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Abstract: Citrus collections from extreme growing regions can be an important source of tolerant
germplasms for the breeding of cold-tolerant varieties. However, the efficient utilization of these
germplasms requires their genetic background information. Thus, efficient marker systems are
necessary for the characterization and identification of valuable accessions. In this study, the efficiency
of 36 SCoT markers and 60 InDel markers were evaluated as part of the broad citrus collection of
the Western Caucasus. The interspecific and intraspecific genetic diversity and genetic structures
were analyzed for 172 accessions, including 31 species and sets of the locally derived cultivars.
Single markers, such as SCoT18 (0.84), SCoT20 (0.93), SCoT23 (0.87), SCoT31 (0.88), SCoT36 (0.87) и
LG 1-4 (0.94), LG 4-3 (0.86), LG 7-11 (0.98), and LG 8-10 (0.83), showed a high discriminating power,
indicating the good applicability of these markers to assess intraspecific diversity of the genus Citrus.
Overall, SCoT markers showed a higher level of polymorphism than InDel markers. According to
analysis of population structure, SCoT and InDel markers showed K = 9 and K = 5 genetic clusters,
respectively. The lowest levels of genetic admixtures and diversity were observed among the locally
derived satsumas and lemons. The highest level of genetic admixtures was observed in the lime
group. Phylogenetic relationships indicated a high level of interspecific genetic diversity but a low
level of intraspecific diversity in locally derived satsumas and lemons. The results provide new
insight into the origin of citrus germplasms and their distribution in colder regions. Furthermore,
they are important for implementing conservation measures, controlling genetic erosion, developing
breeding strategies, and improving breeding efficiency.

Keywords: citrus; cold tolerance; germplasm collections; SCoT markers; InDel markers; genetic
diversity; phylogenetic relationship; population structure

1. Introduction

Commercially important cultivars of the genus Citrus L. are the most produced fruits
in the world with over 153 million tons of production in 2018 [1,2].

The Western Caucasus is one of the most northerly Citrus growing areas in the world
where the winter temperatures can fall below minus 5 ◦C and the absolute minimum
temperature is minus 11 ◦C [3]. It makes this region unique for the cultivation and breeding
of cold-tolerant citrus genotypes. Citrus germplasm was introduced here in 1902 from the
Mediterranean, USA, Turkey, Iran, and Japan. As a result of the conventional breeding,
dozens of locally adapted cultivars of lemon, mandarin, pomelo, etc. have been developed
over the past 80 years. Currently, this citrus collection consists of more than 200 accessions
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maintained in the FRC SSC RAS, which were phenotypically characterized over decades [4].
The sets of locally derived accessions are of unknown origin, some of them forming from
asexual reproduction [5,6] and others from free pollination and controlled hybridization.
Among them are a broad set of frost-tolerant lemon and mandarin genotypes [4]. To
understand the mechanisms of the domestication of Citrus germplasm in this extreme
environment, the genetic origin and relationships among accessions have to be elaborated.
In addition, the genetic background information of this germplasm is necessary for its
efficient utilization. However, a high level of polyembryony is a serious breeding constraint
for many citrus varieties, thus it is necessary to find efficient DNA markers with high
discriminative power for intraspecific fingerprinting.

Different DNA markers (AFLP, IRAP, SSR, CAPS, SCoT, InDel) were evaluated to
characterize the genetic diversity in the Citrus germplasm collections worldwide [7–13].
These studies indicated that each marker type has its advantages and disadvantages.
Thus, the combination of different markers can be an efficient tool to characterize the
genetic diversity in collections. Among the different DNA markers, the insertion–deletion
(InDel) markers were recently developed based on the full genome sequencing of satsuma
mandarin to identify hybrid embryos [9]. The advantage of these markers is that they can
distinguish heterozygous and homozygous genotypes using a simple and inexpensive
method of agarose gel electrophoresis. However, the efficiency of these markers for other
Citrus species has still not been sufficiently evaluated [10]. Additionally, the start codon-
targeted (SCoT) markers are based on polymorphisms in the short, conserved region of
plant genes surrounding the ATG translation initiation codon and are codominant due to
insertion–deletion mutations [14]. Since the region flanking the ATG start codon is highly
conserved in all plant species, it was predicted that the SCoT method would be useful for
generating DNA markers in diverse plant species [15].

The objective of this study was to evaluate the efficiency of InDel and SCoT markers
for the interspecific and intraspecific analysis of different citrus species and to evaluate the
relationships and genetic background of one of the northernmost citrus collections. The
results provide new insight into the citrus germplasm’s origin and distribution in colder
regions, and they are important for implementing conservation measures, controlling
genetic erosion, developing breeding strategies, and improving breeding efficiency.

2. Results
2.1. Efficiency of SCoT and InDel Primers for Genetic Diversity Analysis of the Citrus
Germplasm Collection

Out of 36 SCoT primers, 24 primers showed low amplification quality with weak
or fuzzy bands and were therefore removed from the analysis. The remaining 12 SCoT
primers showed reproducible results with clear polymorphisms and resolution within
the citrus genotypes (SCoT2, SCoT6, SCoT9, SCoT12, SCoT13, SCoT14, SCoT18, SCoT20,
SCoT21, SCoT23, SCoT31, SCoT36) (Table S2). With the 12 SCoTs, a total of 322 bands were
detected in 172 genotypes, ranging from 19 (for SCoT36) to 35 (for SCoT12) bands with
the mean diversity index H = 0.43 (Table 1). An average PIC = 0.34 was detected with the
highest value being 0.39 for SCoT2 and the lowest value being 0.32 for SCoT18. The mean
discriminating power D = 0.52 was detected with the highest value ranging from 0.84 to
0.93 for SCoT18, SCoT20, SCoT23, SCoT31, and SCoT36.

Out of 60 InDel primers, 51 primers showed a low amplification quality with weak
or fuzzy bands and were therefore removed from the analysis. The remaining 9 InDel
primers showed reproducible results with clear polymorphisms and resolution within
Citrus genotypes (LG 1-4, LG 2-6, LG3-14, LG4-2, LG 4-3, LG 5-20, LG 7-11, LG 8-10, LG 9-2)
(Table S2).

For the 9 InDels, a total of 40 bands were detected in 172 genotypes, ranging from 2
(for LG 2-6, LG3-14) to 11 (for LG 7-11) with the mean diversity index H = 0.38 (Table 2).
An average PIC = 0.41 was detected, with the highest value being 0.46 for LG 2-6 and the
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lowest value being 0.37 for LG 8-10. The mean D = 0.64 was observed with the highest
value ranging from 0.83 to 0.98 for LG 1-4, LG 4-3, LG 7-11, and LG 8-10.

Table 1. Genetic diversity parameters of 12 SCoT markers (N = 172).

SCOT Primers Sequence 5′-3′ Na H PIC D
SCoT2 CAACAATGGCTACCACCC 28 0.33 0.39 0.26
SCoT6 CAACAATGGCTACCACGC 26 0.45 0.34 0.26
SCoT9 CAACAATGGCTACCAGCA 29 0.45 0.34 0.21

SCoT12 ACGACATGGCGACCAACG 35 0.43 0.35 0.28
SCoT13 ACGACATGGCGACCATCG 31 0.46 0.34 0.24
SCoT14 ACGACATGGCGACCACGC 34 0.43 0.35 0.27
SCoT18 ACCATGGCTACCACCGCC 30 0.48 0.32 0.84
SCoT20 ACCATGGCTACCACCGCG 20 0.38 0.37 0.93
SCoT21 ACGACATGGCGACCCACA 28 0.43 0.35 0.29
SCoT23 CACCATGGCTACCACCAG 20 0.46 0.33 0.87
SCoT31 CCATGGCTACCACCGCCT 22 0.45 0.34 0.88
SCoT36 GCAACAATGGCTACCACC 19 0.46 0.33 0.87

MEAN 26.83 0.43 0.34 0.52

SD 5.49 0.04 0.02 0.32
Na—amplicon numbers, PIC—polymorphism information content, D—discriminating power; H—genetic diver-
sity. The background color indicates the minimum (green) and maximum (yellow) values.

Table 2. Genetic diversity parameters of 9 InDel markers (N = 172).

InDel Primers Sequence 5′-3′ Na H PIC D

LG 1-4 F: TACACAGAACCGCCAAATCA
R: TCTCCCATGAACCAGCTACC 7 0.36 0.42 0.94

LG 2-6 F: CGCGTGTTACTTCTTGACAGA
R: CGAGGCATGTGCTTGAATAA 2 0.22 0.46 0.24

LG3-14 F: TGCCGGGAGTCTTAAAGATG
R: CGAGATGGCCACCTAGAAAT 2 0.37 0.42 0.44

LG4-2 F: GGGTTTCTAAGCATTTGGCCA
R: ACACTCATCTTCTCGAGCAAAGA 3 0.41 0.41 0.41

LG 4-3 F: AAGAGGACATAAGAGGCAAGTTT
R: GCCAAGCAAAACTGATAGGG 4 0.47 0.38 0.86

LG 5-20 F: GGCATTTGAGCTAGAAATTCGT
R: AACACTGTCAAAAGAAAACCACA 3 0.44 0.39 0.54

LG 7-11 F: ATTTTGACACGTTCAGCCGC
R: TGGATTTTGCACTCACCCTT 11 0.26 0.45 0.98

LG 8-10 F: TCTGCTGACCTTGCTTACGA
R: CCCTCACAAGACAGTTGAGGA 4 0.48 0.37 0.83

LG 9-2 F: GGTGATTTTGAGTATGAGAGGTGG
R: AGGGTAGTTTTATGATAGTTATCCACA 3 0.41 0.40 0.50

MEAN 4.33 0.38 0.41 0.64

SD 2.92 0.09 0.03 0.27
Na—amplicon numbers, PIC—polymorphism information content, D—discriminating power; H—genetic diver-
sity. The background color indicates the minimum (green) and maximum (yellow) values.

2.2. Genetic Structure of the Citrus Germplasm Collection Based on SCoT and
InDel Polymorphisms

Following STRUCTURE HARVESTER analysis using the 12 SCoT marker data, the
172 accessions were grouped into nine genetic clusters (K = 9) (Figure 1). The genetic struc-
ture based on SCoT markers showed clear clustering of citrus species. Overall, each genetic
cluster consisted of several species of the genus Citrus. The highest level of homogeneity
was observed in the clusters 1, 2, 5, 6, and 7. Interestingly, 40 cultivars of satsuma mandarin
(C. × aurantium var. unshiu) were divided into two clusters: cluster 1 (mostly combined
new locally derived breeding forms) and cluster 3 (mostly combined old locally derived
cultivars). Among them, a set of the genotypes with genetic admixtures was identified,
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for example, Hybrid 98-9, Clone 31, Sentyabrskii, Olimpiyskii2014, Kodorskii, Kelasurskii,
Clone#33, Hybrid 99-4, Clone#22, Izeki Wase, Sochinskii23, Slava Vavilova, or Pioneer80.
These genotypes can be an important source of diversity and will be useful for further
breeding programs to increase the genetic diversity of mandarins in colder regions. All
true lemons (C. × limon var. limon), along with the ancestral species C. medica and its
hybrids, comprised the green cluster 2 and all oranges comprised the purple cluster 5.
Several genotypes with genetic admixtures of about 10–50% were observed in each of
these clusters.
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Figure 1. Genetic structure among 172 citrus accessions based on SCoT data. Each colored segment
represents the estimated membership fraction of each genetic cluster. The yellow color in the table
indicates the most reliable K value (number of genetic clusters) in the collection.

The highest level of genetic admixtures was observed in Cluster 4 (yellow color). This
cluster combined C. maxima accessions and its hybrid species, citron, bitter orange, and
hybrids of C. × junos. The remaining 8 clusters mostly consisted of sweet limes and sour
limes with their respective ancestral species (brown color). Most lime accessions contained
a high percentage of genetic admixtures of the other citrus groups.

The InDel markers showed less clear genetic structure as compared to the SCoT
markers. As a result, several secondary species and interspecific hybrids were combined
into the same clusters (Figure 2). In particular, red cluster-combined accessions belonged to
several species: sweet oranges (C. × aurantium var. sinensis) and limes (C. × latifolia var.
latifolia and C. × limon var. limetta, C. aurantifolia). Green cluster-combined Fortunella spp.
Accessions combined grapefruits (C. × aurantium var. paradisi) and its hybrids. Finally, the
last two clusters consisted of the lemons (C.× limon var. limon) (blue cluster) and mandarins
(C. × aurantium var. unshiu) (yellow cluster) with a low level of genetic admixtures.
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Additionally, two varieties of bitter orange (C. × aurantium L. var. aurantium) and C. ×junos
joined the mandarin group.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

The highest level of genetic admixtures was observed in Cluster 4 (yellow color). This 

cluster combined C. maxima accessions and its hybrid species, citron, bitter orange, and 

hybrids of C. × junos. The remaining 8 clusters mostly consisted of sweet limes and sour 

limes with their respective ancestral species (brown color). Most lime accessions con-

tained a high percentage of genetic admixtures of the other citrus groups. 

The InDel markers showed less clear genetic structure as compared to the SCoT 

markers. As a result, several secondary species and interspecific hybrids were combined 

into the same clusters (Figure 2). In particular, red cluster-combined accessions belonged 

to several species: sweet oranges (C. × aurantium var. sinensis) and limes (C. × latifolia var. 

latifolia and C. × limon var. limetta, C. aurantifolia). Green cluster-combined Fortunella spp. 

Accessions combined grapefruits (C. × aurantium var. paradisi) and its hybrids. Finally, the 

last two clusters consisted of the lemons (C. × limon var. limon) (blue cluster) and manda-

rins (C. × aurantium var. unshiu) (yellow cluster) with a low level of genetic admixtures. 

Additionally, two varieties of bitter orange (C. × aurantium L. var. aurantium) and C. ×junos 

joined the mandarin group. 

 

 

Figure 2. Genetic structure among 172 citrus accessions based on InDel data. Each colored segment 

represents the estimated membership fraction of each genetic cluster. The yellow color in the table 

indicates the most reliable K value (number of genetic clusters) in the collection. 

To summarize, both SCoT and InDel marker data showed efficient discrimination of 

satsuma mandarins and lemons, which were grouped into separate clusters and showed 

a homogeneous genetic structure with a low level of admixtures. Additionally, SCoT 

markers allowed for the separation of orange, kumquat, and lime accessions, showing a 

greater level of polymorphisms as compared to InDel markers. However, both marker 

types showed a low level of genetic admixtures in C. × aurantium var. unshiu, C. × au-

rantium var. sinensis, and C. × limon var. limon, except for the few accessions showing 5 to 

20% admixtures. 

Figure 2. Genetic structure among 172 citrus accessions based on InDel data. Each colored segment
represents the estimated membership fraction of each genetic cluster. The yellow color in the table
indicates the most reliable K value (number of genetic clusters) in the collection.

To summarize, both SCoT and InDel marker data showed efficient discrimination of
satsuma mandarins and lemons, which were grouped into separate clusters and showed a
homogeneous genetic structure with a low level of admixtures. Additionally, SCoT markers
allowed for the separation of orange, kumquat, and lime accessions, showing a greater level
of polymorphisms as compared to InDel markers. However, both marker types showed a
low level of genetic admixtures in C. × aurantium var. unshiu, C. × aurantium var. sinensis,
and C. × limon var. limon, except for the few accessions showing 5 to 20% admixtures.

2.3. Phylogenetic Analysis of the Citrus Germplasm Collection Based on SCoT and
InDel Polymorphisms

The results of the neighbor joining analysis based on the combined SCoT and InDel
data resulted in three main branches divided into seven sub-branches. These are presented
on a phylogenetic tree (Figure 3). The first branch divided into two sub-branches. Sub-
branch 1.1 combined 33 accessions, 31 of which belonged to the lemon group, including old
local cultivars such as “Odishi”, “Novoafonskii”, “Beskolyuchii”, “Udarnik”, “Hybrid3252”,
etc. Their probable closely related hybrids of citron and mandarin joined this group. Sub-
branch 1.2 combined 25 accessions of sweet lime varieties, as well as hybrids and the
ancestral species of C. medica and C. maxima, indicating their close relationship.
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The most abundant branch 2 combined three sub-branches of mandarins and oranges.
Sub-branch 2.1 combined 38 accessions. Particularly, 12 accessions of sweet and bitter
oranges and 14 accessions of satsuma mandarin of foreign and local origin joined this
group. In addition, several accessions of pomelos and grapefruits were closely grouped
with them. Sub-branch 2.2 combined 26 accessions of C. × aurantium var. unshiu of local
breeding with non-presentable genetic distances among them. Sub-branch 2.3 combined
18 accessions of C. reticulata and its hybrids and C. × leiocarpa.

Finally, Branch 3 showed the greatest genetic distances among accessions and was
divided into two sub-branches: Sub-branch 3.1 contained accessions of Fortunella spp.,
Poncirus spp., and wild relatives. Sub-branch 3.2 grouped several lime accessions of
C. × limon var. limetta, C. × latifolia var. latifolia, and C. aurantifolia.

To summarize the results of the neighbor joining analysis, the combination of SCoT
and InDel markers resulted in plausible positioning of the species on the tree. The clear
separation of citrus species and the low level of genetic diversity in the locally derived
cultivars, especially in satsuma mandarins and lemons («Millenium1», «Shirokolistnyy»,
«Yubileinii», «Iveriya», «Sochinskii23» «Slava Vavilova», «Pioneer80», «Sakharny», «Mille-
nium 2», «Оcho Wase», «Kolkhidskii», «Kelasurskii», «Sentyabrskii», «Krasnodarskii83»,
«Olimpiyskii2014», «Georgievskii», «Krupnoplodny», etc. and «Odishi», «Novoafon-
skii», «Beskolyuchii», «Kuznera», «Novogruzinskii», «Maykopskii», «Krupnoplodny»,
«Udarnik», «Gonio», «Dioskuriya», «Gagrinskii» etc.) were revealed. The highest level of
genetic diversity was observed in Branch 3 (wild relatives), Sub-branch 2.3 (mandarins),
and Sub-branch 1.2 (limes). These results show the necessity of interspecific hybridization
to increase genetic diversity in the local lemon and satsuma genotypes.

3. Discussion

The collection of the FRC SSC RAS is located on the Black Sea coast of the Western
Caucasus and is represented by the genetic and ecological–geographical diversity of wild,
introduced citrus species and cultivars, including locally derived cultivars. This is a unique
border region for the cultivation and breeding of new cold-tolerant citrus varieties. One
of the most important problems associated with the efficient utilization of citrus genetic
resources is the insufficient use of modern germplasm characterization tools [16,17]. In this
study, we analyzed the efficiency of SCoT and InDel markers to assess the genetic structure
and diversity of the local citrus collection of 172 accessions.

3.1. Efficiency of SCoT and InDel Markers for Genetic Diversity Analysis of the Citrus
Germplasm Collection

The genome of some citrus species has only recently been published, particularly
the genome of the satsuma mandarin [18–20]. Based on the satsuma genome, InDel
markers were recently developed to identify closely related accessions in the satsuma
collection [9,10]. The satsumas are the most cold hardy mandarin varieties, and a high level
of polyembryony is a serious biological constraint. Thus, it is necessary to find efficient
markers with high discriminative power for intraspecific fingerprinting. In this study, we
also selected SCoT markers, which can also be useful for QTL mapping due to advantages
such as low cost and ease of use, as well as a connection with the sites of transcription
initiation. Despite the wide use of SCoT markers, studies on citrus are insufficient and
usually conducted on a small number of accessions [12,13,21].

For the first time, we have evaluated the efficiency of SCoT and InDel markers on a
wide range of citrus species and cultivars.

Polymorphism information content (PIC) and discriminating power (D) characterize
the degree of capabilities, efficiency, and potential of marker systems [22]. The PIC corre-
sponds to its ability to detect polymorphisms among the individuals in a population [23].
The maximum PIC value for dominant markers is 0.5 [24–29]. Our results from the domi-
nant SCoT markers showed a mean PIC = 0.3. For co-dominant markers, the efficient PIC
is believed to be 0.5–1.0 [30]. Our results from the co-dominant InDel markers showed a
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mean PIC = 0.4, indicating a poor ability to indicate polymorphisms in the broad range of
citrus species. The low PIC values for InDel markers were also reported in several other
studies [31,32].

The D represents the probability that two randomly chosen individuals have different
allelic patterns, and thus are distinguishable from one another [30]. The mean D value was
0.52 for SCoT and 0.64 for InDel markers. Several markers showed especially high values
of D, namely SCoT18 (D = 0.84), SCoT20 (D = 0.93), SCoT23 (D = 0.87), SCoT31 (D = 0.88),
SCoT36 (D = 0.87) и LG 1-4 (D = 0.94), LG 4-3 (D = 0.86), LG 7-11 (D = 0.98), and LG 8-10
(D = 0.83), indicating a good applicability of these markers to assess intraspecific diversity
in the genus Citrus.

3.2. Genetic Structure of the Citrus Germplasm Collection Based on SCoT and
InDel Polymorphisms

Following a STRUCTURE HARVESTER, the SCoT and InDel markers showed K = 9
and K = 5 genetic clusters, respectively. A different number of K can be explained by
different discriminating powers and different genome target regions amplified by InDel
and SCoT markers [33].

We suggested that InDel markers would be efficient to reveal the detailed genetic struc-
ture of the satsuma collection and identify hybrids because these markers were designed
for satsuma species [10]. However, a low level of genetic admixtures was observed in
satsuma clusters in particular, which is consistent with our previous study conducted with
SSR markers [34]. Another study reported that InDel markers showed a low intraspecific
diversity in several citrus species [35]. In general, a discrepancy between the morphological
diversity and genetic homogeneity of cultivars within a species is common [34–37] since
most varieties of secondary species originated from a clonal breeding and the fixation
of somatic mutations [19,38,39]. Apomixis in mandarins, oranges, and lemons is also a
possible reason for the low intraspecific genetic diversity.

Based on the selected SCoT and InDel markers, the genetic admixtures in several
genotypes of mandarin («Sakharny», «Sochinskii23», «Clone33», «Hybrid 99-4», «Slava Vav-
ilova»), lemon («Moskovskii», «Udarnik», «Gonio»), sweet orange («Washington Navel»,
«Washington Navel dwart», «Sukhumskii», «Hamlin»), and pomelo («Yubileinyy», «Asahikan»,
«Metelyova», «Grushevidnyy», «Sambokan») were clearly identified. These genotypes will
be useful for further controlled hybridization to increase intraspecific genetic diversity in
these species. Additionally, there was a significant introgression in the lime group with
a genetic admixture of micranta and citron, which is consistent with other studies [12,40].
The admixtures of lemon, tangerine, lime, and orange were observed in pomelo and citron
varieties and trifoliate orange. This indicates that sexual reproduction more frequently oc-
curs in mono-embryonic wild relatives and ancestral citrus species rather than in secondary
hybrid species, which is consistent with other studies [6,19,33].

3.3. Phylogenetic Analysis of the Citrus Germplasm Collection Based on SCoT and
InDel Polymorphisms

The phylogenetic relationships between citrus and its relatives were successfully
identified based on the selected SCoT and InDel markers. Accessions of wild Poncirus spp.
And Fortunella spp., as well as the ancestral species C. maxima, C. medica, C. reticulata, and
C. micrantha showed a comparable genetic distance to other citrus species.

The first branch showed an ancestral relationship to C. limon var. limon and C. × limon
var. limetta. The origin of lemons and limes is complex and has different phylogenetic roots.
It is suggested that C. lemon var. limon originated from the hybridization of C. × aurantium
(C. maxima × C. reticulata) × C. medica or was obtained through a mutation of the original
hybrid [19]. Sweet lime C. × limon var. limetta is believed to have the same parents as
C. limon var. limon, but is thought to be derived from an independent reticulation event [40].
Our results are consistent with these data and demonstrate the close relations of C. limon
var. limon, C. × limon var. limetta, C. maxima, and C. medica. Additionally, sour lime
accessions (C. × latifolia var. latifolia) indicated close relationships with C. aurantifolia and
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C. micrantha and as such, they were placed in the third branch of the phylogenetic tree.
C.× latifolia var. latifolia was derived from the pollination of the haploid ovule of C. limon
var. limon by the diploid gamete of C. aurantifolia. In turn, C. aurantifolia was derived
from the natural hybridization of C. micrantha as a female parent and C. medica as a male
parent [40–42]. However, despite the fact that C. × limon var. limetta mainly contains the
genetic contributions of C. maxima, C. reticulata, and C. medica, several accessions of sweet
lime were located in the same branch with C. × latifolia var. latifolia. This could happen due
to the low number of lime accessions in our dataset.

It is interesting that almost all locally derived cultivars of satsuma mandarin grouped
into a separate sub-branch of the phylogenetic tree. It is assumed that satsuma mandarin
(C. × aurantium var. unshiu) is a Japanese breeding line of the mandarin C. reticulata var.
austera, which originated from the crossing of different species of mandarin and a number
of independent somatic mutations [41,43]. Sweet orange (C. × aurantium var. sinensis) is
placed nearby satsuma mandarins and it is considered a hybrid of the two ancestral species
of C. reticulata var. austera and C. maxima [44]. Hybrid species C. × aurantium var. clementina
and C. × junos were placed closer to C. × aurantium var. unshiu on the phylogenetic tree.
These species presumably originated from crosses between C. × aurantium var. sinensis ×
C. reticulata var. austera and C. reticulata var. austera × C. cavaleriei, respectively [44]. Our
results are consistent with other phylogenetic studies where C. maxima, C. × aurantium var.
sinensis, C. cavaleriei, and C. reticulata var. austera acted as the common genetic contributors
to mandarin-related species [44,45]. According to the neighbor joining analysis, C. × yuko
and C.× leiocarpa grouped in the same sub-branch, which is consistent with the assumption
that C. × yuko is a cross between C. × kinokuni and C. × leiocarpa [46]. Thus, differen-
tiation between the gene pools of the original species C. maxima, C. medica, C. reticulata,
and C. micrantha acted as a structuring factor of the analyzed edible citrus germplasm.
Secondary species and modern varieties, in general, were intermediate between the main
taxa, confirming their hybrid status.

4. Materials and Methods
4.1. The Plant Material and DNA Extraction

The plant material of 172 Citrus genotypes, including 31 species, 43 local cultivars,
and 22 locally derived hybrids, was obtained from the germplasm bank of the FRC SSC
RAS (Table S1). The fresh samples of young leaves were obtained from a healthy plant
of each genotype. The plants were 5–30 years old and were maintained in the field and
greenhouse collection. One sample per genotype was taken as a biological replicate. An
amount of 70–100 mg of each sample was ground and mixed into a liquid nitrogen. DNA
extraction was performed using CTAB protocol [47]. DNA quality was checked by agarose
gel electrophoresis and spectrophotometrically using BioDrop µLite (Biodrop, Cambridge,
UK). All samples were diluted to 20 ng µL−1 and stored at −20 ◦C.

4.2. PCR Analysis and Visualization

Since the 36 SCoT primers were originally developed for Oryza sativa [14] and 60 InDel
primers were developed for C. × unshiu [9], we first assessed the transferability of these
primers to 11 citrus accessions. The efficient SCoT and InDel markers were selected for
further evaluation (Table S2).

The SCoT PCR reaction mixture consisted of a 10 µL 2×HS-TaqPCR reaction buffer
(Biolabmix, Novosibirsk, Russia) containing Hot Start Taq-Polymerase, 0.4 µL of primer
(10 µM), 2 µL of DNA (20 ng µL−1), and DEPC-treated water in a total PCR volume of 20 µL.
Amplification was carried out in the MiniAmp thermal cycler (Thermo Fisher Scientific,
MA, USA) with the following program: primary denaturation for 5 min at 95 ◦C, annealing
for 35 cycles, denaturation at 95 ◦C for 1 min, annealing at 52 ◦C for 1 min, elongation
at 72 ◦C for 2 min, and the final elongation at 72 ◦C for 5 min. The separation of SCoT
fragments was performed on a 2% agarose gel for 2.5 h at 90 V in 1 × TAE buffer.
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TIe InDel PCR reaction mixture consisted of 10 µL of 2×HS-TaqPCR reaction buffer
(Biolabmix, Novosibirsk, Russia) containing Hot Start Taq-Polymerase, 0.4 µL of primer
(10 µM), 2 µL of DNA (20 ng µL−1), and DEPC-treated water in a total PCR volume of 20 µL.
Amplification was carried out in the MiniAmp thermal cycler (Thermo Fisher Scientific,
MA, USA) with the following program: primary denaturation 5 min at 95 ◦C, annealing
35 cycles, denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, elongation at 72 ◦C for
30 s, and the final elongation at 72 ◦C for 2 min. The separation of InDel fragments was
performed on a 3% agarose gel for 2.5 h at 90 V in 1 × TAE buffer.

4.3. Statistical Analysis

Genetic diversity parameters were calculated for each SCoT and InDel marker in the
citrus collection using the software GeneAlex ver. 6.5 (https://biology-assets.anu.edu.
au/GenAlEx/Download.html, 10 April 2023) [48,49] and the online resource [50]. The
analysis function ‘Matches’ in GeneAlex ver. 6.5 [48,49] was used to identify genotypes
with identical allelic patterns within the dataset. One biological replicate (one tree per
genotype) and three technical replicates were assayed for each analyzed parameter. The
following parameters were assessed: Na—total number of bands, PIC—polymorphism
information content, D—discriminating power, and H—genetic diversity. Subsequently,
the model-based clustering method was applied using the software STRUCTURE ver. 2.3.4.
(Oxford, UK) [51] to verify the genetic structure within the Citrus collection. The parameters
included 50,000 burn-in periods and 50,000 Markov Chain Monte Carlo repetitions using the
admixture model with correlated allele models. The software STRUCTURE HARVESTER
(https://taylor0.biology.ucla.edu/structureHarvester/, 10 April 2023) [52] was used to
detect the most likely value for K based on Evanno’s ∆K method [53]. Phylogenetic trees
were drawn based on the dissimilarity matrix using DARWIN ver.6.0 [54].

5. Conclusions

In our study, the efficiency of SCoT and InDel markers were evaluated in a wide
range of citrus species and cultivars including 172 genotypes and 31 species. The highest
discriminating power was observed in the following markers: SCoT18 (D = 0.84), SCoT20
(D = 0.93), SCoT23 (D = 0.87), SCoT31 (D = 0.88), SCoT36 (D = 0.87) и LG 1-4 (D = 0.94),
LG 4-3 (D = 0.86), LG 7-11 (D = 0.98), and LG 8-10 (D = 0.83), indicating their strong
applicability to assess the intraspecific diversity of the genus Citrus. The highest levels of
genetic admixtures were detected in lime accessions. A low level of intraspecific diversity
was detected in satsuma and lemon accessions. However, 10–50% of genetic admixtures
were detected in some locally derived accessions, such as satsuma, lemon, sweet orange,
and pomelo. These genotypes will be useful for further controlled hybridization to increase
intraspecific genetic diversity in the aforementioned species.

Additionally, these results are valuable for further collection management and show
the necessity of interspecific hybridization to increase intraspecific genetic diversity in
colder regions.
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