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Abstract: The metabolic profile of the Aspergillus sp. 1901NT-1.2.2 sponge-associated fungal strain was
investigated using the HPLC MS technique, and more than 23 peaks in the HPLC MS chromatogram
were detected. Only two minor peaks were identified as endocrocin and terpene derivative MS data
from the GNPS database. The main compound was isolated and identified as known anthraquinone
derivative vismione E. The absolute stereochemistry of vismione E was established for the first time
using ECD and quantum chemical methods. Vismione E showed high cytotoxic activity against
human breast cancer MCF-7 cells, with an IC50 of 9.0 µM, in comparison with low toxicity for normal
human breast MCF-10A cells, with an IC50 of 65.3 µM. It was found that vismione E inhibits MCF-7
cell proliferation and arrests the cell cycle in the G1 phase. Moreover, the negative influence of
vismione E on MCF-7 cell migration was detected. Molecular docking of vismione E suggested the
IMPDH2 enzyme as one of the molecular targets for this anthraquinone derivative.

Keywords: Aspergillus; marine-derived fungus; vismione E; HPLC MS; secondary metabolites;
cytotoxicity; MCF-7; proliferation

1. Introduction

For the last two decades, marine fungi have been promising sources of bioactive
compounds [1–3]. In particular, marine sponge-derived fungi have excellent potential for
the discovery of anticancer agents [4,5].

According to estimates from World Health Organization data, cancer is still one of the
leading diseases behind mortality in humans. Worldwide, an estimated 19.3 million new
cancer cases and almost 10.0 million cancer deaths occurred in 2020. Furthermore, among
women, the most-diagnosed cancer is breast cancer (24.5% of total cases among women),
and it is also the biggest cause of mortality among women with cancer, while among
men, prostate cancer leads as the most-diagnosed disease (14.1% of total cases among
men) [6]. The number of newly diagnosed breast cancer cases is expected to increase by
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more than 40% by 2040, reaching around 3 million cases annually. In addition, breast cancer
mortality is predicted to rise by more than 50%, from 685,000 in 2020 to 1 million in 2040 [7].
Accordingly, new anti-cancer and cancer-preventive drugs will become more and more
needed, and marine sponge-derived fungi may be used for this purpose [8].

Previously, during an ongoing research project, a number of marine filamentous fungi
were isolated from various sponge samples collected in Nha Trang Bay (Vietnam) [9]. The
fungal strain 1901NT-1.2.2 was identified as Aspergillus sp., with similarity to A. europaeus
near 94% and A. dimorphicus near 86%. Both these fungi are in the section Cremei [10].
The fungi of the Cremei section (Aspergillus brunneouniseriatus, A. dimorphicus, A. flaschen-
traegeri, A. gorakhpurensis, A. itaconicus, A. pulvinus, A. stromatoides, A. wentii, Chaetosartorya
cremea, C. chrysella, C. stromatoides, and others) produce the mycotoxins sterigmatocystin
and patulin [11] as well as wentilactones [12], emodin [13], citraconic anhydride, and
bianthrones [14], which have anticancer properties [15]. The marine sponge-derived A.
europaeus was found to be a producer of a number of xanthone-related polyketides [16].
Additionally, various anthraquinone derivatives are one of the most common classes of As-
pergillus spp. metabolites [17]. Most of them not only have obvious antioxidant properties
but also exhibit antitumor effects [18].

The EtOAc extract of the 1901NT-1.2.2 fungal strain culture showed significant cyto-
toxic activity against human cervical HeLa and breast MCF-7 cancer cells in screening tests,
but no information about its cytotoxic secondary metabolites is available.

For this reason, the aims of this work were determination of the metabolite profile of
the EtOAc extract of the marine sponge-associated fungal strain Aspergillus sp. 1901NT-1.2.2
and isolation of its main individual compounds, as well as studying its cytotoxic activity.
Herein, we report on the metabolic profile of Aspergillus sp. 1901NT-1.2.2 and the very first
isolation from fungi and absolute stereostructure elucidation of known plant anthraquinone
vismione E (1). Moreover, the cytotoxic activity of vismione E is described in detail for the
first time, and its suggested molecular targets are discussed.

2. Results
2.1. Metabolite Profile of Aspergillus sp. 1901NT-1.2.2

The EtOAc extract of the Aspergillus sp. 1901NT-1.2.2 fungal strain was investigated
using the HPLC MS technique, and more than 20 peaks were detected (Figure 1).
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identified as a that of known compound vismione E, which was isolated for the first time 
from berries of Psorospermum febrifugum occurring in Africa and described in the literature 

Figure 1. The HPLC MS profile of EtOAc extract of Aspergillus sp. 1901NT-1.2.2 fungal strain. Peak #16
corresponds to vismione E (1, green circle), peak #2 corresponds to 7-hydroxy-3-(2-hydroxypropyl)-5-
methylisochromen-1-one (orange circle), peak #5 corresponds to endocrocin (blue circle), peak #12
corresponds to 11a-hydroxy-4,4,9-trimethyl-9-vinyl-1,2,3,4,9,10,11,11a-octahydrodibenzo[c,e]oxepine-
5,7-dione (red circle).
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The peak #2 detected at 5.12 min with m/z 235.0970 ([M + H]+) corresponded to
the molecular formula C13H14O4, which was the same as the known fungal isocouma-
rine polyketide 7-hydroxy-3-(2-hydroxypropyl)-5-methylisochromen-1-one [19]. This was
proven through the comparison of experimental MS/MS spectra with the GNPS database
(MQScore 0.89). The peak #5 detected at 8.16 min with m/z 315.0504 ([M + H]+) cor-
responded to the molecular formula C16H10O7, which was the same as wide-spread
anthraquinone derivative endocrocin [20]. This was proven through the comparison
of experimental MS/MS spectra (Figure S23) with the GNPS database (MQScore 0.93).
The peak #12 detected at 13.16 min with m/z 317.1750 ([M + H]+) corresponded to the
molecular formula C19H24O4. It was identified as 11a-hydroxy-4,4,9-trimethyl-9-vinyl-
1,2,3,4,9,10,11,11a-octahydrodibenzo[c,e]oxepine-5,7-dione through the comparison of the
experimental MS/MS spectra (Figure S24) with the GNPS database (MQScore 0.83).

For the other 19 peaks, only molecular formulas corresponding to the exact masses
were determined (Appendix A, Table A1).

2.2. Isolation of Compound 1

For the detailed investigation of the chemical composition of the EtOAc extract of the
Aspergillus sp. 1901NT-1.2.2 fungal strain, it was fractionated using column chromatography,
which yielded individual compound 1.

The molecular formula of compound 1 (Figure 2a) was determined as C21H24O5
based on the HRESIMS spectrum data containing the [M + Na]+ peak at m/z 379.1515
(Supplementary Materials, Figures S10 and S11), which was confirmed using 13C NMR
data. The 1H and 13C NMR spectra contained signals of four methyl groups (including
one methoxy group), three methylene groups, three methine groups belonging to sp2-
carbon atoms, nine quaternary sp2-carbon atoms, and one quaternary sp3-carbon atom.
The analysis of HMBC data, as well as 1H-1H COSY correlations (Figure 2b, Table 1, Sup-
plementary Materials, Figures S1–S7) allowed us to establish the structure of the prenylated
anthraquinone derivative 1 as 3,8,9-trihydroxy-6-methoxy-3-methyl-7-(3 -methylbut-2-en-
1-yl)-3,4-dihydroanthracene-1(2H)-one.
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Figure 2. Structure of vismione E (a); the key HMBC (arrows) and 1H-1H COSY (bold lines)
correlations (b).

Table 1. 1H and 13C NMR spectroscopic data (δ in ppm, 700 MHz, CDCl3) for 1.

Pos. δC, Mult δH (J in Hz) HMBC

1 156.1, C
2 114.8, C
3 162.0, C
4 97.8, CH 6.54, s 1 *, 2, 4a, 11 *, 9 *, 10
4a 108.1, C

5 43.4, CH2
3.02, d (15.8)
3.06, d (15.8) 4a, 6, 7, 8a *, 10, 10a, 6-Me

6 71.0, C

7 51.1, CH2
2.81, d (17.2)
2.85, d (17.2) 4a *, 5, 6, 6-Me, 8
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Table 1. Cont.

Pos. δC, Mult δH (J in Hz) HMBC

8 201.5, C
8a 139.0, C
9 165.9, C
9a 108.1, C
10 117.6, CH 6.86, s 1 *, 4, 4, 5, 8, 8a, 9 *

10a 134.1, C

11 22.0, CH2
3.44, d (7.1)
3.44, d (7.1) 1, 2, 3, 12, 13

12 122.3, CH 5.24, t (6.9) 2, 11, 14, 15
13 131.7, C
14 17.8, CH3 1.81, s 12, 13, 15
15 25.8, CH3 1.68, s 12, 13, 14

1-OH - 9.95, s 1, 2, 4a
3-OMe 55.6, CH3 3.92, s 3
6-Me 28.8, CH3 1.44, s 5, 6, 7, 8 *

*—weak interaction.

The literature data analysis showed that the planar structure of compound 1 was
identified as a that of known compound vismione E, which was isolated for the first time
from berries of Psorospermum febrifugum occurring in Africa and described in the literature
only three times as a metabolite of the highest plants [21–24]. This is the first case of
vismione E isolation from a marine microorganism.

The MS data of vismione E (1) fully corresponded to those for main peak #16 in the
HPLC MS chromatogram (Figure 1, Table A1). This allows us to consider vismione E as
one of the main metabolites of the fungus Aspergillus sp. 1901NT-1.2.2.

Analyzing the literature data on vismione E (1) showed the absence of any infor-
mation on either the stereochemistry of this compound or the experimental data used to
characterize the stereoconfigurations (CD spectrum, specific optical rotation angle, etc.,
Supplementary Materials, Figures S8 and S9). In this regard, the problem of determining
the configuration of the only chiral center of compound 1 is topical.

All protons in the aliphatic part of the vismione E molecule were separated, which
did not allow us to analyze the vicinal spin–spin interaction constants to establish the
stereochemical features of compound 1. The ROESY correlations between the methyl group
at C-6 (δH 1.44) and all protons of both methylene groups at C-5 (δH 3.02, 3.06) and C-7
(δH 2.82, 2.85) indicated the equatorial location of the methyl group. Thus, the relative
stereostructure of vismione E (1) was assumed, as is shown in Figure 3.
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To determine the absolute configuration of compound 1, we used the ECD spec-
troscopy method. The description of the used procedure is shown in the Supplementary
Materials (Figure S13). The extended quantum-chemical investigation of the UV spectrum
and the rotatory powers of different vertical electronic transitions was carried out via the
TDDFT approach using different exchange–correlation functionals, implemented in GAUS-
SIAN 16 software [25]. To overcome the difficulties in the interpretation of experimental
ECD spectra in some frequency regions, the evolutions of the ECD spectra along the large
amplitude motions (LAM) were investigated (Supplementary Materials, Figures S13–S15).

The comparison of theoretical (calculated using various density functionals and the
6-311G(d) basis set) and experimental UV spectra is shown in Figure 4. We found that the
features of the experimental UV spectrum are well reproduced theoretically in the frequency
diapason λ ≤ 340 nm (when using UV shifts, specific for each functional, Supplementary
Materials, Table S14).
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The comparison of experimental and theoretical ECD spectra is shown in Figure 5.
The influence of LAM motions on the shape of the calculated ECD spectra is shown

in Supplementary Materials, Figure S16. The main contribution to the total statistically
averaged ECD spectrum gives conformations of the “EQ” type—their total amount is nearly
twice the number of “AX”-type conformations.

The experimental ECD spectrum of 1 is very complicated. Most bands have sharp
shapes. We found that the intensities of negative bands in the 196 ≤ λ ≤ 350 nm region
are the strong functions of the LAM1 motion, corresponding to the inversion of ring
C. The inversion of this ring may proceed via overcoming the potential energy barriers
∆E 6= ≈ 7.4 kcal/mol, associated with two different transition states; each of them has a
very nonlinear and even twisted structure (Supplementary Materials, Figure S16). The
equilibrium structures, corresponding to minimums on the potential energy surface, have
classical envelope shapes. The transfer of 1 from one equilibrium state to another equilib-
rium state may be described as a movement along the intrinsic reaction coordinate paths
(IRC), calculated from TS to minimums on PES. We found that most of these IRC paths
for the energy range E ≥ Emin + 0.5 kcal/mol are formed with very distorted structures
(Supplementary Materials, Figure S17). Hence, the averaged intensities of bands in the
195 ≤ λ ≤ 350 nm region must be, to some extent, other than the intensities obtained for
the equilibrium structures.
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The comparison of ECD spectra (also for selected individual conformations and for
statistically averaged total spectra), calculated using different density functionals, showed
that the most variations in the theoretical spectra appear in the λ≤ 240 nm region (Figure 5).
This is due, in some ways, to the precision with which different density functionals describe
the UV spectrum in this energy diapason. The energy of the first electronic transition is
always overestimated by all DFT methods.

The intensity of the band (positive for S-1 and negative for R-1) at λ ≈ 280 nm is
strongly dependent on the LAM2 motion, corresponding to the internal rotation of the
OMe group around the C-C bond (Supplementary Materials, Figures S14–S18). However,
the position and the sign of this band in the statistically averaged ECD spectrum do not
change along the LAM2 motion.

These data highlight that the ECD spectrum, averaged over the intramolecular dynam-
ics of 1, must be different from the ECD spectrum to some extent, calculated as a statistical
average of data obtained for stable configurations of 1 only. However, the averaging of
ECD spectra over LAM motions is a very complicated task—it requires constructing a
correct theoretical (multidimensional) model and strays outside of the purposes of the
present work. There is one energy region in which the properties of the ECD spectrum (the
signs and positions of bands) do not change under the influence of LAM motions—the
230 ≤ λ ≤ 350 nm region. All DFT methods describe the shape of the ECD spectrum in this
region in one and the same manner. Therefore, we selected this region as a reference region
in our determination of the stereochemistry of 1 (Figure 6).

The comparison of the ECD spectra calculated for 6S-1 and 6R-1 demonstrates that
a good correspondence to the experimental ECD spectrum occurs for 6S-1. The ECD
spectrum calculated for 6R-1 describes the experimental one very poorly. This allows us to
determine the absolute structure of 1 as 6S.
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Figure 6. The experimental ECD spectrum of 1 compared to theoretical ECD spectra, calculated using
B3PW91/6-311++G(d)_PCM method for stereoisomers 6S-1 and 6R-1.

2.3. Cytotoxic Activity of Vismione E (1)
2.3.1. Influence on Cell Viability

The cytotoxic activity of vismione E (1) was evaluated toward human prostate cancer
PC-3 cells and human breast cancer MCF-7 cells, as well as normal human breast epithelial
MCF-10A cells and rat cardiomyocytes H9c2. The half-maximal concentrations of vismione
E for all used cell lines after 48 h of treatment are presented in Table 2.

Table 2. The cytotoxic activity of vismione E (1).

PC-3 MCF-7 MCF-10A H9c2

IC50, µM

10.1 ± 2.1 9.0 ± 0.4 65.3 ± 2.2 69.3 ± 8.0
The data are presented as mean ± standard error of mean (SEM). All experiments were carried out in triplicate.

The effects of vismione E (1) on MCF-7 and MCF-10A cell viability as well as PC-3 and
H9c2 cell viability after 24 h and 48 h incubation at different concentrations are graphed in
Figure 7.

Therefore, vismione E (1) showed enhancement of its cytotoxic effect during prolonged
administration and more pronounced activity against cancer PC-3 and especially MCF-7
cells than against normal H9c2 and MCF-10A cells.

2.3.2. Influence on MCF-7 Cell Cycle and Proliferation

The influence of vismione E at a concentration of 10 µM on the MCF-7 cell cycle and
cell proliferation was investigated after 48 h of treatment.

The influence of vismione E on the MCF-7 cell cycle was investigated using propidium
iodide (PI) labeling and detected using the flow cytometry technique (Figure 8b,c). It
was found that compound 1 arrested the MCF-7 cell cycle in the G1 phase because the
percentage of G1-phase cells in the control was 47.7%, while it was 68.5% in the vismione
E-treated cell population. Additionally, the percentage of S- and G2-phase cells was 20.7%
and 10.6% in the vismione E-treated cell population, while it was 35.1% and 17.1% in the
control, respectively.
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Figure 8. The effect of vismione E (1) at 10 µM on (a) MCF-7 cell proliferation and (b,c) MCF-7 cell
cycle after 48 h of treatment. The data are presented as mean ± SEM. All experiments were carried
out in triplicate. * indicates statistically significant differences between variants (p < 0.05).

The 5-Ethynyl-2′-deoxyuridine (EdU) incorporating assay is based on the property of
active proliferating cells including the synthetic thymidine derivative in newly synthesized
DNA [26]. The MCF-7 cells after incubation with investigated compound 1 for 48 h were
stained with EdU for 2 h, then intracellular EdU was click-reacted with a fluorescent
dye and the intensity of fluorescence was measured (Figure 8a). Vismione E decreased
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the incorporation of EdU into MCF-7 cells by more than 30% in comparison with the
non-treated cells.

Moreover, the proliferation of MCF-7 cells was investigated using (5,6)-carboxyfluorescein
succinimidyl ester (CFDA SE) staining. The cells were labeled with non-fluorescent CFDA
SE dye, which is modified by intracellular esterase enzymes in fluorescent CFDA bonded
covalently with amines. The active proliferated cells divide the intracellular reagent be-
tween two daughter cells so that the fluorescence intensity in the divided cells decreases
compared to the parent or undivided cells [27].

In this work, the distribution of CFDA fluorescence in MCF-7 cells was evaluated
using the flow cytometry technique after 48 h of incubation with vismione E in comparison
with non-treated cells.

As a result, the cells were found to undergo two divisions. No division (undivided)
showed cells with higher CFDA fluorescence intensity (Figure 9). The cells treated with
vismione E showed a significant decrease in the average number of cells in the first division
(Figure 9d).
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Figure 9. The effect of vismione E (1) at 10 µM on MCF-7 cell proliferation. (a) Control and (b) vis-
mione E-treated MCF-7 cells after 48 h of treatment. (c) Merge, (d) the percentage of cells in both
divisions. The data are presented as mean ± SEM. All experiments were carried out in triplicate.
* indicates statistically significant differences between variants (p < 0.05).

All the obtained data confirmed that vismione E (1) suppresses the proliferation of
MCF-7 cells and arrests the cell cycle in the G1 phase.
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2.3.3. Influence on Cell Migration

The influence of vismione E at a concentration of 1 µM on MCF-7 cell migration was
investigated. Silicon blockers (Figure 15) were inserted into the wells of 24-well plates
and the cell suspension was added to each well (Figure S12). After adhesion, the silicon
inserts were removed, and MCF-7 cells were stained with CFDA SE for tracking with a
plate spectrofluorometer. Then, vismione E at 1 µM or DMSO as a vehicle was added to
the wells, and the cells were incubated in the usual conditions. The visualization of MCF-7
migration in the control and vismione E wells by scanning fluorescence intensity on a
25 × 25 points matrix is presented in Figure 10.
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of the well for 96 h cultivation, and it was not as intense in the cells treated with vismione 
E as it was in the control cells. 

Figure 10. The effect of vismione E (1) at 1 µM on MCF-7 cell migration: a fluorescence profile of
wells with non-treated cells at (a) 0 h, (b) 24 h, and (c) 96 h after removing the blocker, and the cells
treated with 1 at (d) 0 h, (e) 24 h, and (f) 96 h after removing the blocker. The wells were scanned
with a matrix with 25 × 25 points. All experiments were carried out in triplicate and the data of one
representative well were graphed.
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The average fluorescence intensity in 7× 7-point central zones is presented in Figure 11.
The CFDA fluoresce intensity indicated the number of MCF-7 cells in the central zone of
the well for 96 h cultivation, and it was not as intense in the cells treated with vismione E
as it was in the control cells.
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Figure 11. The influence of vismione E at 1 µM on migration of MCF-7 cells for 96 h. All experiments
were carried out in triplicate. The data are presented as mean ± SEM. * indicates statistically
significant differences between variants (p < 0.05).

Therefore, the MCF-7 cells did not migrate quickly, but the control cells filled the
well after 96 h of incubation. The cells treated with vismione E remained viable since the
fluorescence intensity remained at the control level, but the center of the well remained
freer after 96 h of cultivation.

2.3.4. Prediction of Molecular Targets and Molecular Docking

The SwissTargetPrediction web server (http://www.swisstargetprediction.ch/index.
php (accessed on 15 February 2023) was used for the prediction of vismione E (1) molecular
targets [28]. The unique engine behind SwissTargetPrediction calculates the similarity
between the user’s query compounds and those compiled in collections of known actives
in experimental binding assays.

The list of the top 50 predicted molecular targets is presented in Appendix B (Table A2).
The top five of them include inosine-5′-monophosphate dehydrogenase 2 (IMDH2), matrix
metalloproteinase 1 (MMP1), ADAM17, complex cyclin C with cell division protein kinase
8 (CCNC/CDK8), and cell division protein kinase 8 (CDK8).

Vismione E was docked with the top five predicted molecular targets to evaluate
their binding affinities and active binding residues using the SwissDock docking server
(http://www.swissdock.ch (accessed on 15 February 2023)). Docking parameters such as
full fitness (FF, kcal/mol), Gibb’s free energy (∆G), and hydrogen bonding (H-bond) were
analyzed using UCSF Chimera 1.16 software (Table 3).

http://www.swisstargetprediction.ch/index.php
http://www.swisstargetprediction.ch/index.php
http://www.swissdock.ch
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Table 3. Molecular docking data.

Target ∆G
(kcal/mol)

Full Fitness
(kcal/mol) Energy H-Binding Residue/

H-Bonding Distance

Vismione E
IMPDH2 −7.478466 −5339.8955 7.369 Lys229 H . . . O 2.165 Å

−7.4588733 −5338.026 18.4965 Lys489 HN . . . O 2.678 Å
H . . . O Glu487 3.265 Å

MMP1 −6.889332 −4766.2676 29.1129 H . . . O Gln974 2.119 Å

ADAM17 −7.782852 −3054.5269 12.3965

Lys455 H . . . O 3.173 Å
Ala266 HN . . . O 2.051 Å
H . . . O Ala270 2.679 Å
Lys273 H . . . O 2.302 Å

CDK8CCNC −7.634472 −3557.7717 15.7452 Lys18 H . . . O 2.056 Å
Mycophenolic acid

IMPDH2 −7.7401905 −5380.3955 1.44649
Lys489 HN . . . O 2.830 Å
Asp16 HN . . . O 2.136 Å

H . . . O Pro14 1.805 Å
Theoretical de-prenylated derivative of vismione E

IMPDH2 −6.7235613 −5343.706 22.4293 Lys489 HN . . . O 2.269 Å
−6.6762652 −5344.5107 18.8873 H . . . O Asp15 2.911 Å

All the output clusters of vismione E with the targets were ranked by hydrogen
bonding (interactions) and the FF score. A greater negative showed more favorable binding
modes with a better fit [29]. Therefore, the docked complex of IMPDH2 with vismione E
with the lowest ∆G (−7.478466 kcal/mol) has one H-bond between the Lys229 residue and
keto-group at C-8, while another complex with ∆G (−7.4588733 kcal/mol) has two H-bonds
between the Lys489 residue and oxygen of the 3-OMe group and the Glu487 residue and
the 6-OH group. All complexes have similar lowest FF scores (−5339.8955 kcal/mol and
−5338.026 kcal/mol, respectively), but different energies.

The docked complex of vismione E with MMP1 with one H-bond between the Gln974
residue and OH-group at C-6 has the biggest ∆G value (−6.889332 kcal/mol) and a low FF
score (−4766.2676 kcal/mol).

The docked complex of vismione E with ADAM17 has the lowest ∆G value
(−7.782852 kcal/mol), but the highest FF score (−3054.5269 kcal/mol) despite the four
H-bonds calculated between the Ala270 and Lys 273 residues and the 6-OH group, Ala266
residue and keto-group at C-8, and Lys455 residue and OH-group at C-9.

The docked complex of vismione E with CDK8CCNC has a good ∆G value
(−7.634472 kcal/mol), but only one H-bond between the Lys18 residue and OH-group at
C-9, and a high FF score (−3557.7717 kcal/mol).

Therefore, the interaction of vismione E with IMPDH2 may be more energy-efficient.
To compare our data on the interaction of vismione E with this molecular target with
a known inhibitor of IMPDH2 activity, its complex with mycophenolic acid (MPA) was
docked (Figure 12). The IMPDH2 complex with MPA has a ∆G value of−7.7401905 kcal/mol
and three H-bonds between the Lys489 residue and OMe-group of MPA, Pro14 residue and
carboxy OH-group, and Asp16 residue and carboxy carbonyl group of the MPA structure.
The FF score was calculated as −5380.3955 kcal/mol. Thus, vismione E may interact with
the Lys489 residue of IMPDH2 like MPA, and the complex IMPDH2/vismione E has similar
FF scores.
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To analyze the influence of the prenyl group on vismione E’s possible interaction with
IMPDH2, the complex of a theoretical de-prenylated derivative of vismione E with IMPDH2
was docked. One complex with a H-bond between the Lys489 residue and oxygen of the 3-
OMe group (similar to vismione E) was calculated, but its ∆G value (−6.7235613 kcal/mol)
was higher than that of the IMPDH2/vismione E complex. The complex with the H-bond
between the Asp15 residue and OH-group at C-6 (near the MPA site of interaction) also has
a high ∆G value (−6.6762652 kcal/mol). Therefore, the prenyl chain of vismione E has a
significant influence on its interaction with the estimated molecular target.

3. Discussion

Previously, the EtOAc extract of Aspergillus sp. 1901NT-1.2.2 at a concentration of
10 µg/mL significantly decreased the viability of human breast cancer MCF-7 cells by
83.7% [9], and now, the individual compound vismione E with high cytotoxic activity
against MCF-7 and PC-3 cancer cells was isolated from this fungal extract.

Therefore, this is the first report about the cytotoxic activity of vismione E, which
was found as a main low-weight secondary metabolite of Aspergillus sp. 1901NT-1.2.2
strain. Along with this one, 7-hydroxy-3-(2-hydroxypropyl)-5-methylisochromen-1-one, en-
docrocin, and 11a-hydroxy-4,4,9-trimethyl-9-vinyl-1,2,3,4,9,10,11,11a-octahydrodibenzo[c,e]
oxepine-5,7-dione were identified in the EtOAc extract of the Aspergillus sp. 1901NT-1.2.2
fungus using the HPLC MS technique. Endocrocin is the well-known polyketide metabolite
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of fungi, and was reported to be a cyclooxygenase inhibitor [30], glutamate dehydrogenase
inhibitor, DPPH scavenger [31], and suppressor of neutrophil migration [32]. The polyke-
tide derivative 7-hydroxy-3-(2-hydroxypropyl)-5-methylisochromen-1-one was previously
isolated from the endolichenic fungus Ulocladium sp. [19] and endophytic fungus Alternaria
alternata [33]. Thus, this is the first report about its detection in a marine-derived fungus.

The anthraquinone derivatives endocrocin and vismione E found in the fungal extract
are clearly formed from the common precursor atrochrysone carboxylic acid (Figure 13),
as was previously shown for endocrocin [34]. Unfortunately, we were unable to detect
this precursor in the extract. It was previously indicated that it is contained in endocrocin-
producing fungi only in trace amounts [35].
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The significant effect of vismione E on human breast cancer MCF-7 cell viability was
detected using an MTT assay, which is widely used but had some limitations. The decrease
in optical density may be caused by the decrease in the number of cells as a result of the
inhibition of the proliferation or death of cells in various ways [36]. Therefore, the data on
the influence of vismione E on MCF-7 cell viability obtained through the MTT assay should
be verified. In our experiments, the influence of vismione E on MCF-7 cell proliferation
and arrest of the cell cycle in the G1/S phase was confirmed. The inhibition of proliferation
caused a greater cytotoxic effect of vismione E after 48 h of cell treatment in comparison
with treatment for 24 h.

Previously, a high cytotoxic effect against MCF-7 cells was found for the other vismione-
related compounds vismione B and deacetylvismiones A and H, with a GI50 of 4.5 µM,
5.1 µM, and 1.2 µM, respectively, but these data cannot be fully compared with our results
because the experimental conditions were not described in detail [22].

The literature databases mention the possibility of vismione E inhibiting GLI1 tran-
scriptional activity, and the authors of this article used vismione E’s chemical structure
for pharmacophore modeling, but the initial reference does not have any data about this
activity of vismione E [37,38].

The prediction of molecular targets using the SwissTargetPrediction web server is
based on the quantification of similarity, which consists of computing a pair-wise compar-
ison of 1D vectors describing molecular structures. The 2D measure uses the Tanimoto
index between path-based binary fingerprints (FP2) and the 3D measure is based on a Man-
hattan distance similarity quantity between Electroshape 5D (ES5D) float vectors. The latter
mines five descriptors for each atom of 20 previously generated conformations (Cartesian
coordinates, partial charge, and lipophilic contribution). For both the 2D and 3D similarity
measures, the principle is that two similar molecules are represented by analogous vectors,
which exhibit a quantified similarity close to 1 [39].
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The analysis of possible targets with the KEGG database shows that they are involved
in DNA synthesis, proliferation, and chemokine signaling, and several targets each belong
to the purine pathway, MAPK and Notch signaling, and specific metabolic pathways of
tumor cells (Figure 14).
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The top five predicted targets for vismione E include cell proliferation and migration
processes as well as specific cancer pathways. CDK8 in complex with cyclin C is a tran-
scriptional regulator that mediates several carcinogenic pathways in breast cancer [40].
The CDK8 submodule can interact directly with transcription factors independently of the
mediator complex to regulate signaling pathways including Notch-dependent signaling,
transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) receptor
signaling, and signal transducer and activator of transcription (STAT) signaling, so it is a
potential drug target for breast and prostate cancers [41].

MMPs including MMP1 are involved in many biological processes, such as tissue
repair and remodulation, cellular differentiation, embryogenesis, morphogenesis, cell
mobility, angiogenesis, cell proliferation, and migration [42]. MMPs are used by cancer
cells to hydrolyze the structural proteins that comprise the host extracellular matrix for fast
invasion and migration. It was shown that MMP-1 cleaves the PAR1 receptor for activation
and generates PAR1-dependent Ca2+ signals in MCF-7 breast cancer cells and promotes
tumorigenesis in a xenograft in vivo model [43]. Another metalloprotease, A disintegrin
and metalloprotease 17 (ADAM17), is involved in the processing of the interleukin-6
receptor (IL-6R), the pro-inflammatory cytokine tumor necrosis factor α (TNFα), and most
ligands of the epidermal growth factor receptor (EGFR). ADAM17 plays also an important
role in breast cancer, where it has been shown to influence cell invasion and proliferation,
but also angiogenesis and cancer cell apoptosis [44].

The IMPDH enzyme present in IMPDH1 and IMPDH2 isoforms catalases the conver-
sion of inosine 5′-phosphate (IMP) to xanthosine 5′-phosphate (XMP), the first committed
and rate-limiting step in the de novo synthesis of guanine nucleotides, and, therefore, plays
an important role in the regulation of cell growth [45].

One of the well-known IMDH2 inhibitors is mycophenolic acid, which was isolated
from Penicillium brevicompactum fungus many years ago, and its effects on cancer cells
include growth inhibition, cell cycle arrest, inhibition of migration, and others [46,47].
After unclear results of phase I clinical trials of MPA against relapsed/refractory multi-
ple myeloma, the investigation of IMDH2 inhibitors as anticancer drug candidates was
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stopped, and research refocused on targeting the study of immunosuppressive properties.
Nonetheless, the study of new IMDH2 inhibitors has resulted in the rediscovery of their
anticancer potential [48].

It was found that one of the isoforms of IMPDH, IMPDH1, may be expressed in
both normal and cancer cells, but IMPDH2 is expressed preferably in cancer-transformed
cells [49,50]. Therefore, the more specific influence of vismione E on cancer cells in compar-
ison to normal cells may be consistent with this fact.

Thus, IMDH2 can be considered as one of the molecular targets for vismione E. How-
ever, the successful molecular docking of vismione E with other proteins (∆G < 0 kcal/mol)
shows that this low-molecular weight secondary metabolite may be a multitarget ligand.

4. Materials and Methods
4.1. General

Optical rotations were measured on a Perkin-Elmer 343 polarimeter (Perkin Elmer,
Waltham, MA, USA). UV spectra were recorded on a Shimadzu UV-1601PC spectrometer
(Shimadzu Corporation, Kyoto, Japan) in methanol. CD spectra were measured with
a Chirascan-Plus CD spectrometer (Leatherhead, UK) in methanol. NMR spectra were
recorded on a Bruker DRX-700 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Ger-
many), using TMS as an internal standard. HRESIMS spectra were measured on a Maxis
Impact mass spectrometer (Bruker Daltonics GmbH, Rheinstetten, Germany).

Low-pressure liquid column chromatography was performed using silica gel (50/100 µm,
Imid Ltd., Krasnodar, Russia). Plates (5 × 10.0 cm) precoated with silica gel (5–17 µm, Imid
Ltd., Krasnodar, Russia) were used for thin-layer chromatography. Preparative HPLC was
carried out on a Shimadzu LC-20 chromatograph (Shimadzu USA Manufacturing, Canby,
OR, USA) using a YMC ODS-AM (YMC Co., Ishikawa, Japan) (5 µm, 10 mm × 250 mm)
column with a Shimadzu RID-20A refractometer (Shimadzu Corporation, Kyoto, Japan).

4.2. Fungal Material and Fermentation

The isolation and identification of the fungus Aspergillus sp. 1901NT-1.2.2 strain were
reported previously [9]. The strain is stored in the collection of marine microorganisms
of the Nha Trang Institute of Technology Research and Application, VAST (Nha Trang,
Vietnam), under code 1901NT-1.2.2 (GenBank accession number MN577307).

The fungus was cultured in 100 × 500 mL Erlenmeyer flasks, each containing rice
(20.0 g), yeast extract (20.0 mg), KH2PO4 (10 mg), and natural seawater from Nha Trang
Bay (40 mL) at 28 ◦C for three weeks.

4.3. Extraction and HPLC MS Analysis

The fungal mycelia and medium were extracted with EtOAc (24.0 L) and then evapo-
rated in vacuo to yield a crude extract (20.0 g), to which 250 mL of H2O–EtOH (4:1) was
added, and the combination was thoroughly mixed to yield a suspension.

HPLC MS analysis was performed using a Bruker Elute UHPLC chromatograph
(Bruker Daltonics, Bremen, Germany) connected to a Bruker Impact II Q-TOF mass spec-
trometer (Bruker Daltonics, Bremen, Germany). An InfinityLab Poroshell 120 SB-C18
column (2.1 × 150 mm, 2.7 µm, Agilent Technologies, Santa Clara, CA, USA) was used
for chromatographic separation. The mobile phases were 0.1% formic acid in H2O (eluent
A) and 0.1% formic acid in MeCN (eluent B). The gradient program was as follows: from
10% to 45% eluent B from 0 to 10 min, from 45% to 100% eluent B from 10 to 20 min,
isocratic at 100% of eluent B to 25 min, from 100% to 10% eluent B from 25 to 25.2 min. After
returning to the initial conditions, equilibration was achieved after 5 min. Chromatographic
separation was performed at a 0.4 mL/min flow rate at 40 ◦C. The injection volume was
2 µL.

The mass spectrometry detection was performed using an ESI ionization source in
positive ion mode. The optimized ionization parameters for ESI were as follows: capillary
voltage of 4.5 kV, nebulization with nitrogen at 2.5 bar, dry gas flow of 6 L/min at a
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temperature of 200 ◦C. The mass spectra were recorded within the m/z mass range of
50–2000 (scan time 1 s). Collision-induced dissociation (CID) product ion mass spectra
were recorded in auto-MS/MS mode with a collision energy ranging from 15 eV at 100 m/z
to 120 eV at 1500 m/z (the exact collision energy setting depended on the molecular masses
of precursor ions). The precursor ions were isolated with an isolation width of 4 Th.

The mass spectrometer was calibrated using the ESI-L Low Concentration Tuning
Mix (Agilent Technologies, Santa Clara, CA, USA). The instrument was operated using the
otofControl (ver. 4.1, Bruker Daltonics, Bremen, Germany), and data were analyzed using
DataAnalysis Software (ver. 4.4, Bruker Daltonics, Bremen, Germany).

Data Analysis

UHPLC-Q-TOF data were converted from Bruker “.d” formatting to “.mzXML” using
MSConvert 3.0 (part of ProteoWizard 3.0 package, Palo Alto, California, USA) [51], and fur-
ther processing was performed with MZMine (version 2.53) [52]. The MZMine processing
settings were as follows: mass detection was carried out at the MS1 level and MS2 level
with noise level thresholds of 60 and 40, respectively. Chromatograms were made with the
ADAP Chromatogram Builder Module [53] with the following parameters: min group size
in # of scans was set to 6, group intensity threshold and min highest intensity were set to 130
and 300, respectively, m/z tolerance was set to 0.05 m/z. The chromatogram deconvolution
module was used with the ADAP algorithm with a signal/noise threshold of 8, min feature
height of 300, and coefficient/area threshold of 40, while peak duration range was set from
0 to 2.0 and RT wavelet range was set from 0 to 0.1. The m/z center calculation was set to
MEDIAN. The Isotopics peaks grouper module was used with an m/z tolerance of 5 ppm,
retention time tolerance of 0.1 min, the monotonic shape function set to true, a maximum
charge of 2, and the representative isotope set to the most intense. Alignment was achieved
with the Join aligner function with an m/z tolerance of 5 ppm, a weight for m/z at 50, a
retention time tolerance of 0.1 min, and a weight for RT at 50. The Require same charge
state, Require same ID, and the Compare spectra similarity functions were set to false. The
aligned feature list was exported using the Export/Submit to “GNPS-FBMN” module with
the Merge MS/MS (experimental) function with the following parameters: select spectra
to merge was set to across samples, the m/z merge mode was set to weighted average
(remove outliers), the intensity merge mode was set to sum intensities, the expected mass
deviation was set to 5 ppm, the cosine threshold was set to 70%, the peak count threshold
was set to 20%, the isolation window offset (m/z) was set to 0, and the isolation window
width (m/z) was set to 3.

Dereplication of the MS/MS spectra was carried out using the GNPS module Library
Search. All parameters were maintained as default.

4.4. Isolation of Vismione E

The fungal mycelia and medium were extracted with EtOAc (24.0 L) and then evapo-
rated in vacuo to yield a crude extract (20.0 g), to which 250 mL of H2O–EtOH (4:1) was
added, and the combination was thoroughly mixed to yield a suspension. It was extracted
successively with hexane (150 mL × 2), EtOAc (150 mL × 2), and n-BuOH (150 mL × 2).
The EtOAc fraction was concentrated in vacuo to give a residue (6.0 g), which was sep-
arated on a silica gel column (25 × 3 cm) eluted with a hexane-EtOAc system with 5-%
gradient (1:0–0:1). The hexane-EtOAc fraction AFl-1-52 (85:15, 5.1 g) was separated using a
sephadex LH-20 column (CHCl3–EtOH, 1:1) to yield the fraction AFl-4-35 (166.6 mg), which
was purified using an ODS-microcolumn (6 × 1 cm) followed by purification through RP
HPLC on a YMC ODS-AM column, eluting with MeOH–H2O (65:35) to yield 1 (4.4 mg).
The hexane-EtOAc fraction AFl-1-64 (75:25, 2.5 g) was separated using a sephadex LH-20
column eluted with EtOH-CHCl3 (1:4) to yield the fraction AFl-23-5 (253.5 mg). Fraction
AFl-23-5 was separated through column chromatography on SiO2 (12 × 2 cm) eluted with
the hexane-EtOAc system (1:0–0:1) to yield the fraction AFl-35-35 (49.1 mg). Fraction
AFl-35-35 was purified using an ODS-microcolumn (6 × 1 cm) followed by RP HPLC (grad.
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from 10% MeCN in water to 100% over 40 min) and further isocratic RP HPLC on a YMC
ODS-AM column, eluting with MeCN–H2O (50:50) to yield compound 1 (1.5 mg).

Vismione E (1)

Yellow oil; [α]20
D +35.3◦ (c 0.05, MeOH); UV (MeOH) λmax (logε) 404 (3.96), 331 (3.80),

317 (3.87), 277 (4.62), 231 (4.41), 196 (4.41) (Figure S8); CD (0.28 mM, MeOH) λmax (∆ε)
212 (+0.43), 228 (–0.68), 242 (+0.32), 258 (−0.33), 267 (+0.04), 279 (+0.58), 292 (−1.03), 311
(−0.20), 322 (−1.09), 331 (−1.36) (Figure S9); 1H and 13C NMR data, see Supplementary
Materials (Figures S1–S7); HRESIMS [M + Na]+ 379.1515 (calcd for C21H24NaO5, 379.1516)
(Figure S11).

4.5. Bioassays
4.5.1. Cell Culture

The human prostate cancer PC-3 and breast cancer MCF-7 cells were purchased from
ATCC (Manassas, VA, USA). The rat cardiomyocytes H9c2 cells were kindly provided by
Prof. Dr. Gunhild von Amsberg from the Martini-Klinik Prostate Cancer Center, University
Hospital Hamburg-Eppendorf, Hamburg, Germany. The normal breast epithelial MCF-
10A cells were kindly provided by the Institute of Gene Biology RAS, Moscow, Russia.
All cell lines were cultured in DMEM with 10% of fetal bovine serum and 1% of peni-
cillin/streptomycin (BioloT, St. Petersburg, Russia). The PC-3 and MCF-7 cells were seeded
at concentrations of 5 × 103 cell/well, and H9c2 and MCF-10A cells were seeded at a
concentration of 3×103 cell/well. The experiments were started after 24 h.

4.5.2. Cell Viability Assay

The cells were treated with compounds at concentrations up to 100 µM for 24 h or
48 h, and the viability of cells was measured using an MTT assay.

The in vitro cytotoxicity of individual substances was evaluated using the MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, which was performed
according to the manufacturer’s instructions (Sigma-Aldrich, St.-Louis, MO, USA). The
results are presented as a percentage of control data, and the concentration at 50% cell
viability inhibition (IC50) was calculated.

4.5.3. EdU Incorporation Assay

The MCF-7 cells were seeded in a 96-well plate and treated with the compound at a
concentration of 10 µM for 48 h. After 46 h of incubation, the dH2O solution of 5-ethynyl-
2′-deoxyuridine (EdU) (Lumiprobe, Moscow, Russia) at a concentration of 10 µM was
added to each well for 2 h, and then they were stained in accordance with the instructions
of the manufacturer [54]. The cell monolayer was rinsed with phosphate-buffered saline
(PBS) three times and permeabilized with 0.2% Triton X-100 (Helicon, Moscow, Russia)
in PBS for 1 h at room temperature. Then, the cells were stained through a click reaction
with ascorbic acid at 10 mM (Lumiprobe, Moscow, Russia), Cu(II)-TBTA complex at 2 mM
(Lumiprobe, Moscow, Russia), and sulfo-Cyanine5 Azide at 8 µM (Lumiprobe, Moscow,
Russia) in 100 mM Tris buffer pH 7.4 for 30 min at room temperature in the dark. After
that, the cells were washed with PBS twice.

The fluorescence intensity was measured at λex = 485 and λem = 520 nm using the
plate reader PHERAstar FS (BMG Labtech, Offenburg, Germany). The data were processed
using MARS Data Analysis v. 3.01R2 (BMG Labtech, Offenburg, Germany). The data are
presented in relative fluorescent units.

4.5.4. Cell Cycle Investigation

The MCF-7 cells were seeded in a 12-well plate for 24 h and then treated with the
compound at a concentration of 10 µM for 48 h.

After incubation, cells were scrabbed, harvested, washed with PBS, and fixed with
ice-cold 70% ethanol in a dropwise manner prior to storage at −20 ◦C overnight. The cells
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were then washed with PBS and incubated with 200 µg/mL RNAse (PanReac, AppliChem,
Germany) and 20 µg/mL of propidium iodide (Sigma-Aldrich, St. Louis, MO, USA) for
30 min at 37 ◦C, and the DNA content was analyzed with a NovoCyte flow cytometer,
(Agilent, Austin, TX, USA). The proportion of cells in each phase of the cell cycle is
expressed as a percentage.

4.5.5. CFDA SE Proliferation Assay

The MCF-7 cells were seeded in a 12-well plate for 24 h. After adhesion, the cells
were stained with (5,6)-carboxyfluorescein succinimidyl ester (CFDA SE) dye (LumiTrace
CFDA SE kit, Lumiprobe, Moscow, Russia). CFDA SE stock solution at 5 mM in DMSO was
dissolved in PBS to prepare a 10 µM solution. The cell culture medium was replaced with
this CFDA SE solution for 5 min at 37 ◦C. Then, the cell layer was washed with PBS twice,
the cell culture medium was added to each well, and the compound at a concentration
of 10 µM was added to each well for 48 h. DMSO at the same concentration was used as
a control.

After incubation, the cells were washed with PBS twice, scrabbed, and collected in
1.5 mL tubes. The intensity of CFDA fluorescence was analyzed with a NovoCyte flow
cytometer (Agilent, Austin, TX, USA).

4.5.6. Cell Migration Assay

The self-made silicon inserts were placed in the center of the wells in a 24-well plate,
and MCF-7 cell suspension was added to each well for 24 h. After adhesion, the inserts
were removed and the cells were labeled with (5,6)-carboxyfluorescein succinimidyl ester
(CFDA SE) dye (LumiTrace CFDA SE kit, Lumiprobe, Moscow, Russia). CFDA SE stock
solution at 5 mM in DMSO was dissolved in PBS to prepare a 10 µM solution. The cell
culture medium was replaced with this CFDA SE solution for 5 min at 37 ◦C. Then, the cells
were washed twice with PBS and the fluorescent profile of each well with a 25×25 points
matrix was scanned at λex = 485 and λem = 520 nm using the plate reader PHERAstar FS
(BMG Labtech, Offenburg, Germany). The data were processed using MARS Data Analysis
v. 3.01R2 (BMG Labtech, Offenburg, Germany).

The investigated compound at a concentration of 1 µM was added to each well (DMSO
was used as a control), and the cells were incubated at 37 ◦C. The scanning of the fluorescent
profile of the wells was carried out after 24 h and 96 h of incubation. The data were obtained
as a relative fluorescent units and visualized in a 3D graph using SigmaPlot software.

4.5.7. Preparation of Suction Cup Inserts for Cell Migration Assay

To study cell migration, custom silicone inserts were placed in a 24-well plate
(Figures 15 and S12). To do this, molds were designed and printed on an MSLA 3D
printer, into which two-component silicone was added.
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The design of inserts and corresponding molds was carried out in the open-source
software freeCAD version 20.1 (www.freecadweb.org (accessed on 10 September 2022)).
The molds were designed for 24 inserts to make a full set of plate inserts. A schematic
view of a single insert and a mold is shown in the figure. The slicing of the .stl file was
carried out in Chitubox 1.9.4 software (CBD Technology LTD, Beijing, China). Printing was
carried out using an Anycubic Photon Mono 3D printer (Anycubic. Beijing, China) and
Anycubic Basic Translucent Green resin (Anycubic, China). After printing, the molds were
washed in dirty isopropyl alcohol, after which they were washed in pure alcohol using an
Anycubic Wash & Cure 2.0 (Anycubic, China), then dried with compressed air. Curing was
also carried out with the Wash & Cure station for 15 min.

Two-component tin-based cast silicone Elastoform-T (IP Voinova, Russia) was poured
into the finished molds. Any other low viscosity two-component silicone would work as
well, but only with a tin-based catalyzer. Platinum-catalyzed silicones do not polymerize
in the presence of an MSLA resin. After the silicone was poured into the molds, they
were evacuated to remove air bubbles. The silicone completely polymerized within 24 h,
after which the inserts were carefully removed from the molds with tweezers. Model
files, as well as more detailed instructions for making molds and inserts, are available at
https://github.com/arteys/WellSucker (accessed on 10 September 2022).

The inserts were sterilized by dipping in 70% ethanol for a few minutes, then dried
and dipped in phosphate buffer to completely remove any residual ethanol. After that, the
inserts were placed in the middle of the wells of the 24-well plate with tweezers and lightly
pressed down so that the insert stuck to the bottom of the plate.

4.6. Search of Proposed Molecular Targets of Vismione E

The SwissTargetPrediction database (http://www.swisstargetprediction.ch (accessed
on 15 February 2023)) was used to identify the potential targets with the screening criteria
of a probability of 0.1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(http://www.genome.ad.jp/kegg/ (accessed on 16 February 2023) was used to detect
pathways for potential molecular targets.

4.7. Virtual Screening of Molecular Targets of Vismione E

The pdb files of the IMPDH2 (PDB ID: 6I0M), MMP1 (PDB ID: 4AUO), ADAM17
(PDB ID: 2FV5), CDK8 CCNC (PDB ID: 4CRL) proteins were obtained from the RCSB
Protein Data Bank (https://www.rcsb.org (accessed on 15 February 2023)) and prepared
for docking using PrepDock of the UCFS Chimera 1.16 software. The chemical structures
of ligands were prepared for docking using ChemOffice.

The docking was carried out on the SwissDock online server (http://www.swissdock.
ch (accessed on 15 February 2023)) based on the docking software EADock DSS [55]. The
predicted building modes for each target/ligand pair were visualized and analyzed using
the UCFS Chimera 1.16 software.

Docking parameters such as Gibb’s free energy (∆G, kcal/mol), full fitness (FF,
kcal/mol), and hydrogen bonding (H-bond) were used for the analysis of target/ligand
complexes.

4.8. Statistical Data Evaluation

All data were obtained in three independent replicates, and calculated values are
expressed as a mean ± standard error mean (SEM). Student’s t-test was performed using
SigmaPlot 14.0 (Systat Software Inc., San Jose, CA, USA) to determine statistical significance.
The differences were considered statistically significant at p < 0.05.

5. Conclusions

The sponge-associated fungus Aspergillus sp. 1901NT-1.2.2 was found to be a source
of the anthraquinone derivative vismione E, for which absolute stereochemistry data were
established for the first time. Moreover, endocrocin was identified in the EtOAc extract
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https://www.rcsb.org
http://www.swissdock.ch
http://www.swissdock.ch


Int. J. Mol. Sci. 2023, 24, 8150 21 of 25

of this fungus through the HPLC MS approach, and biosynthetic relationships between
vismione E and endocrocin were proposed.

Vismione E showed significant cytotoxic effects against human breast cancer MCF-
7 cells. It was found that vismione E can decrease MCF-7 cell viability, migration, and
proliferation, as well as arrest the cell cycle in the G1 phase. It is likely that the anticancer
activity of vismione E may be caused by its effects on cell proliferation machinery or
nucleotide biosynthesis. The molecular docking of vismione E with predicted targets shows
that inosine-5′-monophosphate dehydrogenase 2 (IMDH2) can be considered as one of the
molecular targets for future investigation.
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.3390/ijms24098150/s1.

Author Contributions: Conceptualization, E.A.Y.; Data curation, T.T.T.V.; Funding acquisition,
P.T.H.T. and A.N.Y.; Investigation, E.V.G., P.T.H.T., D.V.B., L.E.N., R.S.P., N.Y.K., A.B.R., E.S.M.,
A.S.K., E.A.C., A.S.M., N.T.D.N. and E.A.Y.; Methodology, A.S.M. and A.N.Y.; Project administration,
A.N.Y.; Resources, D.V.B.; Supervision, T.T.T.V.; Validation, E.A.Y. and A.N.Y.; Visualization, E.V.G.,
D.V.B., E.S.M., A.S.K., A.S.M. and E.A.Y.; Writing—original draft, E.V.G., P.T.H.T., D.V.B., E.A.C. and
A.S.M.; Writing—review and editing, E.A.Y. and A.N.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (grant number
21-53-54005) (chemical and bioassay study) and the Vietnam Academy of Science and Technology
(grant number VAST06.02/21-22) (microbiological study).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The compounds identified in EtOAc extract of Aspergillus sp. 1901NT-1.2.2 strain.

N Name Structure RT Exact Mass
(Measured)

Exact Mass
(Calcd) ∆, ppm MQScore

(GNPS) Ref.

1 C9H8O5 3.59 195.0288
[M + H]+ 195.0288 0

2
7-hydroxy-3-(2-

hydroxypropyl)-5-
methylisochromen-1-one
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Table A1. Cont.

N Name Structure RT Exact Mass
(Measured)

Exact Mass
(Calcd) ∆, ppm MQScore

(GNPS) Ref.

8 C21H24O6 9.60 373.1643
[M + H]+ 373.1646 0.7

9 C20H26O4 10.95 331.1906
[M + H]+ 331.1904 −0.6

10 C30H49NO11 11.16 600.3391
[M + H]+ 600.3378 −2.1

11 C20H22O5 12.16 343.1542
[M + H]+ 343.1540 −0.6

12

11a-hydroxy-4,4,9-
trimethyl-9-vinyl-
1,2,3,4,9,10,11,11a-

octahydrodibenzo[c,e]
oxepine-5,7-dione
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Appendix B

Table A2. The top 50 predicted molecular targets of vismione E based on SwissTargetPrediction.

Target Common Name Uniprot ID ChEMBL ID Probability

Inosine-5′-monophosphate
dehydrogenase 2 IMPDH2 P12268 CHEMBL2002 0.109339753231

Matrix metalloproteinase 1 MMP1 P03956 CHEMBL332 0.109339753231
ADAM17 ADAM17 P78536 CHEMBL3706 0.109339753231

CDK8/Cyclin C CCNC
CDK8

P24863
P49336 CHEMBL3038474 0.109339753231

Cell division protein kinase 8 CDK8 P49336 CHEMBL5719 0.109339753231
PI3-kinase p110- alpha subunit PIK3CA P42336 CHEMBL4005 0.109339753231

Proto-oncogene tyrosine-protein
kinase ROS ROS1 P08922 CHEMBL5568 0.109339753231

Interleukin-8 receptor B CXCR2 P25025 CHEMBL2434 0.109339753231
Tyrosine-protein kinase SYK SYK P43405 CHEMBL2599 0.109339753231

Leucine-rich repeat
serine/threonineprotein kinase 2 LRRK2 Q5S007 CHEMBL1075104 0.109339753231
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Table A2. Cont.

Target Common Name Uniprot ID ChEMBL ID Probability

Cyclin-dependent kinase
1/cyclin B

CCNB3 CDK1 CCNB1
CCNB2

Q8WWL7 P06493
P14635 O95067 CHEMBL2094127 0.109339753231

Mammalian target of rapamycin
(mTORC1) FKBP1A MTOR P62942 P42345 CHEMBL2221341 0.109339753231

Phosphodiesterase 5A PDE5A O76074 CHEMBL1827 0.109339753231
Matrix metalloproteinase 9 MMP9 P14780 CHEMBL321 0.109339753231

Interleukin-1 receptor-associated
kinase 4 IRAK4 Q9NWZ3 CHEMBL3778 0.109339753231

Corticotropin releasing factor
receptor 1 CRHR1 P34998 CHEMBL1800 0.109339753231

Matrix metalloproteinase 3 MMP3 P08254 CHEMBL283 0.109339753231
Thrombin and coagulation factor X F10 P00742 CHEMBL244 0.109339753231

Protein farnesyltransferase FNTA FNTB P49354 P49356 CHEMBL2094108 0.109339753231
Phosphodiesterase 2A PDE2A O00408 CHEMBL2652 0.109339753231

P2X purinoceptor 3 P2RX3 P56373 CHEMBL2998 0.109339753231
Macrophage colony stimulating

factor receptor CSF1R P07333 CHEMBL1844 0.109339753231

Tyrosine-protein kinase JAK3 JAK3 P52333 CHEMBL2148 0.109339753231
Protein kinase C gamma PRKCG P05129 CHEMBL2938 0.109339753231

Protein kinase C delta PRKCD Q05655 CHEMBL2996 0.109339753231
Protein kinase C alpha PRKCA P17252 CHEMBL299 0.109339753231

Cyclin-dependent kinase
4/cyclin D1 CCND1 CDK4 P24385 P11802 CHEMBL1907601 0.109339753231

Cyclin-dependent kinase
2/cyclin E CCNE2 CDK2 CCNE1 O96020 P24941

P24864 CHEMBL2094126 0.109339753231

Casein kinase II alpha CSNK2A1 P68400 CHEMBL3629 0.109339753231
Cyclin-dependent kinase

2/cyclin A CDK2 CCNA1 CCNA2 P24941 P78396
P20248 CHEMBL2094128 0.109339753231

PI3-kinase p110- beta subunit PIK3CB P42338 CHEMBL3145 0.109339753231
Nerve growth factor receptor

Trk-A NTRK1 P04629 CHEMBL2815 0.109339753231

p53-binding protein Mdm-2 MDM2 Q00987 CHEMBL5023 0.109339753231
Serine/threonineprotein kinase

SMG1 SMG1 Q96Q15 CHEMBL1795195 0.109339753231

Tyrosine-protein kinase ABL ABL1 P00519 CHEMBL1862 0.109339753231
Proto-oncogene vav VAV1 P15498 CHEMBL3259472 0.109339753231

Phosphodiesterase 10A PDE10A Q9Y233 CHEMBL4409 0.109339753231
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