Overview of Avian Sex Reversal
Abstract
:1. Introduction
2. Avian Sex Determination
2.1. Mechanism of Vertebrate Sex Determination
2.2. Genetic and Epigenetic Regulation in Avian Sex Determination
3. Avian Sex Differentiation
3.1. Morphological Changes in Reproductive Organs during Avian Sex Differentiation
3.2. Genetic and Epigenetic Regulation in Male Sex Differentiation
3.3. Genetic and Epigenetic Regulation in Female Sex Differentiation
4. Avian Sex Reversal
4.1. Occurrence of Vertebrate Sex Reversal
4.2. Mechanism of Avian Sex Reversal
4.3. Avian Sex Reversal Induced by Transplant Treatment
4.4. Avian Male-to-Female Sex Reversal Induced by Estrogens Treatment
4.5. Avian Female-to-Male Sex Reversal Induced by Aromatase Inhibitors Treatment
4.6. Avian Sex Reversal and Cell Autonomous Sex Identity
5. Avian Sex Control
5.1. Critical Issues and Challenges of Avian Sex Control
5.2. Research Progress and Application of Avian Sex Control Technologies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tizard, M.L.; Jenkins, K.A.; Cooper, C.A.; Woodcock, M.E.; Challagulla, A.; Doran, T.J. Potential benefits of gene editing for the future of poultry farming. Transgenic Res. 2019, 28, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Fogelholm, M.; Jalo, E.; Poppitt, S.D.; Silvestre, M.P.; Møller, G.; Huttunen-Lenz, M.; Stratton, G.; Sundvall, J.; Macdonald, I.A.; et al. Animal-based food choice and associations with long-term weight maintenance and metabolic health after a large and rapid weight loss: The PREVIEW study. Clin. Nutr. 2022, 41, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Doran, T.J.; Morris, K.R.; Wise, T.G.; O’Neil, T.E.; Cooper, C.A.; Jenkins, K.A.; Tizard, M.L.V. Sex selection in layer chickens. Anim. Prod. Sci. 2018, 58, 476. [Google Scholar] [CrossRef]
- Doran, T.J.; Cooper, C.A.; Jenkins, K.A.; Tizard, M.L. Advances in genetic engineering of the avian genome: “Realising the promise”. Transgenic Res. 2016, 25, 307–319. [Google Scholar] [CrossRef]
- Sinclair, M.; Zhang, Y.; Descovich, K.; Phillips, C.J.C. Farm Animal Welfare Science in China-A Bibliometric Review of Chinese Literature. Animals 2020, 10, 540. [Google Scholar] [CrossRef]
- McColl, K.A.; Clarke, B.; Doran, T.J. Role of genetically engineered animals in future food production. Aust. Vet. J. 2013, 91, 113–117. [Google Scholar] [CrossRef]
- Cooper, C.A.; Doran, T.J.; Challagulla, A.; Tizard, M.L.V.; Jenkins, K.A. Innovative approaches to genome editing in avian species. J. Anim. Sci. Biotechnol. 2018, 9, 15. [Google Scholar] [CrossRef]
- Hirst, C.E.; Serralbo, O.; Ayers, K.L.; Roeszler, K.N.; Smith, C.A. Genetic Manipulation of the Avian Urogenital System Using In Ovo Electroporation. Methods Mol. Biol. 2017, 1650, 177–190. [Google Scholar] [CrossRef]
- Yoshino, T.; Murai, H.; Saito, D. Hedgehog-BMP signalling establishes dorsoventral patterning in lateral plate mesoderm to trigger gonadogenesis in chicken embryos. Nat. Commun. 2016, 7, 12561. [Google Scholar] [CrossRef]
- Sekido, R.; Lovell-Badge, R. Mechanisms of gonadal morphogenesis are not conserved between chick and mouse. Dev. Biol. 2007, 302, 132–142. [Google Scholar] [CrossRef]
- Guioli, S.; Zhao, D.; Nandi, S.; Clinton, M.; Lovell-Badge, R. Oestrogen in the chick embryo can induce chromosomally male ZZ left gonad epithelial cells to form an ovarian cortex that can support oogenesis. Development 2020, 147, dev181693. [Google Scholar] [CrossRef]
- Chue, J.; Smith, C.A. Sex determination and sexual differentiation in the avian model. FEBS J. 2011, 278, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Roeszler, K.N.; Ohnesorg, T.; Cummins, D.M.; Farlie, P.G.; Doran, T.J.; Sinclair, A.H. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 2009, 461, 267–271. [Google Scholar] [CrossRef]
- Ioannidis, J.; Taylor, G.; Zhao, D.; Liu, L.; Idoko-Akoh, A.; Gong, D.; Lovell-Badge, R.; Guioli, S.; McGrew, M.J.; Clinton, M. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc. Natl. Acad. Sci. USA 2021, 118, e2020909118. [Google Scholar] [CrossRef] [PubMed]
- Major, A.T.; Ayers, K.; Chue, J.; Roeszler, K.; Smith, C. FOXL2 antagonises the male developmental pathway in embryonic chicken gonads. J. Endocrinol. 2019, 243, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Scheib, D. Effects and role of estrogens in avian gonadal differentiation. Differentiation 1983, 23, S87–S92. [Google Scholar] [CrossRef]
- Elbrecht, A.; Smith, R.G. Aromatase enzyme activity and sex determination in chickens. Science 1992, 255, 467–470. [Google Scholar] [CrossRef]
- George, F.W.; Wilson, J.D. pathogenesis of the henny feathering trait in the Sebright bantam chicken. Increased conversion of androgen to estrogen in skin. J. Clin. Investig. 1980, 66, 57–65. [Google Scholar] [CrossRef]
- Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.; Pruitt, K.D.; Thibaud-Nissen, F.; et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 Genes Genomes Genet. 2017, 7, 109–117. [Google Scholar] [CrossRef]
- Vaillant, S.; Dorizzi, M.; Pieau, C.; Richard-Mercier, N. Sex reversal and aromatase in chicken. J. Exp. Zool. 2001, 290, 727–740. [Google Scholar] [CrossRef]
- Zhao, D.; McBride, D.; Nandi, S.; McQueen, H.A.; McGrew, M.J.; Hocking, P.M.; Lewis, P.D.; Sang, H.M.; Clinton, M. Somatic sex identity is cell autonomous in the chicken. Nature 2010, 464, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Galli, R.; Preusse, G.; Uckermann, O.; Bartels, T.; Krautwald-Junghanns, M.E.; Koch, E.; Steiner, G. In ovo sexing of chicken eggs by fluorescence spectroscopy. Anal. Bioanal. Chem. 2017, 409, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, A.; Reitemeier, S.; Hahn, A.; Gottschalk, J.; Einspanier, A. Sexing domestic chicken before hatch: A new method for in ovo gender identification. Theriogenology 2013, 80, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, A.; Förster, A.; Gottschalk, J.; Reitemeier, S.; Krautwald-Junghanns, M.-E.; Preisinger, R.; Einspanier, A. In ovo-gender identification in laying hen hybrids: Effects on hatching and production performance. Eur. Poult. Sci. 2014, 78, 25. [Google Scholar] [CrossRef]
- Yılmaz-Dıkmen, B.; Dikmen, S. A Morphometric Method of Sexing White Layer Eggs. Braz. J. Poult. Sci. 2013, 15, 203–210. [Google Scholar] [CrossRef]
- Webster, B.; Hayes, W.; Pike, T.W. Avian egg odour encodes information on embryo sex, fertility and development. PLoS ONE 2015, 10, e0116345. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Saatkamp, H.W.; Cortenbach, J.; Jin, W. Comparison of Chinese Broiler Production Systems in Economic Performance and Animal Welfare. Animals 2020, 10, 491. [Google Scholar] [CrossRef]
- He, S.; Lin, J.; Jin, Q.; Ma, X.; Liu, Z.; Chen, H.; Ma, J.; Zhang, H.; Descovich, K.; Phillips, C.J.C.; et al. The Relationship between Animal Welfare and Farm Profitability in Cage and Free-Range Housing Systems for Laying Hens in China. Animals 2022, 12, 90. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Gamble, T.; Zarkower, D. Sex determination. Curr. Biol. 2012, 22, R257–R262. [Google Scholar] [CrossRef]
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014, 12, e1001899. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.W.; Andrews, H.V. Temperature-dependent sex determination in crocodilians. J. Exp. Zool. 1994, 270, 28–44. [Google Scholar] [CrossRef]
- Radder, R.S.; Quinn, A.E.; Georges, A.; Sarre, S.D.; Shine, R. Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biol. Lett. 2008, 4, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Pieau, C. Effects of estradiol on the genital apparatus of the embryo of the Mauresque turtle (Testudo graceca L.). Arch. D’anatomie Microsc. Morphol. Exp. 1970, 59, 295–318. [Google Scholar]
- Pieau, C. Sex ratio in the embryos of 2 chelonians (Testudo graeca L. and Emys orbicularis L.) born of artificially incubated ova. C R Acad. Hebd. Seances Acad. Sci. D 1971, 272, 3071–3074. [Google Scholar]
- Ge, C.; Ye, J.; Zhang, H.; Zhang, Y.; Sun, W.; Sang, Y.; Capel, B.; Qian, G. Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination. Development 2017, 144, 2222–2233. [Google Scholar] [CrossRef]
- Ge, C.; Ye, J.; Weber, C.; Sun, W.; Zhang, H.; Zhou, Y.; Cai, C.; Qian, G.; Capel, B. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science 2018, 360, 645–648. [Google Scholar] [CrossRef]
- Weber, C.; Zhou, Y.; Lee, J.G.; Looger, L.L.; Qian, G.; Ge, C.; Capel, B. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science 2020, 368, 303–306. [Google Scholar] [CrossRef]
- Charnier, M. Action of temperature on the sex ratio in the Agama agama (Agamidae, Lacertilia) embryo. C R Seances Soc. Biol. Fil. 1966, 160, 620–622. [Google Scholar]
- Czerwinski, M.; Natarajan, A.; Barske, L.; Looger, L.L.; Capel, B. A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans. Dev. Biol. 2016, 420, 166–177. [Google Scholar] [CrossRef]
- Livernois, A.M.; Graves, J.A.; Waters, P.D. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 2012, 108, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Bellott, D.W.; Hughes, J.F.; Skaletsky, H.; Brown, L.G.; Pyntikova, T.; Cho, T.J.; Koutseva, N.; Zaghlul, S.; Graves, T.; Rock, S.; et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014, 508, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Larney, C.; Bailey, T.L.; Koopman, P. Switching on sex: Transcriptional regulation of the testis-determining gene Sry. Development 2014, 141, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Koopman, P.; Gubbay, J.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 1991, 351, 117–121. [Google Scholar] [CrossRef]
- Koopman, P.; Munsterberg, A.; Capel, B.; Vivian, N.; Lovell-Badge, R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990, 348, 450–452. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Terao, M.; Ogawa, Y.; Takada, S.; Kajitani, R.; Okuno, M.; Mochimaru, Y.; Matsuoka, K.; Itoh, T.; Toyoda, A.; Kono, T.; et al. Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9. Proc. Natl. Acad. Sci. USA 2022, 119, e2211574119. [Google Scholar] [CrossRef]
- Marshall Graves, J.A.; Shetty, S. Sex from W to Z: Evolution of vertebrate sex chromosomes and sex determining genes. J. Exp. Zool. 2001, 290, 449–462. [Google Scholar] [CrossRef]
- Davis, J.K.; Thomas, P.J.; Program, N.C.S.; Thomas, J.W. A W-linked palindrome and gene conversion in New World sparrows and blackbirds. Chromosome Res. 2010, 18, 543–553. [Google Scholar] [CrossRef]
- Moghadam, H.K.; Pointer, M.A.; Wright, A.E.; Berlin, S.; Mank, J.E. W chromosome expression responds to female-specific selection. Proc. Natl. Acad. Sci. USA 2012, 109, 8207–8211. [Google Scholar] [CrossRef]
- Smeds, L.; Warmuth, V.; Bolivar, P.; Uebbing, S.; Burri, R.; Suh, A.; Nater, A.; Bures, S.; Garamszegi, L.Z.; Hogner, S.; et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 2015, 6, 7330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Macaya-Sanz, D.; Carlson, C.H.; Schmutz, J.; Jenkins, J.W.; Kudrna, D.; Sharma, A.; Sandor, L.; Shu, S.; Barry, K.; et al. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biol. 2020, 21, 38. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A. Sex determination in birds: HINTs from the W sex chromosome? Sex. Dev. 2007, 1, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.P.; Gerstein, A.C. Why have sex? The population genetics of sex and recombination. Biochem. Soc. Trans. 2006, 34, 519–522. [Google Scholar] [CrossRef]
- Furman, B.L.S.; Metzger, D.C.H.; Darolti, I.; Wright, A.E.; Sandkam, B.A.; Almeida, P.; Shu, J.J.; Mank, J.E. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol. Evol. 2020, 12, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B. The evolution of sex chromosomes. Science 1991, 251, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Bergero, R.; Charlesworth, D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009, 24, 94–102. [Google Scholar] [CrossRef]
- Handley, L.J.; Ceplitis, H.; Ellegren, H. Evolutionary strata on the chicken Z chromosome: Implications for sex chromosome evolution. Genetics 2004, 167, 367–376. [Google Scholar] [CrossRef]
- Graves, J.A. The epigenetic sole of sex and dosage compensation. Nat. Genet. 2014, 46, 215–217. [Google Scholar] [CrossRef]
- Smith, C.A.; Roeszler, K.N.; Sinclair, A.H. Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int. J. Dev. Biol. 2009, 53, 59–67. [Google Scholar] [CrossRef]
- Reed, K.J.; Sinclair, A.H. RETRACTED: FET-1: A novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Gene Expr. Patterns 2002, 2, 83–86. [Google Scholar] [CrossRef]
- Sun, C.; Jin, K.; Zhou, J.; Zuo, Q.; Song, J.; Yani, Z.; Chen, G.; Li, B. Role and function of the Hintw in early sex differentiation in chicken (Gallus gallus) embryo. Anim. Biotechnol. 2021, 34, 56–66. [Google Scholar] [CrossRef]
- Nagai, H.; Sezaki, M.; Bertocchini, F.; Fukuda, K.; Sheng, G. HINTW, a W-chromosome HINT gene in chick, is expressed ubiquitously and is a robust female cell marker applicable in intraspecific chimera studies. Genesis 2014, 52, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Arit, D.; Bensch, S.; Hansson, B.; Hasselquist, D.; Westerdahl, H. Observation of a ZZW female in a natural population: Implications for avian sex determination. Proc. Biol. Sci. 2004, 271 (Suppl. 4), S249–S251. [Google Scholar] [CrossRef]
- Kupper, C.; Augustin, J.; Edwards, S.; Szekely, T.; Kosztolanyi, A.; Burke, T.; Janes, D.E. Triploid plover female provides support for a role of the W chromosome in avian sex determination. Biol. Lett. 2012, 8, 787–789. [Google Scholar] [CrossRef]
- Thorne, M.H.; Collins, R.K.; Sheldon, B.L. Triploidy and other chromosomal abnormalities in a selected line of chickens. Genet. Sel. Evol. 1991, 23, S212. [Google Scholar] [CrossRef]
- Borsani, G.; Tonlorenzi, R.; Simmler, M.C.; Dandolo, L.; Arnaud, D.; Capra, V.; Grompe, M.; Pizzuti, A.; Muzny, D.; Lawrence, C.; et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature 1991, 351, 325–329. [Google Scholar] [CrossRef]
- Brockdorff, N.; Ashworth, A.; Kay, G.F.; Cooper, P.; Smith, S.; McCabe, V.M.; Norris, D.P.; Penny, G.D.; Patel, D.; Rastan, S. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 1991, 351, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.; Spencer, K.B.; Kesner, B.; Rizvi, N.F.; Badmalia, M.D.; Mrozowich, T.; Mortison, J.D.; Rivera, C.; Smith, G.F.; Burchard, J.; et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 2022, 604, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mank, J.E.; Li, J.; Yang, N.; Qu, L. Allele-Specific Expression Analysis Does Not Support Sex Chromosome Inactivation on the Chicken Z Chromosome. Genome Biol. Evol. 2017, 9, 619–626. [Google Scholar] [CrossRef]
- McQueen, H.A.; McBride, D.; Miele, G.; Bird, A.P.; Clinton, M. Dosage compensation in birds. Curr. Biol. 2001, 11, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Melamed, E.; Yang, X.; Kampf, K.; Wang, S.; Yehya, N.; Van Nas, A.; Replogle, K.; Band, M.R.; Clayton, D.F.; et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 2007, 6, 2. [Google Scholar] [CrossRef]
- Soler, L.; Alves, S.; Brionne, A.; Jacques, A.; Guerin, V.; Cherif-Feildel, M.; Combes-Soia, L.; Fouchecourt, S.; Thelie, A.; Blesbois, E.; et al. Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages. Sci. Rep. 2021, 11, 19236. [Google Scholar] [CrossRef] [PubMed]
- Clinton, M.; Zhao, D.; Nandi, S.; McBride, D. Evidence for avian cell autonomous sex identity (CASI) and implications for the sex-determination process? Chromosome Res. 2012, 20, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, S.R.; Nevue, A.A.; Andrade, A.L.P.; Velho, T.A.F.; Mello, C.V. Emergence of sex-specific transcriptomes in a sexually dimorphic brain nucleus. Cell. Rep. 2022, 40, 111152. [Google Scholar] [CrossRef] [PubMed]
- Agate, R.J.; Grisham, W.; Wade, J.; Mann, S.; Wingfield, J.; Schanen, C.; Palotie, A.; Arnold, A.P. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc. Natl. Acad. Sci. USA 2003, 100, 4873–4878. [Google Scholar] [CrossRef]
- Duan, X.; Jia, X.; Liang, K.; Huang, F.; Shan, J.; Chen, H.; Ruan, X.; Li, L.; Zhao, H.; Wang, Q. Liposome-Encapsulated Rec8 and Dmrt1 Plasmids Induce Red-Spotted Grouper (Epinephelus akaara) Testis Maturation. Mar. Biotechnol. 2022, 24, 345–353. [Google Scholar] [CrossRef]
- Kulibin, A.Y.; Malolina, E.A. Formation of the rete testis during mouse embryonic development. Dev. Dyn. 2020, 249, 1486–1499. [Google Scholar] [CrossRef]
- Panara, V.; Budd, G.E.; Janssen, R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front. Zool. 2019, 16, 23. [Google Scholar] [CrossRef]
- Wang, L.; Sun, F.; Wan, Z.Y.; Yang, Z.; Tay, Y.X.; Lee, M.; Ye, B.; Wen, Y.; Meng, Z.; Fan, B.; et al. Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol. 2022, 20, 5. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Suda, K.; Fujimura, F.; Fujikawa, M.; Tamura, K.; Tsukamoto, D.; Evans, B.J.; Takamatsu, N.; Ito, M. Neofunctionalization of a Noncoding Portion of a DNA Transposon in the Coding Region of the Chimerical Sex-Determining Gene dm-W in Xenopus Frogs. Mol. Biol. Evol. 2022, 39, msac138. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Ikeda, N.; Izutsu, Y.; Shiba, T.; Takamatsu, N.; Ito, M. Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: Implications of a ZZ/ZW-type sex-determining system. Development 2010, 137, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Whitworth, C.; Pozmanter, C.; Neville, M.C.; Van Doren, M. Doublesex regulates fruitless expression to promote sexual dimorphism of the gonad stem cell niche. PLoS Genet. 2021, 17, e1009468. [Google Scholar] [CrossRef]
- Steinmann-Zwicky, M. Sex determination of the Drosophila germ line: Tra and dsx control somatic inductive signals. Development 1994, 120, 707–716. [Google Scholar] [CrossRef]
- Shen, M.M.; Hodgkin, J. mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell 1988, 54, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Nanda, I.; Kondo, M.; Hornung, U.; Asakawa, S.; Winkler, C.; Shimizu, A.; Shan, Z.; Haaf, T.; Shimizu, N.; Shima, A.; et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. USA 2002, 99, 11778–11783. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Shinomiya, A.; Kinoshita, M.; Suzuki, A.; Kobayashi, T.; Paul-Prasanth, B.; Lau, E.L.; Hamaguchi, S.; Sakaizumi, M.; Nagahama, Y. DMY gene induces male development in genetically female (XX) medaka fish. Proc. Natl. Acad. Sci. USA 2007, 104, 3865–3870. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417, 559–563. [Google Scholar] [CrossRef]
- Ogita, Y.; Mawaribuchi, S.; Nakasako, K.; Tamura, K.; Matsuda, M.; Katsumura, T.; Oota, H.; Watanabe, G.; Yoneda, S.; Takamatsu, N.; et al. Parallel Evolution of Two dmrt1-Derived Genes, dmy and dm-W, for Vertebrate Sex Determination. iScience 2020, 23, 100757. [Google Scholar] [CrossRef]
- Smith, C.A.; Katz, M.; Sinclair, A.H. DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol. Reprod. 2003, 68, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, H.; Yu, H.; Cheng, H.; Zhou, R. Multiple alternative splicing in gonads of chicken DMRT1. Dev. Genes Evol. 2007, 217, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Clinton, M.; Zhao, D. Avian sex determination: A chicken egg conundrum. Sex. Dev. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gong, P.; Feng, Y.P.; Li, S.J.; Peng, X.L.; Ran, Z.P.; Qian, Y.G.; Gong, Y.Z. Temporospatial expression of Dmrt1 in chicken urogenital system (Gallus gallus) using whole mount in situ hybridization. Acta Biol. Hung. 2013, 64, 161–168. [Google Scholar] [CrossRef]
- Smith, C.A.; McClive, P.J.; Western, P.S.; Reed, K.J.; Sinclair, A.H. Conservation of a sex-determining gene. Nature 1999, 402, 601–602. [Google Scholar] [CrossRef]
- Yoshioka, H.; Ishimaru, Y.; Sugiyama, N.; Tsunekawa, N.; Noce, T.; Kasahara, M.; Morohashi, K. Mesonephric FGF signaling is associated with the development of sexually indifferent gonadal primordium in chick embryos. Dev. Biol. 2005, 280, 150–161. [Google Scholar] [CrossRef]
- Shan, Z.; Nanda, I.; Wang, Y.; Schmid, M.; Vortkamp, A.; Haaf, T. Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Cytogenet. Cell. Genet. 2000, 89, 252–257. [Google Scholar] [CrossRef]
- Lambeth, L.S.; Raymond, C.S.; Roeszler, K.N.; Kuroiwa, A.; Nakata, T.; Zarkower, D.; Smith, C.A. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev. Biol. 2014, 389, 160–172. [Google Scholar] [CrossRef]
- Omotehara, T.; Smith, C.A.; Mantani, Y.; Kobayashi, Y.; Tatsumi, A.; Nagahara, D.; Hashimoto, R.; Hirano, T.; Umemura, Y.; Yokoyama, T.; et al. Spatiotemporal expression patterns of doublesex and mab-3 related transcription factor 1 in the chicken developing gonads and Mullerian ducts. Poult. Sci. 2014, 93, 953–958. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, M.; Choi, H.J.; Rengaraj, D.; Jung, K.M.; Park, J.S.; Lee, K.Y.; Kim, Y.M.; Park, K.J.; Han, S.T.; et al. DMRT1 gene disruption alone induces incomplete gonad feminization in chicken. FASEB J. 2021, 35, e21876. [Google Scholar] [CrossRef]
- Estermann, M.A.; Williams, S.; Hirst, C.E.; Roly, Z.Y.; Serralbo, O.; Adhikari, D.; Powell, D.; Major, A.T.; Smith, C.A. Insights into Gonadal Sex Differentiation Provided by Single-Cell Transcriptomics in the Chicken Embryo. Cell. Rep. 2020, 31, 107491. [Google Scholar] [CrossRef] [PubMed]
- Estermann, M.A.; Major, A.T.; Smith, C.A. Genetic Regulation of Avian Testis Development. Genes 2021, 12, 1459. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Arai, N.; Arita, M.; Teranishi, M.; Hori, T.; Harata, M.; Mizuno, S. Absence of Z-chromosome inactivation for five genes in male chickens. Chromosome Res. 2001, 9, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, M.; Shimada, Y.; Hori, T.; Nakabayashi, O.; Kikuchi, T.; Macleod, T.; Pym, R.; Sheldon, B.; Solovei, I.; Macgregor, H.; et al. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus. Chromosome Res. 2001, 9, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Replogle, K.; Kim, Y.H.; Wade, J.; Clayton, D.F.; Arnold, A.P. Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Res. 2010, 20, 512–518. [Google Scholar] [CrossRef]
- Yang, X.; Deng, J.; Zheng, J.; Xia, L.; Yang, Z.; Qu, L.; Chen, S.; Xu, G.; Jiang, H.; Clinton, M.; et al. A Window of MHM Demethylation Correlates with Key Events in Gonadal Differentiation in the Chicken. Sex. Dev. 2016, 10, 152–158. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, J.; Qu, L.; Chen, S.; Li, J.; Xu, G.; Yang, N. Methylation status of cMHM and expression of sex-specific genes in adult sex-reversed female chickens. Sex. Dev. 2011, 5, 147–154. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, J.; Xu, G.; Qu, L.; Chen, S.; Li, J.; Yang, N. Exogenous cMHM regulates the expression of DMRT1 and ER alpha in avian testes. Mol. Biol. Rep. 2010, 37, 1841–1847. [Google Scholar] [CrossRef]
- Bisoni, L.; Batlle-Morera, L.; Bird, A.P.; Suzuki, M.; McQueen, H.A. Female-specific hyperacetylation of histone H4 in the chicken Z chromosome. Chromosome Res. 2005, 13, 205–214. [Google Scholar] [CrossRef]
- Briggs, S.F.; Reijo Pera, R.A. X chromosome inactivation: Recent advances and a look forward. Curr. Opin. Genet. Dev. 2014, 28, 78–82. [Google Scholar] [CrossRef]
- Mulvey, B.B.; Olcese, U.; Cabrera, J.R.; Horabin, J.I. An interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision. Biochim. Biophys. Acta 2014, 1839, 773–784. [Google Scholar] [CrossRef]
- Roeszler, K.N.; Itman, C.; Sinclair, A.H.; Smith, C.A. The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Dev. Biol. 2012, 366, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Peng, Z.; Man, Q.; Wang, S.; Huang, X.; Meng, L.; Wang, H.; Zhu, G. H3K27ac chromatin acetylation and gene expression analysis reveal sex- and situs-related differences in developing chicken gonads. Biol. Sex. Differ. 2022, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 2016, 17, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Estermann, M.A.; Smith, C.A. Applying Single-Cell Analysis to Gonadogenesis and DSDs (Disorders/Differences of Sex Development). Int. J. Mol. Sci. 2020, 21, 6614. [Google Scholar] [CrossRef]
- Hartady, T.; Syamsunarno, M.; Priosoeryanto, B.P.; Jasni, S.; Balia, R.L. Review of herbal medicine works in the avian species. Vet. World 2021, 14, 2889–2906. [Google Scholar] [CrossRef]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [Google Scholar] [CrossRef]
- Ariza, L.; Carmona, R.; Canete, A.; Cano, E.; Munoz-Chapuli, R. Coelomic epithelium-derived cells in visceral morphogenesis. Dev. Dyn. 2016, 245, 307–322. [Google Scholar] [CrossRef]
- Guioli, S.; Nandi, S.; Zhao, D.; Burgess-Shannon, J.; Lovell-Badge, R.; Clinton, M. Gonadal asymmetry and sex determination in birds. Sex. Dev. 2014, 8, 227–242. [Google Scholar] [CrossRef]
- Yoshino, T.; Saito, D. Epithelial-to-mesenchymal transition-based morphogenesis of dorsal mesentery and gonad. Semin. Cell. Dev. Biol. 2019, 92, 105–112. [Google Scholar] [CrossRef]
- Stevant, I.; Neirijnck, Y.; Borel, C.; Escoffier, J.; Smith, L.B.; Antonarakis, S.E.; Dermitzakis, E.T.; Nef, S. Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell. Rep. 2018, 22, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Nef, S.; Stevant, I.; Greenfield, A. Characterizing the bipotential mammalian gonad. Curr. Top. Dev. Biol. 2019, 134, 167–194. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.H.; Eicher, E.M. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 2001, 240, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, M.; Eyal-Giladi, H. Primordial germ cells of the young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 1987, 101, 209–219. [Google Scholar] [CrossRef]
- Smith, C.A.; Sinclair, A.H. Sex determination: Insights from the chicken. Bioessays 2004, 26, 120–132. [Google Scholar] [CrossRef]
- Swift, C.H. Origin of the sex-cords and definitive spermatogonia in the male chick. Am. J. Anat. 1916, 20, 375–410. [Google Scholar] [CrossRef]
- Smith, C.A.; Roeszler, K.N.; Hudson, Q.J.; Sinclair, A.H. Avian sex determination: What, when and where? Cytogenet. Genome Res. 2007, 117, 165–173. [Google Scholar] [CrossRef]
- Gonzalez-Moran, M.G. Histological and stereological changes in growing and regressing chicken ovaries during development. Anat. Rec. 2011, 294, 893–904. [Google Scholar] [CrossRef]
- Intarapat, S.; Stern, C.D. Sexually dimorphic and sex-independent left-right asymmetries in chicken embryonic gonads. PLoS ONE 2013, 8, e69893. [Google Scholar] [CrossRef]
- Carlon, N.; Stahl, A. Origin of the somatic components in chick embryonic gonads. Arch. D’anatomie Microsc. Morphol. Exp. 1985, 74, 52–59. [Google Scholar]
- de Melo Bernardo, A.; Heeren, A.M.; van Iperen, L.; Fernandes, M.G.; He, N.; Anjie, S.; Noce, T.; Ramos, E.S.; de Sousa Lopes, S.M. Meiotic wave adds extra asymmetry to the development of female chicken gonads. Mol. Reprod. Dev. 2015, 82, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Gasc, J.M.; Stumpf, W.E. Sexual differentiation of the urogenital tract in the chicken embryo: Autoradiographic localization of sex-steroid target cells during development. J. Embryol. Exp. Morphol. 1981, 63, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Roly, Z.Y.; Backhouse, B.; Cutting, A.; Tan, T.Y.; Sinclair, A.H.; Ayers, K.L.; Major, A.T.; Smith, C.A. The cell biology and molecular genetics of Mullerian duct development. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e310. [Google Scholar] [CrossRef] [PubMed]
- Roly, Z.Y.; Godini, R.; Estermann, M.A.; Major, A.T.; Pocock, R.; Smith, C.A. Transcriptional landscape of the embryonic chicken Mullerian duct. BMC Genom. 2020, 21, 688. [Google Scholar] [CrossRef] [PubMed]
- Major, A.T.; Smith, C.A. Sex Reversal in Birds. Sex. Dev. 2016, 10, 288–300. [Google Scholar] [CrossRef]
- Hutson, J.; Ikawa, H.; Donahoe, P. The ontogeny of mullerian inhibiting substance in the gonads of the chicken. J. Pediatr. Surg. 1981, 16, 822–827. [Google Scholar] [CrossRef]
- Oreal, E.; Pieau, C.; Mattei, M.-G.; Josso, N.; Picard, J.-Y.; Carré-Eusèbe, D.; Magre, S. Early expression ofAMH in chicken embryonic gonads precedes testicularSOX9 expression. Dev. Dyn. 1998, 212, 522–532. [Google Scholar] [CrossRef]
- Josso, N.; Picard, J.Y. Anti-Mullerian hormone. Physiol. Rev. 1986, 66, 1038–1090. [Google Scholar] [CrossRef]
- Lambeth, L.S.; Smith, C.A. Disorders of sexual development in poultry. Sex. Dev. 2012, 6, 96–103. [Google Scholar] [CrossRef]
- Tran, D.; Josso, N. Relationship between avian and mammalian anti-Mulllerian hormones. Biol. Reprod. 1977, 16, 267–273. [Google Scholar] [CrossRef]
- Hutson, J.M.; Ikawa, H.; Donahoe, P.K. Estrogen inhibition of mullerian inhibiting substance in the chick embryo. J. Pediatr. Surg. 1982, 17, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Dohr, G.; Tarmann, T. Contacts between Wolffian and Mullerian cells at the tip of the outgrowing Mullerian duct in rat embryos. Acta Anat. 1984, 120, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, P. The relation of the growing müllerian duct to the wolffian duct and its importance for the genesis of malformations. Anat. Rec. 1941, 81, 1–19. [Google Scholar] [CrossRef]
- Atsuta, Y.; Takahashi, Y. Early formation of the Mullerian duct is regulated by sequential actions of BMP/Pax2 and FGF/Lim1 signaling. Development 2016, 143, 3549–3559. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Park, J.S.; Hayashi, S.; Majumdar, A.; McMahon, A.P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell. 2005, 9, 283–292. [Google Scholar] [CrossRef]
- Chiga, M.; Ohmori, T.; Ohba, T.; Katabuchi, H.; Nishinakamura, R. Preformed Wolffian duct regulates Mullerian duct elongation independently of canonical Wnt signaling or Lhx1 expression. Int. J. Dev. Biol. 2014, 58, 663–668. [Google Scholar] [CrossRef]
- Lefebvre, V.; Smits, P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res. C Embryo Today 2005, 75, 200–212. [Google Scholar] [CrossRef]
- Nishimura, R.; Hata, K.; Ikeda, F.; Ichida, F.; Shimoyama, A.; Matsubara, T.; Wada, M.; Amano, K.; Yoneda, T. Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J. Bone Min. Metab. 2008, 26, 203–212. [Google Scholar] [CrossRef]
- Bridgewater, L.C.; Walker, M.D.; Miller, G.C.; Ellison, T.A.; Holsinger, L.D.; Potter, J.L.; Jackson, T.L.; Chen, R.K.; Winkel, V.L.; Zhang, Z.; et al. Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res. 2003, 31, 1541–1553. [Google Scholar] [CrossRef]
- Takada, S.; Ota, J.; Kansaku, N.; Yamashita, H.; Izumi, T.; Ishikawa, M.; Wada, T.; Kaneda, R.; Choi, Y.L.; Koinuma, K.; et al. Nucleotide sequence and embryonic expression of quail and duck Sox9 genes. Gen. Comp. Endocrinol. 2006, 145, 208–213. [Google Scholar] [CrossRef]
- Kent, J.; Wheatley, S.C.; Andrews, J.E.; Sinclair, A.H.; Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996, 122, 2813–2822. [Google Scholar] [CrossRef] [PubMed]
- Morais da Silva, S.; Hacker, A.; Harley, V.; Goodfellow, P.; Swain, A.; Lovell-Badge, R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 1996, 14, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Vidal, V.P.; Chaboissier, M.C.; de Rooij, D.G.; Schedl, A. Sox9 induces testis development in XX transgenic mice. Nat. Genet. 2001, 28, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Kataoka, K.; Yamamoto, H.; Kato, T.; Hara, S.; Yamaguchi, K.; Renard-Guillet, C.; Katou, Y.; Shirahige, K.; Ochi, H.; et al. Comparative analysis demonstrates cell type-specific conservation of SOX9 targets between mouse and chicken. Sci. Rep. 2019, 9, 12560. [Google Scholar] [CrossRef]
- Smith, C.A.; Smith, M.J.; Sinclair, A.H. Gene expression during gonadogenesis in the chicken embryo. Gene 1999, 234, 395–402. [Google Scholar] [CrossRef]
- Lambeth, L.S.; Morris, K.; Ayers, K.L.; Wise, T.G.; O’Neil, T.; Wilson, S.; Cao, Y.; Sinclair, A.H.; Cutting, A.D.; Doran, T.J.; et al. Overexpression of Anti-Mullerian Hormone Disrupts Gonadal Sex Differentiation, Blocks Sex Hormone Synthesis, and Supports Cell Autonomous Sex Development in the Chicken. Endocrinology 2016, 157, 1258–1275. [Google Scholar] [CrossRef]
- Nakata, T.; Ishiguro, M.; Aduma, N.; Izumi, H.; Kuroiwa, A. Chicken hemogen homolog is involved in the chicken-specific sex-determining mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 3417–3422. [Google Scholar] [CrossRef]
- Yang, L.V.; Nicholson, R.H.; Kaplan, J.; Galy, A.; Li, L. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech. Dev. 2001, 104, 105–111. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, S.; Lian, Z.; Jiang, J.; Gao, X.; Hu, C.; Zuo, Q.; Zhang, Y.; Chen, G.; Jin, K.; et al. Tle4z1 Facilitate the Male Sexual Differentiation of Chicken Embryos. Front. Physiol. 2022, 13, 856980. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, C.; Yuan, X.; Li, J.; Zhang, M.; Shi, X.; Jin, K.; Zhang, Y.; Zuo, Q.; Chen, G.; et al. Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene 2021, 780, 145521. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, P.; Sun, X.; Zhang, C.; Shi, X.; Li, J.; Jiang, J.; Chen, C.; Zhang, Y.; Chen, G.; et al. JUN promotes chicken female differentiation by inhibiting Smad2. Cytotechnology 2021, 73, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Wang, X.; Sun, C.; Zheng, J.; Li, J.; Yi, G.; Yang, N. The m6A methylation regulates gonadal sex differentiation in chicken embryo. J. Anim. Sci. Biotechnol. 2022, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Wang, X.; Jie, Y.; Sun, C.; Zheng, J.; Li, J.; Yang, N.; Chen, S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Govoroun, M.S.; Pannetier, M.; Pailhoux, E.; Cocquet, J.; Brillard, J.P.; Couty, I.; Batellier, F.; Cotinot, C. Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Dev. Dyn. 2004, 231, 859–870. [Google Scholar] [CrossRef]
- Luo, W.; Gu, L.; Li, J.; Gong, Y. Transcriptome sequencing revealed that knocking down FOXL2 affected cell proliferation, the cell cycle, and DNA replication in chicken pre-ovulatory follicle cells. PLoS ONE 2020, 15, e0234795. [Google Scholar] [CrossRef] [PubMed]
- Tworoger, S.S.; Chubak, J.; Aiello, E.J.; Ulrich, C.M.; Atkinson, C.; Potter, J.D.; Yasui, Y.; Stapleton, P.L.; Lampe, J.W.; Farin, F.M.; et al. Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2004, 13, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Szyllo, K.; Romanowicz, H. The Genetic Background of Endometriosis: Can ESR2 and CYP19A1 Genes Be a Potential Risk Factor for Its Development? Int. J. Mol. Sci. 2020, 21, 8235. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; McClive, P.J.; Hudson, Q.; Sinclair, A.H. Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Dev. Biol. 2005, 284, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Andrews, J.E.; Sinclair, A.H. Gonadal sex differentiation in chicken embryos: Expression of estrogen receptor and aromatase genes. J. Steroid Biochem. Mol. Biol. 1997, 60, 295–302. [Google Scholar] [CrossRef]
- Nishikimi, H.; Kansaku, N.; Saito, N.; Usami, M.; Ohno, Y.; Shimada, K. Sex differentiation and mRNA expression of p450c17, p450arom and AMH in gonads of the chicken. Mol. Reprod. Dev. 2000, 55, 20–30. [Google Scholar] [CrossRef]
- Nakabayashi, O.; Kikuchi, H.; Kikuchi, T.; Mizuno, S. Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J. Mol. Endocrinol. 1998, 20, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Zuo, Q.; Song, J.; Zhang, Y.; Chen, G.; Li, B. CYP19A1 (aromatase) dominates female gonadal differentiation in chicken (Gallus gallus) embryos sexual differentiation. Biosci. Rep. 2020, 40, BSR20201576. [Google Scholar] [CrossRef] [PubMed]
- Bentsi-Barnes, I.K.; Kuo, F.T.; Barlow, G.M.; Pisarska, M.D. Human forkhead L2 represses key genes in granulosa cell differentiation including aromatase, P450scc, and cyclin D2. Fertil. Steril. 2010, 94, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Pannetier, M.; Fabre, S.; Batista, F.; Kocer, A.; Renault, L.; Jolivet, G.; Mandon-Pepin, B.; Cotinot, C.; Veitia, R.; Pailhoux, E. FOXL2 activates P450 aromatase gene transcription: Towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol. 2006, 36, 399–413. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, L.; Li, X.; Tang, S.; Zhang, X.; Gong, Y. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network. Gen. Comp. Endocrinol. 2022, 315, 113939. [Google Scholar] [CrossRef]
- Hudson, Q.J.; Smith, C.A.; Sinclair, A.H. Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Dev. Dyn. 2005, 233, 1052–1055. [Google Scholar] [CrossRef]
- Ellis, H.L.; Shioda, K.; Rosenthal, N.F.; Coser, K.R.; Shioda, T. Masculine epigenetic sex marks of the CYP19A1/aromatase promoter in genetically male chicken embryonic gonads are resistant to estrogen-induced phenotypic sex conversion. Biol. Reprod. 2012, 87, 1–12. [Google Scholar] [CrossRef]
- Shioda, K.; Odajima, J.; Kobayashi, M.; Kobayashi, M.; Cordazzo, B.; Isselbacher, K.J.; Shioda, T. Transcriptomic and Epigenetic Preservation of Genetic Sex Identity in Estrogen-feminized Male Chicken Embryonic Gonads. Endocrinology 2021, 162, bqaa208. [Google Scholar] [CrossRef]
- Barske, L.A.; Capel, B. Estrogen represses SOX9 during sex determination in the red-eared slider turtle Trachemys scripta. Dev. Biol. 2010, 341, 305–314. [Google Scholar] [CrossRef]
- Dougherty, D.C.; Sanders, M.M. Estrogen action: Revitalization of the chick oviduct model. Trends Endocrinol. Metab. 2005, 16, 414–419. [Google Scholar] [CrossRef]
- Oka, T.; Schimke, R.T. Interaction of estrogen and progesterone in chick oviduct development. I. Antagonistic effect of progesterone on estrogen-induced proliferation and differentiation of tubular gland cells. J. Cell. Biol. 1969, 41, 816–831. [Google Scholar] [CrossRef] [PubMed]
- Palmiter, R.D.; Wrenn, J.T. Interaction of estrogen and progesterone in chick oviduct development. 3. Tubular gland cell cytodifferentiation. J. Cell. Biol. 1971, 50, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Schimke, R.T. Interaction of estrogen and progesterone in chick oviduct development. II. Effects of estrogen and progesterone on tubular gland cell function. J. Cell. Biol. 1969, 43, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Wartenberg, H.; Lenz, E.; Schweikert, H.U. Sexual differentiation and the germ cell in sex reversed gonads after aromatase inhibition in the chicken embryo. Andrologia 1992, 24, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guioli, S.; Lovell-Badge, R. PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development 2007, 134, 4199–4208. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, A.; Olsson, J.A.; Brunstrom, B. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos. Gen. Comp. Endocrinol. 2011, 172, 251–259. [Google Scholar] [CrossRef]
- Biason-Lauber, A. WNT4, RSPO1, and FOXL2 in sex development. Semin. Reprod. Med. 2012, 30, 387–395. [Google Scholar] [CrossRef]
- Pellegrino, M.; Maiorino, R.; Schonauer, S. WNT4 signaling in female gonadal development. Endocr. Metab. Immune Disord. Drug. Targets 2010, 10, 168–174. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; Konrad, D. WNT4 and sex development. Sex. Dev. 2008, 2, 210–218. [Google Scholar] [CrossRef]
- Liu, C.-F.; Liu, C.; Yao, H.H.C. Building Pathways for Ovary Organogenesis in the Mouse Embryo. In Organogenesis in Development; Academic Press: Cambridge, MA, USA, 2010; pp. 263–290. [Google Scholar]
- Wei, Q.; Yokota, C.; Semenov, M.V.; Doble, B.; Woodgett, J.; He, X. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J. Biol. Chem. 2007, 282, 15903–15911. [Google Scholar] [CrossRef]
- Smith, C.A.; Shoemaker, C.M.; Roeszler, K.N.; Queen, J.; Crews, D.; Sinclair, A.H. Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev. Biol. 2008, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Ayers, K.L.; Sinclair, A.H.; Smith, C.A. The molecular genetics of ovarian differentiation in the avian model. Sex. Dev. 2013, 7, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Mandel, H.; Shemer, R.; Borochowitz, Z.U.; Okopnik, M.; Knopf, C.; Indelman, M.; Drugan, A.; Tiosano, D.; Gershoni-Baruch, R.; Choder, M.; et al. SERKAL syndrome: An autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 2008, 82, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Vainio, S.; Heikkila, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef]
- Mayere, C.; Regard, V.; Perea-Gomez, A.; Bunce, C.; Neirijnck, Y.; Djari, C.; Bellido-Carreras, N.; Sararols, P.; Reeves, R.; Greenaway, S.; et al. Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Sci. Adv. 2022, 8, eabm0972. [Google Scholar] [CrossRef]
- Chassot, A.A.; Ranc, F.; Gregoire, E.P.; Roepers-Gajadien, H.L.; Taketo, M.M.; Camerino, G.; de Rooij, D.G.; Schedl, A.; Chaboissier, M.C. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 2008, 17, 1264–1277. [Google Scholar] [CrossRef]
- Lu, J.; Chuong, C.-M.; Widelitz, R.B. Isolation and characterization of chicken β-catenin. Gene 1997, 196, 201–207. [Google Scholar] [CrossRef]
- Estermann, M.A.; Hirst, C.E.; Major, A.T.; Smith, C.A. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021, 148, dev199646. [Google Scholar] [CrossRef]
- Godwin, J. Social determination of sex in reef fishes. Semin. Cell. Dev. Biol. 2009, 20, 264–270. [Google Scholar] [CrossRef]
- Lamm, M.S.; Liu, H.; Gemmell, N.J.; Godwin, J.R. The Need for Speed: Neuroendocrine Regulation of Socially-controlled Sex Change. Integr. Comp. Biol. 2015, 55, 307–322. [Google Scholar] [CrossRef]
- Liu, H.; Todd, E.V.; Lokman, P.M.; Lamm, M.S.; Godwin, J.R.; Gemmell, N.J. Sexual plasticity: A fishy tale. Mol. Reprod. Dev. 2017, 84, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Warner, R. Mating Behavior and Hermaphroditism in Coral Reef Fishes. Am. Sci. 1970, 72, 128–136. [Google Scholar]
- Warner, R.R.; Swearer, S.E. Social Control of Sex Change in the Bluehead Wrasse, Thalassoma bifasciatum (Pisces: Labridae). Biol. Bull. 1991, 181, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Matsumine, H.; Herbst, M.A.; Ou, S.H.; Wilson, J.D.; McPhaul, M.J. Aromatase mRNA in the extragonadal tissues of chickens with the henny-feathering trait is derived from a distinctive promoter structure that contains a segment of a retroviral long terminal repeat. Functional organization of the Sebright, Leghorn, and Campine aromatase genes. J. Biol. Chem. 1991, 266, 19900–19907. [Google Scholar] [CrossRef] [PubMed]
- Balthazart, J.; Cornil, C.A.; Charlier, T.D.; Taziaux, M.; Ball, G.F. Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail. J. Exp. Zool. A Ecol. Genet. Physiol. 2009, 311, 323–345. [Google Scholar] [CrossRef]
- Pieau, C. Temperature variation and sex determination in reptiles. BioEssays 1996, 18, 19–26. [Google Scholar] [CrossRef]
- Jost, A. Hormonal factors in the sex differentiation of the mammalian foetus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1970, 259, 119–130. [Google Scholar] [CrossRef]
- Hu, M.C.; Hsu, N.C.; El Hadj, N.B.; Pai, C.I.; Chu, H.P.; Wang, C.K.; Chung, B.C. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 2002, 16, 1943–1950. [Google Scholar] [CrossRef]
- Wolf, U. Reorganization of the sex-determining pathway with the evolution of placentation. Hum. Genet. 1999, 105, 288–292. [Google Scholar] [CrossRef]
- Maraud, R.; Rashedi, M.; Stoll, R. Influence of a temporary embryonic testis graft on the regression of Müllerian ducts in female chick embryo. Development 1982, 67, 81–87. [Google Scholar] [CrossRef]
- Maraud, R.; Vergnaud, O.; Rashedi, M. New insights on the mechanism of testis differentiation from the morphogenesis of experimentally induced testes in genetically female chick embryos. Am. J. Anat. 1990, 188, 429–437. [Google Scholar] [CrossRef]
- Halldin, K.; Berg, C.; Brandt, I.; Brunstrom, B. Sexual behavior in Japanese quail as a test end point for endocrine disruption: Effects of in ovo exposure to ethinylestradiol and diethylstilbestrol. Env. Health Perspect. 1999, 107, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Widelitz, R.B.; Lin, G.W.; Lai, Y.C.; Mayer, J.A.; Tang, P.C.; Cheng, H.C.; Jiang, T.X.; Chen, C.F.; Chuong, C.M. Morpho-regulation in diverse chicken feather formation: Integrating branching modules and sex hormone-dependent morpho-regulatory modules. Dev. Growth Differ. 2019, 61, 124–138. [Google Scholar] [CrossRef]
- Ellem, S.J.; Risbridger, G.P. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J. Steroid Biochem. Mol. Biol. 2010, 118, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.R.; Bulun, S.E. Estrogen production and action. J. Am. Acad. Derm. 2001, 45, S116–S124. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E.; Lin, Z.; Imir, G.; Amin, S.; Demura, M.; Yilmaz, B.; Martin, R.; Utsunomiya, H.; Thung, S.; Gurates, B.; et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: From bench to treatment. Pharm. Rev. 2005, 57, 359–383. [Google Scholar] [CrossRef]
- Hirst, C.E.; Major, A.T.; Ayers, K.L.; Brown, R.J.; Mariette, M.; Sackton, T.B.; Smith, C.A. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds. Endocrinology 2017, 158, 2970–2987. [Google Scholar] [CrossRef]
- Testaz, S.; Duband, J.L. Central role of the alpha4beta1 integrin in the coordination of avian truncal neural crest cell adhesion, migration, and survival. Dev. Dyn. 2001, 222, 127–140. [Google Scholar] [CrossRef]
- Cutting, A.D.; Ayers, K.; Davidson, N.; Oshlack, A.; Doran, T.; Sinclair, A.H.; Tizard, M.; Smith, C.A. Identification, expression, and regulation of anti-Mullerian hormone type-II receptor in the embryonic chicken gonad. Biol. Reprod. 2014, 90, 106. [Google Scholar] [CrossRef]
- Burke, W.H.; Henry, M.H. Gonadal development and growth of chickens and turkeys hatched from eggs injected with an aromatase inhibitor. Poult. Sci. 1999, 78, 1019–1033. [Google Scholar] [CrossRef]
- Estermann, M.A.; Smith, C.A. Fadrozole-mediated sex reversal in the embryonic chicken gonad involves a PAX2 positive undifferentiated supporting cell state. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zheng, J.; Na, R.; Li, J.; Xu, G.; Qu, L.; Yang, N. Degree of sex differentiation of genetic female chicken treated with different doses of an aromatase inhibitor. Sex. Dev. 2008, 2, 309–315. [Google Scholar] [CrossRef]
- Sechman, A.; Rzasa, J.; Paczoska-Eliasiewicz, H. Effect of non-steroidal aromatase inhibitor on blood plasma ovarian steroid and thyroid hormones in laying hen (Gallus domesticus). J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 333–338. [Google Scholar] [CrossRef]
- Mohammadrezaei, M.; Toghyani, M.; Gheisari, A.; Toghyani, M.; Eghbalsaied, S. Synergistic effect of fadrozole and insulin-like growth factor-I on female-to-male sex reversal and body weight of broiler chicks. PLoS ONE 2014, 9, e103570. [Google Scholar] [CrossRef]
- Abinawanto; Zhang, C.; Saito, N.; Matsuda, Y.; Shimada, K. Identification of sperm-bearing female-specific chromosome in the sex-reversed chicken. J. Exp. Zool. 1998, 280, 65–72. [Google Scholar] [CrossRef]
- Vaillant, S.; Guemene, D.; Dorizzi, M.; Pieau, C.; Richard-Mercier, N.; Brillard, J.P. Degree of sex reversal as related to plasma steroid levels in genetic female chickens (Gallus domesticus) treated with Fadrozole. Mol. Reprod. Dev. 2003, 65, 420–428. [Google Scholar] [CrossRef]
- Takagi, S.; Tsukada, A.; Saito, N.; Shimada, K. Fertilizing ability of chicken sperm bearing the W chromosome. Poult. Sci. 2007, 86, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Brunstrom, B.; Axelsson, J.; Mattsson, A.; Halldin, K. Effects of estrogens on sex differentiation in Japanese quail and chicken. Gen. Comp. Endocrinol. 2009, 163, 97–103. [Google Scholar] [CrossRef]
- Scholz, B.; Kultima, K.; Mattsson, A.; Axelsson, J.; Brunstrom, B.; Halldin, K.; Stigson, M.; Dencker, L. Sex-dependent gene expression in early brain development of chicken embryos. BMC Neurosci. 2006, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Ayers, K.L.; Davidson, N.M.; Demiyah, D.; Roeszler, K.N.; Grutzner, F.; Sinclair, A.H.; Oshlack, A.; Smith, C.A. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 2013, 14, R26. [Google Scholar] [CrossRef]
- Morris, K.R.; Hirst, C.E.; Major, A.T.; Ezaz, T.; Ford, M.; Bibby, S.; Doran, T.J.; Smith, C.A. Gonadal and Endocrine Analysis of a Gynandromorphic Chicken. Endocrinology 2018, 159, 3492–3502. [Google Scholar] [CrossRef]
- Briganti, F.; Papeschi, A.; Mugnai, T.; Dessì-Fulgheri, F. Effect of testosterone on male traits and behaviour in juvenile pheasants. Ethol. Ecol. Evol. 1999, 11, 171–178. [Google Scholar] [CrossRef]
- Fennell, M.J.; Scanes, C.G. Inhibition of growth in chickens by testosterone, 5 alpha-dihydrotestosterone, and 19-nortestosterone. Poult. Sci. 1992, 71, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, K.Y.; Han, J.Y. Precise Genome Editing in Poultry and Its Application to Industries. Genes 2020, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Rehault-Godbert, S.; Van de Braak, T.G.H.; Dunn, I.C. Review: What are the challenges facing the table egg industry in the next decades and what can be done to address them? Animal 2021, 15 (Suppl. 1), 100282. [Google Scholar] [CrossRef] [PubMed]
- Salgado Pardo, J.I.; Navas Gonzalez, F.J.; Gonzalez Ariza, A.; Arando Arbulu, A.; Leon Jurado, J.M.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Traditional sexing methods and external egg characteristics combination allow highly accurate early sex determination in an endangered native turkey breed. Front. Vet. Sci. 2022, 9, 948502. [Google Scholar] [CrossRef]
- Raj, M. Welfare during stunning and slaughter of poultry. Poult. Sci. 1998, 77, 1815–1819. [Google Scholar] [CrossRef]
- Dwinger, R.; Lambooij, B. A brief summary of European legislation regarding animal welfare. Berl. Und Munch. Tierarztl. Wochenschr. 2012, 125, 297–304. [Google Scholar]
- Xi, J.F.; Wang, X.Z.; Zhang, Y.S.; Jia, B.; Li, C.C.; Wang, X.H.; Ying, R.W. Sex control by Zfy siRNA in the dairy cattle. Anim. Reprod. Sci. 2019, 200, 1–6. [Google Scholar] [CrossRef]
- Espinosa-Cervantes, R.; Cordova-Izquierdo, A. Sexing sperm of domestic animals. Trop. Anim. Health Prod. 2013, 45, 1–8. [Google Scholar] [CrossRef]
- Xiang, X.; Yu, Z.; Liu, Y.; Huang, Y.; Wang, J.; Chen, L.; Ma, M. Differential proteomics between unhatched male and female egg yolks reveal the molecular mechanisms of sex-allocation and sex-determination in chicken. Poult. Sci. 2022, 101, 101906. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.E. Determining the health benefits of poultry industry compliance measures: The case of campylobacteriosis regulation in New Zealand. New. Zealand Med. J. 2014, 127, 22–37. [Google Scholar] [PubMed]
- Gibson, T.J.; Jackson, E.L. The economics of animal welfare. Rev. Sci. Tech. (Int. Off. Epizoot.) 2017, 36, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Montalcini, C.M.; Voelkl, B.; Gomez, Y.; Gantner, M.; Toscano, M.J. Evaluation of an Active LF Tracking System and Data Processing Methods for Livestock Precision Farming in the Poultry Sector. Sensors 2022, 22, 659. [Google Scholar] [CrossRef]
- Muir, W.M.; Cheng, H.W.; Croney, C. Methods to address poultry robustness and welfare issues through breeding and associated ethical considerations. Front. Genet. 2014, 5, 407. [Google Scholar] [CrossRef]
- Siqueira, T.S.; Borges, T.D.; Rocha, R.M.M.; Figueira, P.T.; Luciano, F.B.; Macedo, R.E.F. Effect of electrical stunning frequency and current waveform in poultry welfare and meat quality. Poult. Sci. 2017, 96, 2956–2964. [Google Scholar] [CrossRef]
- Bonafos, L.; Simonin, D.; Gavinelli, A. Animal welfare: European legislation and future perspectives. J. Vet. Med. Educ. 2010, 37, 26–29. [Google Scholar] [CrossRef]
- Ni, J.Q.; Erasmus, M.A.; Croney, C.C.; Li, C.; Li, Y. A critical review of advancement in scientific research on food animal welfare-related air pollution. J. Hazard. Mater. 2021, 408, 124468. [Google Scholar] [CrossRef]
- Eide, A.L.; Glover, J.C. Development of the longitudinal projection patterns of lumbar primary sensory afferents in the chicken embryo. J. Comp. Neurol. 1995, 353, 247–259. [Google Scholar] [CrossRef]
- Eide, A.L.; Glover, J.C. Developmental dynamics of functionally specific primary sensory afferent projections in the chicken embryo. Anat. Embryol. 1997, 195, 237–250. [Google Scholar] [CrossRef]
- Gohler, D.; Fischer, B.; Meissner, S. In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): A non-destructive method for layer lines with gender-specific down feather color. Poult. Sci. 2017, 96, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Bartels, T.; Stelling, A.; Krautwald-Junghanns, M.E.; Fuhrmann, H.; Sablinskas, V.; Koch, E. Gender determination of fertilized unincubated chicken eggs by infrared spectroscopic imaging. Anal. Bioanal. Chem. 2011, 400, 2775–2782. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.J.; Soini, H.A.; Gerlach, N.M.; Posto, A.L.; Novotny, M.V.; Ketterson, E.D. Role of testosterone in stimulating seasonal changes in a potential avian chemosignal. J. Chem. Ecol. 2011, 37, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Dodo, K.; Fujita, K.; Sodeoka, M. Raman Spectroscopy for Chemical Biology Research. J. Am. Chem. Soc. 2022, 144, 19651–19667. [Google Scholar] [CrossRef] [PubMed]
- Auner, G.W.; Koya, S.K.; Huang, C.; Broadbent, B.; Trexler, M.; Auner, Z.; Elias, A.; Mehne, K.C.; Brusatori, M.A. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018, 37, 691–717. [Google Scholar] [CrossRef]
- Faur, C.I.; Falamas, A.; Chirila, M.; Roman, R.C.; Rotaru, H.; Moldovan, M.A.; Albu, S.; Baciut, M.; Robu, I.; Hedesiu, M. Raman spectroscopy in oral cavity and oropharyngeal cancer: A systematic review. Int. J. Oral. Maxillofac. Surg. 2022, 51, 1373–1381. [Google Scholar] [CrossRef]
- Harz, M.; Krause, M.; Bartels, T.; Cramer, K.; Rosch, P.; Popp, J. Minimal invasive gender determination of birds by means of UV-resonance Raman spectroscopy. Anal. Chem. 2008, 80, 1080–1086. [Google Scholar] [CrossRef]
- Galli, R.; Preusse, G.; Uckermann, O.; Bartels, T.; Krautwald-Junghanns, M.E.; Koch, E.; Steiner, G. In Ovo Sexing of Domestic Chicken Eggs by Raman Spectroscopy. Anal. Chem. 2016, 88, 8657–8663. [Google Scholar] [CrossRef]
- Fang, Q.; Papaioannou, T.; Jo, J.A.; Vaitha, R.; Shastry, K.; Marcu, L. Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics. Rev. Sci. Instrum. 2004, 75, 151–162. [Google Scholar] [CrossRef]
- Perez Rubio, A.; Eiros, J.M. Cell culture-derived flu vaccine: Present and future. Hum. Vaccines Immunother. 2018, 14, 1874–1882. [Google Scholar] [CrossRef]
- Gouma, S.; Anderson, E.M.; Hensley, S.E. Challenges of Making Effective Influenza Vaccines. Annu. Rev. Virol. 2020, 7, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Quansah, E.S.; Urwin, N.A.R.; Strappe, P.; Raidal, S. Progress towards generation of transgenic lines of chicken with a green fluorescent protein gene in the female specific (w) chromosome by sperm-mediated gene transfer. Adv. Genet. Eng. 2013, 2, 29. [Google Scholar]
- Bruijnis, M.R.N.; Blok, V.; Stassen, E.N.; Gremmen, H.G.J. Moral “Lock-In” in Responsible Innovation: The Ethical and Social Aspects of Killing Day-Old Chicks and Its Alternatives. J. Agr. Env. Ethics 2015, 28, 939–960. [Google Scholar] [CrossRef]
- DuRant, S.E.; Hopkins, W.A.; Carter, A.W.; Kirkpatrick, L.T.; Navara, K.J.; Hawley, D.M. Incubation temperature causes skewed sex ratios in a precocial bird. J. Exp. Biol. 2016, 219, 1961–1964. [Google Scholar] [CrossRef] [PubMed]
- Goerlich-Jansson, V.C.; Muller, M.S.; Groothuis, T.G. Manipulation of primary sex ratio in birds: Lessons from the homing pigeon (Columba livia domestica). Integr. Comp. Biol. 2013, 53, 902–912. [Google Scholar] [CrossRef]
- Kuroki, S.; Tachibana, M. Epigenetic regulation of mammalian sex determination. Mol. Cell. Endocrinol. 2018, 468, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Ridnik, M.; Schoenfelder, S.; Gonen, N. Cis-Regulatory Control of Mammalian Sex Determination. Sex. Dev. 2021, 15, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B.D.; Sun, Z.W.; Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C.P.; Allis, C.D.; et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406, 593–599. [Google Scholar] [CrossRef]
- Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 2005, 6, 838–849. [Google Scholar] [CrossRef]
- Nishino, K.; Hattori, N.; Tanaka, S.; Shiota, K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J. Biol. Chem. 2004, 279, 22306–22313. [Google Scholar] [CrossRef]
- Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing chromosome conformation. Science 2002, 295, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.M.; Fagan, A.J.; Mullin, J.M.; McNaught, I.; McLean, J.; Condon, B. Noninvasive monitoring of chick development in ovo using a 7T MRI system from day 12 of incubation through to hatching. J. Magn. Reson. Imaging 2007, 26, 198–201. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, J.; Chen, S.; Yang, N.; Zheng, J. Overview of Avian Sex Reversal. Int. J. Mol. Sci. 2023, 24, 8284. https://doi.org/10.3390/ijms24098284
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. International Journal of Molecular Sciences. 2023; 24(9):8284. https://doi.org/10.3390/ijms24098284
Chicago/Turabian StyleZhang, Xiuan, Jianbo Li, Sirui Chen, Ning Yang, and Jiangxia Zheng. 2023. "Overview of Avian Sex Reversal" International Journal of Molecular Sciences 24, no. 9: 8284. https://doi.org/10.3390/ijms24098284
APA StyleZhang, X., Li, J., Chen, S., Yang, N., & Zheng, J. (2023). Overview of Avian Sex Reversal. International Journal of Molecular Sciences, 24(9), 8284. https://doi.org/10.3390/ijms24098284