmacher, R. The comprehensive peptaibiotics database. Chem. Biodivers. 2013, 10, 734–743. [Google Scholar] [CrossRef]
- Auvin-Guette, C.; Rebuffat, S.; Prigent, Y.; Bodo, B. Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J. Am. Chem. Soc. 1992, 114, 2170–2174. [Google Scholar] [CrossRef]
- Peggion, C.; Formaggio, F.; Crisma, M.; Epand, R.F.; Epand, R.M.; Toniolo, C. Trichogin: A paradigm for lipopeptaibols. J. Pept. Sci. 2003, 9, 679–689. [Google Scholar] [CrossRef]
- Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C.; Epand, R.F.; Epand, R.M. Lipopeptaibols, a novel family of membrane active, antimicrobial peptides. Cell Mol. Life Sci. 2001, 58, 1179–1188. [Google Scholar] [CrossRef]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Ghazanfar, M.U.; Raza, M.; Raza, W.; Qamar, M.I. Trichoderma as Potential Biocontrol Agent, Its Exploitation in Agriculture: A Review. Plant Prot. 2018, 2, 109–135. [Google Scholar]
- De Zotti, M.; Biondi, B.; Formaggio, F.; Toniolo, C.; Stella, L.; Park, Y.; Hahm, K.-S. Trichogin GA IV: An antibacterial and protease-resistant peptide. J. Pept. Sci. 2009, 15, 615–619. [Google Scholar] [CrossRef]
- De Zotti, M.; Sella, L.; Bolzonello, A.; Gabbatore, L.; Peggion, C.; Bortolotto, A.; Elmaghraby, I.; Tundo, S.; Favaron, F. Targeted Amino Acid Substitutions in a Trichoderma Peptaibol Confer Activity against Fungal Plant Pathogens and Protect Host Tissues from Botrytis Cinerea Infection. Int. J. Mol. Sci. 2020, 21, 7521. [Google Scholar] [CrossRef]
- Bolzonello, A.; Morbiato, L.; Tundo, S.; Sella, L.; Baccelli, I.; Echeverrigaray, S.; Musetti, R.; De Zotti, M.; Favaron, F. Peptide analogs of a Trichoderma peptaibol effectively control downy mildew in the vineyard. Plant Dis. 2023. advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Dalzini, A.; Bergamini, C.; Biondi, B.; De Zotti, M.; Panighel, G.; Fato, R.; Peggion, C.; Bortolus, M.; Maniero, A.L. The Rational Search for Selective Anticancer Derivatives of the Peptide Trichogin GA IV: A Multi-Technique Biophysical Approach. Sci. Rep. 2016, 6, 24000. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, N.; Borghese, C.; Gabbatore, L.; Morbiato, L.; De Zotti, M.; Aldinucci, D. Analogs of a Natural Peptaibol Exert Anticancer Activity in Both Cisplatin- and Doxorubicin-Resistant Cells and in Multicellular Tumor Spheroids. Int. J. Mol. Sci. 2021, 22, 8362. [Google Scholar] [CrossRef]
- Moret, F.; Menilli, L.; Milani, C.; Di Cintio, G.; Dalla Torre, C.; Amendola, V.; De Zotti, M. Anticancer and Targeting Activity of Phytopharmaceutical Structural Analogs of a Natural Peptide from Trichoderma longibrachiatum and Related Peptide-Decorated Gold Nanoparticles. Int. J. Mol. Sci. 2023, 24, 5537. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, R.; Sella, L.; De Zotti, M.; Bolzonello, A.; Armellin, M.; Trainotti, L.; Favaron, F.; Tundo, S. Efficacy of Trichoderma longibrachiatum Trichogin GA IV Peptaibol analogs against the Black Rot Pathogen Xanthomonas campestris pv. campestris and other Phytopathogenic Bacteria. Microorganisms 2023, 11, 480. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 1–49. [Google Scholar] [CrossRef]
- Sella, L.; Govind, R.; Caracciolo, R.; Quarantin, A.; Vu, V.V.; Tundo, S.; Nguyen, H.M.; Favaron, F.; Musetti, R.; De Zotti, M. Transcriptomic and Ultrastructural Analyses of Pyricularia oryzae Treated with Fungicidal Peptaibol Analogs of Trichoderma Trichogin. Front. Microbiol. 2021, 12, 753202. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, C.; Peggion, C.; Crisma, M.; Formaggio, F.; Shui, X.; Eggleston, D.S. Structure determination of racemic trichogin A IV using centrosymmetric crystals. Nat. Struct. Biol. 1994, 1, 908–914. [Google Scholar] [CrossRef]
- De Zotti, M.; Biondi, B.; Peggion, C.; Formaggio, F.; Park, Y.; Hahm, K.-S.; Toniolo, C. Trichogin GA IV: A versatile template for the synthesis of novel peptaibiotics. Org. Biomol. Chem. 2012, 10, 1285–1299. [Google Scholar] [CrossRef]
- Musaimi, O.A.; de la Torre, B.G.; Albericio, F. Greening Fmoc/TBu Solid-Phase Peptide Synthesis. Green Chem. 2020, 22, 996–1018. [Google Scholar] [CrossRef]
- Tavano, R.; Malachin, G.; De Zotti, M.; Peggion, C.; Biondi, B.; Formaggio, F.; Papini, E. Comparison of bactericidal and cytotoxic activities of trichogin analogs. Data Brief 2016, 6, 359–367. [Google Scholar] [CrossRef]
- McCracken, M.G.; Adam, H.J.; Blondeau, J.M.; Walkty, A.J.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G.; Mulvey, M.R.; Canadian Antimicrobial Resistance Alliance (CARA); CANWARD (2019). Characterization of carbapenem-resistant and XDR Pseudomonas aeruginosa in Canada: Results of the CANWARD 2007-16 study. J. Antimicrob. Chemother. 2019, 74 (Suppl. 4), iv32–iv38. [Google Scholar] [CrossRef] [PubMed]
- Strateva, T.V.; Sirakov, I.; Stoeva, T.J.; Stratev, A.; Peykov, S. Phenotypic and Molecular Characteristics of Carbapenem-Resistant Acinetobacter baumannii Isolates from Bulgarian Intensive Care Unit Patients. Microorganisms 2023, 11, 875. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Sato, H.; Feix, J.B. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim. Biophys. Acta 2006, 1758, 1245–1256. [Google Scholar] [CrossRef]
- Parker, W.; Song, P.S. Protein structures in SDS micelle-protein complexes. Biophys. J. 1992, 61, 1435–1439. [Google Scholar] [CrossRef]
- Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr. 1999, 1462, 55–70. [Google Scholar] [CrossRef]
- Tavano, R.; Malachin, G.; De Zotti, M.; Peggion, C.; Biondi, B.; Formaggio, F.; Papini, E. The peculiar N- and C-termini of trichogin GA IV are needed for membrane interaction and human cell death induction at doses lacking antibiotic activity. Biochim. Biophys. Acta Biomembr. 2015, 1848, 134–144. [Google Scholar] [CrossRef]
- Fasman, G.D. (Ed.) Circular Dichroism and the Conformational Analysis of Biomolecules; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J. Circular Dichroism Spectrum of a Peptide 310-Helix. J. Am. Chem. Soc. 1996, 118, 2744–2745. [Google Scholar] [CrossRef]
- Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Control of peptide conformation by the Thorpe-Ingold effect (C alpha-tetrasubstitution). Biopolymers 2001, 60, 396–419. [Google Scholar] [CrossRef] [PubMed]
- Giamarellou, H.; Karaiskos, I. Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics 2022, 11, 1009. [Google Scholar] [CrossRef]
- Nguyen, L.; Garcia, J.; Gruenberg, K.; MacDougall, C. Multidrug-Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizon? Curr. Infect. Dis. Rep. 2018, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Jad, Y.E.; Govender, T.; Kruger, H.G.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Green Solid-Phase Peptide Synthesis (GSPPS) 3. Green Solvents for Fmoc Removal in Peptide Chemistry. Org. Process Res. Dev. 2017, 21, 365–369. [Google Scholar] [CrossRef]
- Bechlars, S.; Wüstenhagen, D.A.; Drägert, K.; Dieckmann, R.; Strauch, E.; Kubick, S. Cell-free synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus. Toxicon 2013, 76, 132–142. [Google Scholar] [CrossRef] [PubMed]
No. | Peptide Name a | Peptide Sequence |
---|---|---|
0 | Trichogin GA IV | 1-Oct-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Lol |
1 | [K2,5]-Lol | 1-Oct-Aib-Lys-Leu-Aib-Lys-Gly-Leu-Aib-Gly-Ile-Lol |
2 | [K2]-NH2 | 1-Oct-Aib-Lys-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Leu-NH2 |
3 | [L4]-NH2 | 1-Oct-Aib-Gly-Leu-Leu-Gly-Gly-Leu-Aib-Gly-Ile-Leu-NH2 |
4 | [K5,6]-Lol | 1-Oct-Aib-Gly-Leu-Aib-Lys-Lys-Leu-Aib-Gly-Ile-Lol |
4b | [K5,6]-NH2 | 1-Oct-Aib-Gly-Leu-Aib-Lys-Lys-Leu-Aib-Gly-Ile-Leu-NH2 |
5 | [K2,5,9]-Lol | 1-Oct-Aib-Gly-Leu-Aib-Lys-Lys-Leu-Aib-Lys-Ile-Lol |
5b | [K2,5,9]-NH2 | 1-Oct-Aib-Gly-Leu-Aib-Lys-Lys-Leu-Aib-Lys-Ile-Leu-NH2 |
6 | [K5,U6]-Lol | 1-Oct-Aib-Gly-Leu-Aib-Lys-Aib-Leu-Aib-Gly-Ile-Lol |
6b | [K5,U6]-NH2 | 1-Oct-Aib-Gly-Leu-Aib-Lys-Aib-Leu-Aib-Gly-Ile-Leu-NH2 |
7 | [K2,5,6,9]-Lol | 1-Oct-Aib-Lys-Leu-Aib-Lys-Lys-Leu-Aib-Lys-Ile-Lol |
8 | [Api8]-NH2 | 1-Oct-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Api-Gly-Ile-Leu-NH2 |
9 | [K9]-Lol | 1-Oct-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Lys-Ile-Lol |
10 | [K6]-Lol | 1-Oct-Aib-Gly-Leu-Aib-Gly-Lys-Leu-Aib-Gly-Ile-Lol |
10b | [K6]-NH2 | 1-Oct-Aib-Gly-Leu-Aib-Gly-Lys-Leu-Aib-Gly-Ile-Leu-NH2 |
11 | [K2,5,6]-NH2 | 1-Oct-Aib-Lys-Leu-Aib-Lys-Lys-Leu-Aib-Gly-Ile-Leu-NH2 |
Ultrashort analogs | ||
12 | [4-11]-NH2 | 1-Oct-Aib-Lys-Lys-Leu-Aib-Gly-Ile-Leu-NH2 |
13 | UKKLL | 1-Oct-Aib-Lys-Lys-Leu-Leu-NH2 |
14 | LUKI | 1-Oct-Leu-Aib-Lys-Ile-NH2 |
15 | UKLL | 1-Oct-Aib-Lys-Leu-Leu-NH2 |
16 | LUKL | 1-Oct-Leu-Aib-Lys-Leu-NH2 |
17 | KLUL | 1-Oct-Lys-Leu-Aib-Leu-NH2 |
18 | LKUL | 1-Oct-Leu-Lys-Aib-Leu-NH2 |
Peptide No. and Name | MIC (μg/mL) a | Hemolysis (d, mm) b | |||||||
---|---|---|---|---|---|---|---|---|---|
Gram-Positive | Gram-Negative | ||||||||
Bsu | Efa | Spy | Sau | Eco | Kpn | Aba | Pae | ||
0 Tric-Lol | 16 | 16 | 16 | >128 | >128 | >128 | >128 | >128 | - |
1 [K2,5]-Lol | 4 | 2 | 2 | 16 | 32 | >128 | 4 | 16 | -* |
2 [K2]-NH2 c | 4 | 4 | 4 | 8 | >128 | 64 | 16 | >128 | + (8) |
3 [Leu4]-NH2 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | - |
4 [K5,6]-Lol | 2 | 2 | 2 | 16 | 16 | 16 | 2 | 8 | -* |
4b [K5,6]-NH2 | 2 | 4 | 2 | 16 | 16 | 32 | 4 | 16 | -* |
5 [K2,5,9]-Lol | 8 | 4 | 4 | 16 | 8 | 16 | 4 | 8 | -* |
5b [K2,5,9]-NH2 | 2 | 2 | 2 | 8 | 32 | 32 | 4 | 16 | -* |
6 [K5,U6]-Lol | 8 | 8 | 8 | 8 | >128 | >128 | >128 | >128 | + (4) |
6b [K5,U6]-NH2 | 128 | 128 | 8 | 128 | >128 | >128 | >128 | >128 | - |
7 [K2,5,6,9]-Lol | 2 | 4 | 2 | 16 | 16 | 16 | 2 | 8 | -* |
8 [Api8]-NH2 | 32 | 16 | 16 | >128 | >128 | >128 | >128 | >128 | + (7) |
9 [K9]-Lol | 4 | 4 | 16 | 16 | >128 | >128 | 8 | >128 | + (10) |
10 [K6]-Lol | 4 | 4 | 4 | 8 | 64 | 16 | 16 | >128 | + (11) |
10b [K6]-NH2 | 4 | 4 | 4 | 32 | >128 | >128 | 16 | >128 | + (10) |
11 [K2,5,6]-NH2 c | 2 | 4 | 4 | 16 | 16 | >128 | 2 | 8 | - |
12 [4-11] | 4 | 32 | 16 | 16 | 16 | 64 | 32 | 64 | -* |
13 UKKLL | 32 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | - |
14 LUKI | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | - |
15 UKLL | 16 | 32 | 16 | 64 | 64 | 64 | 64 | 64 | + (5) |
16 LUKL | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | - |
17 KLUL | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | - |
18 LKUL | 128 | >128 | 128 | >128 | >128 | >128 | >128 | >128 | - |
No. | MIC/MBC (μg/mL) a | |||||||
---|---|---|---|---|---|---|---|---|
S. aureus ATCC 43300 (MRSA) | A. baumannii SI-12 (OXA-23) | A. baumannii SI-648 (OXA-23, OXA-51-like) | A. baumannii SI-310 (OXA-24) | P. aeruginosa VR-143/97 (VIM-1) | P. aeruginosa VA-182/00 (VIM-2) | P. aeruginosa 506/99 (VIM-2) | P. aeruginosa 101/1477 (IMP-1) | |
1 | 2/2 | 4/8 | 8/16 | 4/4 | 32/32 | 16/16 | 16/32 | 8/16 |
2 | 2/4 | 32/32 | 16/32 | 32/32 | >128 | >128 | >128 | >128 |
4 | 4/8 | 2/4 | 4/4 | 4/8 | 16/32 | 16/32 | 16/16 | 8/16 |
4b | 8/8 | 4/4 | 4/4 | 4/8 | 32/64 | 32/64 | 32/32 | 32/64 |
5 | 2/2 | 4/4 | 4/4 | 2/4 | 8/8 | 8/8 | 8/8 | 8/8 |
5b | 2/2 | 4/8 | 4/4 | 2/4 | 16/32 | 8/32 | 8/32 | 8/8 |
6 | 4/8 | - | - | - | - | - | - | - |
7 | 4/8 | 2/4 | 2/4 | 4/4 | 8/8 | 8/8 | 8/8 | 8/8 |
9 | 4/8 | 32/32 | 32/32 | 32/32 | >128 | >128 | >128 | >128 |
10 | 4/8 | 32/32 | 16/16 | 16/16 | >128 | >128 | >128 | >128 |
11 | 2/2 | 32/32 | 2/4 | 2/4 | 8/8 | 8/32 | 8/16 | 8/8 |
Clinical Isolate | Resistance Phenotype a |
---|---|
Staphylococcus aureus ATCC 43300 | PEN (methicillin-resistant) |
Acinetobacter baumannii SI-12 | PEN, CARB (blaOXA-23+), AG, FQ, SXT |
Acinetobacter baumannii SI-310 | PEN, CARB (blaOXA-24+), AZT, AG, FQ, SXT, COL |
Acinetobacter baumannii SI-648 | PEN, CARB (blaOXA-23+ + hyperproduction of OXA-51-like enzyme), AG, FQ, SXT |
Pseudomonas aeruginosa VR-143/97 | PEN, ES-CEPH, CARB (blaVIM-1+), AZT, AG, FQ |
Pseudomonas aeruginosa VA-182/00 | PEN, ES-CEPH, CARB (blaVIM-2+), AZT, AG, FQ |
Pseudomonas aeruginosa 101/1477 | PEN, ES-CEPH, CARB (blaIMP-1+), AG |
Pseudomonas aeruginosa 506/99 | PEN, ES-CEPH, CARB (blaVIM-2+), AG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalla Torre, C.; Sannio, F.; Battistella, M.; Docquier, J.-D.; De Zotti, M. Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens. Int. J. Mol. Sci. 2023, 24, 7997. https://doi.org/10.3390/ijms24097997
Dalla Torre C, Sannio F, Battistella M, Docquier J-D, De Zotti M. Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens. International Journal of Molecular Sciences. 2023; 24(9):7997. https://doi.org/10.3390/ijms24097997
Chicago/Turabian StyleDalla Torre, Chiara, Filomena Sannio, Mattia Battistella, Jean-Denis Docquier, and Marta De Zotti. 2023. "Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens" International Journal of Molecular Sciences 24, no. 9: 7997. https://doi.org/10.3390/ijms24097997
APA StyleDalla Torre, C., Sannio, F., Battistella, M., Docquier, J. -D., & De Zotti, M. (2023). Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens. International Journal of Molecular Sciences, 24(9), 7997. https://doi.org/10.3390/ijms24097997