Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of BN
2.2. Structure of BN/PU Composite Films
2.3. Mechanical Properties of BN/PU Composite Films
2.4. Thermal Properties of BN/PU Composite Films
2.5. TC of BN/PU Composite Films
2.6. Morphology of BN60/PU Composite Film
2.7. Thermal Management Capability and Insulation of BN60/PU Composite Film
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Composites
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruan, Y.; Li, N.; Liu, C.; Chen, L.; Zhang, S.; Wang, Z. Increasing heat transfer performance of thermoplastic polyurethane by constructing thermal conduction channels of ultra-thin boron nitride nanosheets and carbon nanotubes. New J. Chem. 2020, 44, 18823–18830. [Google Scholar] [CrossRef]
- Shen, Y.; Han, X.; Zhang, P.; Chen, X.; Yang, X.; Liu, D.; Yang, X.; Zheng, X.; Chen, H.; Zhang, K.; et al. Review on Fiber-Based Thermoelectrics: Materials, Devices. and Textiles. Adv. Fiber Mater. 2023, 1–36. [Google Scholar] [CrossRef]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Reps. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Jo, I.; Pettes, M.T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Ruan, K.; Shi, X.; Guo, Y.; Gu, J. Interfacial thermal resistance in thermally conductive polymer composites: A review. Compos. Commun. 2020, 22, 100518. [Google Scholar] [CrossRef]
- Aouraghe, M.A.; Zhou, M.; Qiu, Y.; Xu, f. Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites. Adv. Fiber Mater. 2021, 3, 38–46. [Google Scholar] [CrossRef]
- Yin, W.; Qin, M.; Yu, H.; Sun, J.; Feng, W. Hyperelastic Graphene Aerogels Reinforced by In-suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing. Adv. Fiber Mater. 2023, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Guo, Y.; Zhang, H.; Zhang, Z. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A Appl. Sci. Manuf. 2019, 120, 140–146. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, C.; Zeng, X.; Ren, L.; Sun, R.; Xu, J. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks. Compos. Commun. 2021, 24, 100650. [Google Scholar] [CrossRef]
- Ou, X.; Chen, S.; Lu, X.; Lu, Q. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos. Commun. 2021, 23, 100549. [Google Scholar] [CrossRef]
- Chi, Q.; Zhang, X.; Wang, X.; Zhang, C.; Zhang, Y.; Tang, C.; Li, Z.; Zhang, T. High thermal conductivity of epoxy-based composites utilizing 3D porous boron nitride framework. Compos. Commun. 2022, 33, 101195. [Google Scholar] [CrossRef]
- Chi, Q.; Wu, J.; Tang, C.; Zhang, C.; Li, H.; Zhang, Y.; Feng, Y.; Zhang, T. Thermal and Electrical Properties of Epoxy Composites Filled with 3D h-BN/TOCNF Fillers. Macromol. Mater. Eng. 2022, 307, 2100734. [Google Scholar] [CrossRef]
- Yu, C.; Gong, W.; Tian, W.; Zhang, Q.; Xu, Y.; Lin, Z.; Hu, M.; Fan, X.; Yao, Y. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W/(m·K). Compo. Sci. Tech. 2018, 160, 199–207. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, Y.; Xiao, G.; He, X.; Yao, T. Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes. Rare Met. 2023, 42, 1283–1293. [Google Scholar] [CrossRef]
- Bozkurt, Y.E.; Yıldız, A.; Türkarslan, Ö.; Şaşal, F.N.; Cebeci, H. Thermally conductive h-BN reinforced PEI composites: The role of processing conditions on dispersion states. Mater. Today Commun. 2021, 29, 102854. [Google Scholar] [CrossRef]
- Jang, W.; Lee, S.; Kim, N.R.; Koo, H.; Yu, J.; Yang, C.M. Eco-friendly and scalable strategy to design electrically insulating boron nitride/polymer composites with high through-plane thermal conductivity. Compos. Part B-Eng. 2023, 248, 110355. [Google Scholar] [CrossRef]
- Su, K.H.; Su, C.Y.; Chi, P.W.; Chandan, P.; Cho, C.T.; Chi, W.Y.; Wu, M.K. Generation of Self-Assembled 3D Network in TPU by Insertion of Al2O3/h-BN Hybrid for Thermal Conductivity Enhancement. Materials 2021, 14, 238. [Google Scholar] [CrossRef]
- Bashir, A.; Maqboo, M.; Lv, R.; Usman, A.; Guo, H.; Aftab, W.; Niu, H.; Liu, M.; Bai, S. Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos. Part B Eng. 2021, 218, 108871. [Google Scholar] [CrossRef]
- Ryu, S.; Oh, H.W.; Kim, J. A Study on the mechanical properties and thermal conductivity enhancement through TPU/BN composites by hybrid surface treatment (mechanically and chemically) of boron nitride. Chem. Phys. 2019, 233, 607–612. [Google Scholar] [CrossRef]
- Yu, L.; Gao, S.; Yang, D.; Wei, Q.; Zhang, L. Improved thermal conductivity of polymer composites by noncovalent modification of boron nitride via tannic acid chemistry. Ind. Eng. Chem. Res. 2021, 60, 12570–12578. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, L.; Deng, B.; Li, C.; Wang, Y.; Li, R.; Dai, F.; Liu, X.; Xu, W. Fabrication of a high-toughness polyurethane/fibroin composite without interfacial treatment and its toughening mechanism. ACS Appl. Mater. Interfaces 2020, 12, 25409–25418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xia, L.; Lyu, P.; Wang, Y.; Li, C.; Xiao, X.; Dai, F.; Liu, X.; Deng, B. Is it possible to fabricate a nanocomposite with excellent mechanical property using unmodified inorganic nanoparticles directly? ACS Appl. Mater. Interfaces 2018, 10, 15357–15363. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xia, L.; Lyu, P.; Zhang, J.; Wang, Y.; Deng, B.; Zhang, C.; Liu, X.; Xu, W. High content filling, toughness, and conductive performance of thermoplastic polyurethane/carbon nanotubes composites prepared by constructing the compact interface. Compos. Commun. 2021, 28, 100948. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H.; Huang, C.; Zhang, Q.; Sun, Z.; Xu, F.; Sun, L.; Xia, Y.; Peng, H.; Lin, X.; et al. Wire-sheet assembly construction of boron nitride/single-walled carbon nanotube shape-stabilized phase change composites for light-thermal energy conversion and storage. J. Ener. Stor. 2022, 47, 103914. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Liu, Y.; Ren, Y.; Li, Y.; Zhou, L.; Xu, J.; Lei, J.; Li, Z. Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B Eng. 2020, 180, 107569. [Google Scholar] [CrossRef]
- Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q.; et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Liu, X. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503–6515. [Google Scholar] [CrossRef]
- Yang, L.; Guo, J.; Zhang, L.; Li, C. Significant improvement in the flame retardancy and thermal conductivity of the epoxy resin via constructing a branched flame retardant based on SI-ATRP initiated by dopamine-modified boron nitride. Ind. Eng. Chem. Res. 2022, 61, 8031–8042. [Google Scholar] [CrossRef]
- Su, K.; Su, C.; Cho, C.; Lin, C.; Jhou, G.; Chang, C. Development of thermally conductive polyurethane composite by low filler loading of spherical BN/PMMA composite powder. Sci. Rep. 2019, 9, 14397. [Google Scholar] [CrossRef]
- Baysal, G.; Aydın, H.; Hosgören, H.; Uzan, S.; Karaer, H. Improvement of Synthesis and Dielectric Properties of Polyurethane/Mt-QASs+ (Novel Synthesis). J. Polym. Environ. 2016, 24, 139–147. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.; Woellner, C.; Pedrotti, J.; Miquita, D.; Silva, W.; Lopes, M.; Fechine, G.; Luciano, M.; Silva, G.; et al. Higher thermal conductivity and mechanical enhancements in hybrid 2D polymer nanocomposites. Polym. Test. 2020, 87, 106510. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, Y.; Meng, Y.; Shi, C.; Han, J. Synthesis of Carboxyl Cellulose Nanocrystals/Copper Nanohybrids to Endow Waterborne Polyurethane Film with Improved Mechanical and Antibacterial Properties. J. Polym. Environ. 2023, 1–12. [Google Scholar] [CrossRef]
Sample | T5% (°C) | T20% (°C) | Char Residue (%) |
---|---|---|---|
PU | 281.5 | 313.5 | 2.30 |
BN40/PU | 297.6 | 355.4 | 35.38 |
BN50/PU | 284.8 | 334.9 | 49.12 |
BN60/PU | 302.5 | 360.4 | 60.00 |
BN70/PU | 306.0 | 398.3 | 64.92 |
PU | 281.5 | 313.5 | 2.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, J.; Xia, L.; Xu, J.; Sun, X.; Zhang, C.; Liu, X. Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility. Int. J. Mol. Sci. 2023, 24, 8221. https://doi.org/10.3390/ijms24098221
Yang X, Zhang J, Xia L, Xu J, Sun X, Zhang C, Liu X. Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility. International Journal of Molecular Sciences. 2023; 24(9):8221. https://doi.org/10.3390/ijms24098221
Chicago/Turabian StyleYang, Xinze, Jiajing Zhang, Liangjun Xia, Jiahao Xu, Xuenan Sun, Chunhua Zhang, and Xin Liu. 2023. "Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility" International Journal of Molecular Sciences 24, no. 9: 8221. https://doi.org/10.3390/ijms24098221
APA StyleYang, X., Zhang, J., Xia, L., Xu, J., Sun, X., Zhang, C., & Liu, X. (2023). Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility. International Journal of Molecular Sciences, 24(9), 8221. https://doi.org/10.3390/ijms24098221