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Abstract: The aim of this case-control replicative study was to investigate the link between GWAS-
impact for arterial hypertension (AH) and/or blood pressure (BP) gene polymorphisms and AH risk
in Russian subjects (Caucasian population of Central Russia). AH (n = 939) and control (n = 466)
cohorts were examined for ten GWAS AH/BP risk loci. The genotypes/alleles of these SNP and
their combinations (SNP–SNP interactions) were tested for their association with the AH devel-
opment using a logistic regression statistical procedure. The genotype GG of the SNP rs1799945
(C/G) HFE was strongly linked with an increased AH risk (ORrecGG = 2.53; 95%CIrecGG1.03–6.23;
ppermGG = 0.045). The seven SNPs such as rs1173771 (G/A) AC026703.1, rs1799945 (C/G) HFE,
rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287 (C/A) OBFC1, rs7302981 (G/A) CERS5,
rs167479 (T/G) RGL3, out of ten regarded loci, were related with AH within eight SNP–SNP interac-
tion models (<0.001 ≤ pperm-interaction ≤ 0.047). Three polymorphisms such as rs8068318 (T/C)
TBX2, rs633185 (C/G) ARHGAP42, and rs2681472 (A/G) ATP2B1 were not linked with AH. The pair-
wise rs805303 (G/A) BAG6–rs7302981 (G/A) CERS5 combination was a priority in determining the
susceptibility to AH (included in six out of eight SNP–SNP interaction models [75%] and described
0.82% AH entropy). AH-associated variants are conjecturally functional for 101 genes involved
in processes related to the immune system (major histocompatibility complex protein, process-
ing/presentation of antigens, immune system process regulation, etc.). In conclusion, the rs1799945
polymorphism of the HFE gene and intergenic interactions of BAG6, CERS5, AC026703.1, HFE, PLCE1,
OBFC1, RGL3 have been linked with AH risky in the Caucasian population of Central Russia.

Keywords: hypertension/blood pressure genes; arterial hypertension; SNP; association

1. Introduction

Arterial (essential) hypertension (AH) is known as a disorder with high blood pressure
(BP) [1]. AH is one of the most frequent diseases in the world—in 2015, AH was registered
in 1.13 billion people [2]. AH appeared in 30–45% adults, with a predominant prevalence
(>60%) in individuals aged >60 years [3]. AH is a serious risk factor for the manifestation
of coronary heart disease, stroke, chronic kidney disease and dementia [4]. The risk of
coronary heart disease and stroke doubles with an increase in systolic BP (SBP) for every
20 mmHg (starting from 115 mmHg) and diastolic BP (DBP) for every 10 mm Hg (starting
from 75 mm Hg) [5]. The largest quantity of SBP-related deaths is caused by coronary heart
disease, hemorrhagic and ischemic stroke [6].

The role of hereditary determinants in the formation of BP indicators is highly im-
portant and is beyond doubt [7–13]. The materials gained in the twin/family studies
reveal a weighty heredity influence on the BP level, which according to different authors,
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varies on average within 30–55% [12]. In accordance with the catalog of genome-wide
studies, GWAS (https://www.ebi.ac.uk/gwas/search?query=hypertension (accessed on
10 September 2022)), there is information on 118 performed GWAS, as a result of which
586 polymorphisms associated with AH were identified (the information is relevant at
the end of 2022). If we also take into account the data obtained in full-exome studies
(EAWAS), the number of AH-involved polymorphic loci will exceed 1000 [10]. According
to Padmanabhan et al. (2021), at the moment, there is publication information of about
1.5 thousand GWAS SNPs linked with various BP phenotypes (systolic/diastolic/mean/pulse
BP) [13]. Considering the accessible data on “ordinary” associative studies of AH from the
positions of diverse candidate genes [14–23], the amount of AH-associated polymorphisms
can reach several thousand.

With this mega-large-scale amount of genetic information available to research teams
dealing with the problem of the hereditary nature of AH, it is very problematic to give
an answer to the question, “what are the specific polymorphisms/genes from the cur-
rently known more than several thousand such polymorphisms/genes (of which more
than 1.5 thousand GWAS/EAWAS-significant), determine the susceptibility to AH in the
population of this region (including residents of Central Russia)?”, since not everyone,
even GWAS/EAWAS-significant polymorphism, will determine the susceptibility to AH
in the study population. In this regard, replication studies are becoming particularly
relevant [24–28], aimed at confirming (or, conversely, refuting) the role of GWAS gene
polymorphism in the AH formation in residents of a particular territory having their own
characteristics of the genetic “constitution”, the action of environmental factors, intergenic
and gene–environmental relationships, etc., predetermining and features of the candidate
genes involvement in the disease (AH) formation.

This case-control replication study estimated AH risk linked with GWAS impact loci
in genes correlated with AH/BP in Caucasian populations of Central Russia.

2. Results

The distribution of genotypes in both AH (p ≥ 0.098) and control (p ≥ 0.251) groups
were in compliance with H-We (Table S1). The genotype GG of the SNP rs1799945 (C/G)
HFE was strongly linked with an increased AH risk in both Model 1 (ORrecGG = 2.53;
95%CIrecGG1.03–6.23; precGG=0.043; ppermGG = 0.045; power = 89.65%) and Model 2
(ORrecGG = 2.48; 95%CIrecGG1.02–6.07; precGG = 0.045; ppermGG = 0.046; power = 88.37%)
(Table 1). The high identical results on the relationship of rs1799945 (C/G) HFE with AH,
obtained by us in both Model 1 (covariates list included in the analysis were the following:
BMI; TG; TC; HDL-C; LDL-C; blood glucose; smokers) and Model 2 (in addition to the
covariates of Model 1, two more factors such as low physical activity and consumption of
fatty food with a high fat content were included in the analysis as confounders), may be
due to the fact that the AH-impact phenotypic effects of these two additional covariates
included in Model 2 have already been taken into account in the AH-significant phenotypic
effects of the covariates of Model 1. Like this, BMI and lipid status indicators (TC; TG;
LDL-C; HDL-C) (covariates of Model 1) are strongly correlated with the level of fatty food
intake (additional covariate of Model 2), and the BMI parameter (covariate of Model 1) will
be significantly linked with the level of physical activity (additional covariate of Model 2).
These results allow us to use only a list of Model 1 covariates when studying the intergenic
interactions that determine susceptibility to AH (the next stage of our study).

Alongside this, seven SNPs, such as rs1173771 (G/A) AC026703.1, rs1799945 (C/G)
HFE,rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287 (C/A) OBFC1, rs7302981
(G/A) CERS5, rs167479 (T/G) RGL3, out of ten regarded loci were related with AH within
eight SNP–SNP interaction models (two-(pperm-interaction ≤ 0.047), three-(pperm-interaction ≤ 0.006),
and four-(pperm-interaction ≤ 0.001) level (SNP) models were considered, and two, three and
three models, respectively, were significant) (Table 2). Three polymorphisms such as
rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42, and rs2681472 (A/G) ATP2B1 were
not linked with AH.

https://www.ebi.ac.uk/gwas/search?query=hypertension
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Table 1. Associations of the studied gene polymorphisms with AH.

Gene (SNP, Major/Minor Alleles) n
Allelic Model Additive Model Dominant Model Recessive Model

OR
95% CI p OR

95% CI p OR
95% CI p OR

95% CI p
L95 U95 L95 U95 L95 U95 L95 U95

Model 1

AC026703.1 (rs1173771,G/A) 1317 0.90 0.77 1.06 0.216 0.89 0.69 1.14 0.354 0.75 0.51 1.10 0.140 1.03 0.65 1.62 0.905
HFE (rs1799945,C/G) 1373 0.94 0.77 1.15 0.550 1.04 0.78 1.40 0.781 0.90 0.63 1.28 0.559 2.53 1.03 6.23 0.043
BAG6 (rs805303,G/A) 1349 0.97 0.82 1.14 0.683 0.87 0.68 1.11 0.264 0.95 0.67 1.34 0.750 0.65 0.40 1.04 0.075
PLCE1 (rs932764,A/G) 1319 0.87 0.74 1.02 0.094 0.81 0.63 1.04 0.096 0.65 0.43 1.02 0.056 0.88 0.58 1.32 0.525

OBFC1 (rs4387287,C/A) 1260 0.90 0.67 1.22 0.550 0.90 0.65 1.25 0.542 0.90 0.61 1.33 0.605 0.79 0.31 1.99 0.611
ARHGAP42 (rs633185,C/G) 1377 1.02 0.85 1.22 0.813 1.09 0.84 1.42 0.525 1.08 0.76 1.52 0.673 1.25 0.68 2.32 0.472

CERS5 (rs7302981,G/A) 1302 1.03 0.87 1.22 0.711 0.94 0.73 1.21 0.615 1.03 0.71 1.48 0.882 0.76 0.47 1.22 0.249
ATP2B1 (rs2681472,A/G) 1329 1.04 0.82 1.31 0.762 1.17 0.82 1.67 0.384 1.17 0.79 1.74 0.437 1.51 0.41 5.50 0.532

TBX2 (rs8068318,T/C) 1292 1.10 0.92 1.33 0.297 1.14 0.86 1.52 0.356 1.17 0.82 1.66 0.398 1.25 0.61 2.55 0.541
RGL3 (rs167479,T/G) 1333 0.93 0.79 1.09 0.367 0.82 0.64 1.05 0.110 0.86 0.57 1.29 0.460 0.69 0.47 1.02 0.061

Model 2

AC026703.1 (rs1173771,G/A) 0.89 0.69 1.15 0.374 0.76 0.51 1.11 0.153 1.03 0.65 1.64 0.893
HFE (rs1799945,C/G) 1.01 0.75 1.36 0.946 0.87 0.61 1.25 0.465 2.48 1.02 6.07 0.045
BAG6 (rs805303,G/A) 0.89 0.69 1.14 0.343 0.98 0.69 1.39 0.906 0.65 0.40 1.06 0.085
PLCE1 (rs932764,A/G) 0.81 0.63 1.04 0.093 0.64 0.42 1.02 0.054 0.88 0.58 1.33 0.535

OBFC1 (rs4387287,C/A) 0.88 0.63 1.22 0.448 0.87 0.59 1.29 0.490 0.78 0.30 2.01 0.608
ARHGAP42 (rs633185,C/G) 1.11 0.85 1.44 0.455 1.01 0.78 1.56 0.592 1.28 0.69 2.36 0.441

CERS5 (rs7302981,G/A) 0.93 0.72 1.21 0.600 1.01 0.70 1.46 0.948 0.76 0.47 1.24 0.275
ATP2B1 (rs2681472,A/G) 1.15 0.80 1.66 0.451 1.17 0.78 1.76 0.448 1.20 0.32 4.52 0.792

TBX2 (rs8068318,T/C) 1.15 0.86 1.54 0.348 1.17 0.84 1.72 0.324 1.14 0.55 2.36 0.716
RGL3 (rs167479,T/G) 0.80 0.63 1.03 0.078 0.81 0.54 1.22 0.320 0.68 0.46 1.01 0.057

Note: For Model 2, calculations of the allelic model were not performed because their results are identical to those of Model 1 (covariates are not used when calculating the allelic model).
All results were obtained after adjustment for covariates. List covariates for Model 1: BMI, TC, TG, LDL-C, HDL-C, blood glucose, smokers. List covariates for Model 2: BMI, TC, TG,
LDL-C, HDL-C, blood glucose, smokers, low physical activity, high fatty foods consumption. OR—odds ratio; 95% CI—95% confidence interval; pperm values ≤ 0.05 are shown in bold.
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Table 2. SNP × SNP interactions significantly associated with AH.

N SNP × SNP Interaction Models NH betaH WH NL betaL WL pperm

Two-order interaction models

1 rs7302981 CERS5 × rs805303 BAG6 2 0.372 8.02 3 −0.433 9.26 0.037
2 rs805303 BAG6 × rs1173771 AC026703.1 1 1.318 7.99 2 −0.498 9.44 0.047

Three-order interaction models

1 rs932764 PLCE1 × rs7302981 CERS5 × rs805303 BAG6 1 0.766 3.74 2 −0.799 22.25 0.001
2 rs932764 PLCE1 × rs805303 BAG6 × rs4387287 OBFC1 2 0.861 14.33 5 −0.668 20.70 0.006
3 rs7302981 CERS5 × rs805303 BAG6 × rs1173771 AC026703.1 3 0.575 11.10 3 −1.085 20.18 0.006

Four-order interaction models

1 rs7302981 CERS5 × rs805303 BAG6 × rs1173771 AC026703.1 × rs167479 RGL3 1 0.659 6.64 10 −1.089 47.36 <0.001
2 rs7302981 CERS5 × rs1799945 HFE × rs805303 BAG6 × rs167479 RGL3 2 0.682 10.03 9 −1.085 43.66 <0.001
3 rs932764 PLCE1 × rs7302981 CERS5 × rs805303 BAG6 × rs167479 RGL3 3 0.895 11.66 6 −1.081 38.10 0.001

Note: The results were obtained using the MB-MDR method with adjustment for covariates (Model 1); NH—number of significant high risk genotypes in the interaction; betaH—regression
coefficient for high risk exposition in the step2 analysis; WH—Wald statistic for high risk category; NL—number of significant low- risk genotypes in the interaction; betaL—regression
coefficient for low risk exposition in the step2 analysis; WL—Wald statistic for low risk category; pperm—permutation p value for the interaction model (1.000 permutations).
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Importantly, firstly, two loci such as rs805303 (G/A) BAG6 and rs7302981 (G/A)
CERS5 were engaged in the maximum number (eight (100%) and six (75%), respectively)
of AH-involved intergenic interactions models (Table 2). The pairwise SNP–SNP com-
bination between rs805303 (G/A) BAG6 and rs7302981 (G/A) CERS5 has been priority
in determining the susceptibility to AH (included in six out eight SNP–SNP interaction
models (75%) (Table 2) and described 0.82% AH entropy (Figure 1)) in comparison with
both individual loci (only 0.02–0.36% of entropy is determined (Figure 1)) and other loci
interactions (defining less than 0.48% of entropy) (Figure 1).
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denotes the independent effect, and green and blue colors denote moderate and strong antagonism.

Secondly, four-SNP models such as rs7302981 (G/A) CERS5 × rs805303 (G/A) BAG6
× rs1173771 (G/A) AC026703.1 × rs167479 (T/G) RGL3 have the highest Wald indicators
(47.36, pperm-interaction < 0.001), which “show” its leading value in predisposition to AH
(Table 2). Thirdly, thirty-six AH-involved genotype combinations were modeled (Table S2),
among which the largest effect (the biggest values (+/−) of the regression coefficient beta)
has several up-susceptibility and down-susceptibility combinations such as rs7302981-AA
CERS5 × rs805303-GG BAG6 × rs1173771-AA AC026703.1 (beta = 2.34 p = 0.034), rs7302981-
GA CERS5 × rs805303-GG BAG6×rs1173771-AA AC026703.1 (beta = 2.38 p = 0.022) and
rs7302981-GG CERS5 × rs805303-AA BAG6 × rs1173771-GG AC026703.1 × rs167479-GG
RGL3 (beta = −2.70 p = 0.021), rs7302981-GG CERS5 × rs1799945-CC HFE × rs805303-GG
BAG6 × rs167479-GG RGL3 (beta = −2.15 p = 0.050).
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2.1. Functional Annotation of AH-Associated SNPs
2.1.1. Non-Synonymous and Epigenetic-Significant Loci

There have been four missense SNPs presented (rs7302981 (G/A), rs1799945 (C/G),
rs167479 (T/G) and rs1046089 (G/A)) among 88 examined polymorphic genetic vari-
ants (7 AH-associated loci and 81 linked with them) leading to amino acid (AA) per-
mutations (Cysteine9Arginine, Histidine63Aspartic acid, Proline162Histidine and Argi-
nine1740Histidine respectively) in 4 AH-causal proteins (CERS5, HFE, RGL3 and PRRC2A)
(Table S3). These AA substitutions are characterized by SIFT “deleterious” (Proline162Histidine,
Arginine1740Histidine), “tolerated” (Cysteine9Arginine, Histidine63Aspartic acid) pre-
dictive parameters, “probably damaging” (Histidine63Aspartic acid, Proline162Histidine,
Arginine1740Histidine), and “benign” (Cysteine9Arginine) PolyPhen predictive parameters
(Table S3).

Among eighty-eight possible AH loci, 11.36% of SNPs (n = 10) were located in
conservative nucleotide DNA sequences, 56.81% (n = 50) were placed in introns, 5.68%
(n = 5) were localized in five gene exons such as COX14/LASS5, PRRC2A, HFE, RGL (non-
synonymous variants), GPD1 (synonymous variant), and 4.55% (n = 4) were disposed in
3′-UTR (COX14/LASS5) and 5′-UTR (OBFC1) gene regions (Table S4). The bioinformatics
data depict the presence of analyzed loci in the places of the supposed enhancers (n = 39;
44.32%) and promoters (n = 17; 19.32%), DNA-ase hypersensitive sites (DHsites) (n = 31;
32.33%), the probable areas of binding to transcription factors (TrF) (n = 74; 84.91%) and
regulatory proteins (n = 16; 18.18%) (Table S4). In general, 88 possible polymorphic AH
loci can potentially participate in the epigenetic regulation of the activity of 22 adjacent
genes such as RP11-411N4.1, RGL3, PRRC2A, PLCE1, OBFC1, HFE, NPR3, GPD1, LY6G5B,
GPD1, LIMA1, CSNK2B, HIST1H1T, COX14, HIST1H4C, CERS5, HIST1H2BC, AC026703.1,
LASS5, C12orf62, BAG6, HIST1H2AC) (Table S4). A weighty number of AH-involved loci
exhibit their epigenetic effects in AH target organs, such as the adult/fetal heart, aorta.
For instance, in the conjectural promoter/enhancer gene regions in the fetal heart, there
are loci rs4387287 (C/A) OBFC1 and rs7302981 (G/A) CERS5 in the right atrium, for left
ventricles and aorta, rs4387287 (C/A) OBFC1, and for the right ventricle, rs1173771 (G/A)
AC026703.1, rs805303 (G/A) BAG6, rs4387287 (C/A) OBFC1, rs7302981 (G/A) CERS5.

The largest number of strongly coupled loci (n = 34), including polymorphisms with
any regulatory effects (n = 32), has been registered for our locus rs7302981 (G/A) CERS5
(Table S4). Two of these loci such as rs78594839 and rs10538142 were located in the DNA
regions that interacted with the largest number of TrF (11 each) such as Cart1, Dbx1, Evi-1,
Foxp1, HDAC2, HNF1, Hoxa10, Hoxa5, Hoxb13, Sox, Zfp105 and Fox, Foxa, Foxd3, Foxf1,
Foxi1, Foxj1, Foxj2, Foxp1, Foxq1, Sox, Zfp105. Three-fourths of all polymorphic loci
strongly linked to rs7302981 (G/A) CERS5 (26 of 34, 76.47%) were functionally significant
(located in the DNA positions of the presumable promoters/enhancers/DHsites) in the AH
target organs (adult/fetal heart, aorta). According to the information on chromatin states
(HaploReg data based on 25-state model using 12 imputed marks), several polymorphic
loci such as rs836179, rs836180, rs7967705 have the strongly pronounced epigenetic impact
in all examined AH target organs (fetal heart, right atrium, left and right ventricles, aorta
of adult).

2.1.2. Plausible Gene Expression (eQTL) and Splicing (sQTL) Regulatory Potential of
AH-Involved SNPs

The four AH-associated loci, such as rs7302981, rs4387287, rs805303, rs1799945, inde-
pendently and due to strongly linked loci (33 SNPs out of 81 strongly linked loci were cis-
and trans-eQTL significant, 40.74%) determine the expression of nine genes in human blood
(peripheral) (LY6G5C, AIF1, LIMA1, HCP5, SLK, HSPA1B, LASS5, TRIM38, and ALAS2)
(blood eQTL browser materials are presented in Tables S5 and S6).

At that, strongly pronounced gene expression was found with regulatory potential of
all 7 AH-correlated loci and 74 coupled SNP (91.36% among all 81 examined LD SNP) in
relation to 78 genes in other various organs (ABHD16A, AIF1, APOM, AQP5, ASIC1, ATF1,
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ATF6B, ATP6V1G2, BAG6, BTN2A3P, C4A, C4B, C6orf48, CCHCR1, CERS5, CLIC1, COX14,
CSNK2B, CTC-510F12.3, CYP21A1P, CYP21A2, DDAH2, DIP2B, DXO, GPD1, ANK1, GSTO1,
GUSBP2, HCG22, HCP5, HDAC1P1, HFE, HIST1H3E, HLA-B, HLA-DQB1, HLA-DRB5,
HLA-DRB6, HLA-S, HSPA1A, LARP4, LIMA1, LY6G5BLY6G5C, LY6G6C, LY6G6D, MICB,
LY6G6E, LY6G6F, MIR6891, MPIG6B, NCR3, NEU1, NPR3, POU5F1, PRRC2A, RGL3, RNF5,
RP11-457M11.5, RP11-541N10.3, RP3-405J10.3, RP4-605O3.4, SH3PXD2A, SH3PXD2A-
AS1, SLC17A1, SLC17A3, SLK, SMARCD1, STK19, STK19B, STN1, TRIM38, U91328.19,
UQCRHP1, VWA7, WASF5P, XXbac-BPG248L24.12, ZBTB12, ZNF322) (GTExproject infor-
mation is showed in Tables S7 and S8). It is important to highlight the serious capability to
eQTL regulation of considered polymorphisms, as in the AH target organs such as arterial
vessels (VWA7, HFE, ABHD16A, LY6G5B, CYP21A1P, BAG6, ATF1, HLA-DRB5, SMARCD1,
LY6G5C, C4A, COX14, RP4-605O3.4, RP4-605O3.4, LY6G5B) and the heart (CSNK2B, C4A,
HLA-DRB5, CERS5, CYP21A1P, HIST1H3E, DDAH2, RP4-605O3.4, LY6G5B, STN1), as well
as in organs involved in the AH biology such as various parts of the brain (cortex; basal gan-
glia; hypothalamus; pituitary gland; black substance, etc.) (ABHD16A, CERS5, CYP21A1P,
DDAH2, HIST1H3E, LY6G5B, LY6G5C, MPIG6B, RP4-605O3.4, SH3PXD2A), adrenal gland
(NPR3, SLC17A1, SLC17A3, GUSBP2, DDAH2, LY6G5B, ABHD16A, RP4-605O3.4, COX14),
thyroid (HFE, TRIM38, LY6G5C, LY6G5B, HLA-DRB5, CCHCR1, CYP21A1P, C4A, RNF5,
ABHD16A, LY6G6F, RP4-605O3.4, CERS5, LIMA1, COX14, ASIC1), adipose (ABHD16A,
ASIC1, BTN2A3P, C4A, C6orf48, CCHCR1, CERS5, COX14, CYP21A1P, CYP21A2, DDAH2,
HFE, HLA-B, HLA-DRB5, LY6G5B, LY6G5C, RP11-541N10.3, RP4-605O3.4, STK19B, STN1,
U91328.19, VWA7), skeletal muscle (HIST1H3E, LY6G5C, LY6G5B, DDAH2, GPANK1, HLA-
DRB5, ATF6B, APOM, C4A, RNF5, CSNK2B, PRRC2A, CYP21A1P, CLIC1, STN1, RP4-
605O3.4, COX14, ATF1, DIP2B), blood (HIST1H3E, LY6G5C, LY6G5B, HLA-DRB5, C4B,
PRRC2A, CYP21A2, VWA7, C4A, CYP21A1P, AIF1, C6orf48, RP4-605O3.4, ATF1, LIMA1),
etc. (Tables S7 and S8).

We observed the connection of the genetic polymorphisms under consideration (7 AH
causal loci/65 SNP in LD) with the intron splicing regulation of 32 genes (PRRC2A, AIF1,
ATF6B, BAG6, C6orf48, CCHCR1, CYP21A1P, CYP21A2, DDX39B, FLOT1, GPANK1, LSM2,
HLA-DQA1, HLA-DRB1, HLA-DRB5, HLA-DRB6, LST1, LY6G5B, LY6G5C, LY6G6C, MICA,
STK19, STK19B, VARS, ATF1, CERS5, COX14, FAM186A, RP4-605O3.4, HFE, SMARCD1,
SH3PXD2A-AS1) including in disease target organs such as arterial vessels (aorta, coro-
nary artery, etc.) (BAG6, HLA-DRB1, HLA-DRB5, HLA-DRB6LSM2, STK19B, GPANK1,
ATF6B), heart (GPANK1, HLA-DRB1, HLA-DRB5, HLA-DRB6, STK19B, LY6G5C) and organs
significant for AH pathogenesis: brain (cortex; basal ganglia; pituitary) (LY6G5C, BAG6),
adrenal gland (CCHCR1, BAG6, CYP21A2, CYP21A1P), thyroid (GPANK1, HLA-DRB1,
STK19, HLA-DRB5, CCHCR1, HLA-DRB6, STK19B, BAG6, FLOT1), adipose (HLA-DRB6,
BAG6, HLA-DRB1, AIF1, HLA-DRB5), skeletal muscle (GPANK1, HLA-DRB5, BAG6, HLA-
DRB6, HLA-DRB1, HLA-DRB5, CCHCR1), and blood (HLA-DRB5, BAG6, HLA-DRB6, AIF1,
GPANK1, HLA-DRB1, LY6G5C) (Tables S9 and S10).

2.1.3. Pathway Analysis of AH-Associated Genes

Based on the 101-gene (previously, these genes functionally related to 88 disorder-
involved polymorphic genetic variants (7 AH-associated/81 linked with them) were iden-
tified) enrichment analysis results, an extremely large number (about 150) of biological
pathways was discovered (Table S11). Among the pathways, processes related to the
immune system prevailed; the greatest statistical significance was shown by such pathways
as major histocompatibility complex (MHC) protein (PC00149, pfdr = 4.18 × 10−11), antigen
processing and presentation (GO:0019882, pfdr = 4.74 × 10−10), positive regulation of im-
mune system process (GO:0002684, pfdr = 3.66 × 10−7), adaptive immune response based
on somatic recombination of immune receptors built from immunoglobulin superfamily
domains (GO:0002460, pfdr = 2.46 × 10−6), lymphocyte mediated immunity (GO:0002449,
pfdr = 2.73 × 10−6), etc.
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The simulated network of intergenic interactions at predisposition to AH (Figure 2)
is based on the following hypothetical “mechanisms”: co-expression (48.87%), physical
interactions (30.06%), common protein domains (7.78%), joint localization (7.56%), and
forecast interactions (5.72%). Among the “main” interacting genes “additionally” included
in the genetic network (besides the 101 AH-recognized genes), the first rank positions
are occupied by the two genes LSM3 and CSNK2A1. The most pronounced interactions
(the physical interactions weight index is 1) were discovered for such gene pairs as HLA-
DQB1/HLA-DQA1, LSM3/LSM2, CSNK2A1/CSNK2B (Table S12).
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When investigating AH-involved protein–protein interaction (PPI) networks and func-
tional enrichment analysis performed using the STRING online resource, the following
data were obtained. Figure 3 shows that the AH-involved proteins significantly interact
with each other (PPI enrichment p value < 1.0 × 10−16) and such PPI as Ly-6 antigen/uPA
receptor-like/acetylcholine receptor regulator activity (pFDR = 3.16 × 10−16), Tenascin-
X/Proline-rich protein 3 (pFDR = 6.23 × 10−8) and proline-rich protein 3/TRIM10/RING-
HC finger (pFDR - = 6.23 × 10−8) are of paramount importance in these processes. These
PPI are carried out on the basis of protein domains such asimmunoglobulin C1-set do-
main (pFDR = 9.59 × 10−8), Class I histocompatibility antigen, domains alpha 1 and 2
(pFDR = 0.003) and Class II histocompatibility antigen, beta domain (pFDR - = 0.013).

http://genemania.org
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Among the PPI, three clusters of functionally related proteins can be distinguished
(Figure 4D, clusters are indicated by different colors, red, green, and blue). The first PPI
cluster (Figure 4A (indicated in red) includes 30 proteins such as HLA-B, HLA-DQB1,
HLA-DRB5, HLA-DRB6, HLA-S, HSPA1A, LY6G5BLY6G5C, LY6G6C, LY6G6D, MICB,
ZBTB12, AIF1, LST1, MICA, etc.) was represented mainly by interactions of proteins
associated with the innate/adaptive immune responses: Interferon-gamma-mediated sig-
naling pathway (GO:0060333, pFDR = 1.97 × 10−5), Antigen processing and presentation of
peptide antigen (GO:0048002, pFDR = 5.19 × 10−5), Regulation of immune system process
(GO:0002682, pFDR = 0.002), Immune response-activating cell surface receptor signaling
pathway (GO:0002429, pFDR = 0.009), Cytokine-mediated signaling pathway (GO:0019221,
pFDR = 0.02), etc. The second PPI cluster (Figure 4B (indicated in green) also includes
30 proteins such asHSPA1B, HSPA1A, C4A, C4B, CLIC1, BAG6, FLOT1, etc.) was char-
acterized by interactions of heat shock proteins, complement systems proteins, etc., in
which such pathways as Blood microparticle (GO:0072562, pFDR = 0.002), Extracellular
exosome (GO:0070062, pFDR = 0.004), Misfolded protein binding (GO:0051787, pFDR = 0.04),
etc., are involved. The third PPI cluster (Figure 4C (indicated in blue) includes 15 proteins
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such as HIST1H2BC, HIST1H2AC, HIST1H4C, etc.) is distinguished by the interaction
of various histone proteins based on such Reactome pathways as recognition and asso-
ciation of DNA glycosylase with sites containing an affected pyrimidine (HSA-110328,
pFDR = 0.005) and purine (HSA-110330, pFDR = 0.005), Cleavage of the damaged pyrimidine
(HSA-110329, pFDR = 0.005) and purine (HSA-110331, pFDR = 0.005), Meiotic synapsis
(HSA-1221632, pFDR = 0.005), Packaging Of Telomere Ends (HSA-171306, pFDR = 0.005),
Pre-NOTCH Transcription and Translation (HSA-1912408, pFDR = 0.005), Formation of the
beta-catenin:TCF transactivating complex (HSA-201722, pFDR = 0.005), PRC2 methylates
histones and DNA (HSA-212300, pFDR = 0.005), Condensation of Prophase Chromosomes
(HSA-2299718, pFDR = 0.005), etc.
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3. Discussion

In the present study associations have been replicated of the rs1799945 (C/G) HFE
and intergenic interactions of seven GWAS-significant loci for AH/BP (rs1173771 (G/A)
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AC026703.1, rs1799945 (C/G) HFE, rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287
(C/A) OBFC1, rs7302981 (G/A) CERS5, rs167479 (T/G) RGL3) with AH in the Caucasian
population of Central Russia. AH risk SNPs (with more 80 proxy variants) are suppos-
edly functionally efficient with respect to the 101 genes implicated in various immune
system pathways. Three studied SNPs (rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42,
rs2681472 (A/G) ATP2B1) did not confirm the association with AH.

Among the 10 GWAS AH/BP polymorphisms studied, we confirmed independent
associations with AH for only one locus—rs1799945 (C/G) HFE gene (OR = 2.53 for
genotype GG). There are quite numerous literature data (based on the results of GWAS)
convincingly indicating the involvement of the SNP rs1799945 (C/G) HFE in the BP levels
formation [29–35] and susceptibility to AH development [29,31].

In three GWAS, a high BP level and an increased risk of AH have been marked by
the genetic variant G rs1799945 [29,31,34], and in three other GWAS, lower BP values
(systolic/diastolic/mean/pulse blood pressure) were marked by a reference allele C of this
polymorphism [30–33]. In our work, the risk influence on the AH development is exerted
by the genotype GG rs1799945 (C/G) HFE (OR = 2.53), which fully corresponds to the
above-mentioned literature GWAS data on the role of allelic variants of this locus (G-risky
vs. C-protective) in the formation of BP and AH in various populations of the world.

Rather interesting results about the biological significance of the rs1799945 (C/G) HFE
in humans of European ancestry, which can to some extent give a biomedical explanation
of the relationship of this polymorphism with susceptibility to AH, were obtained in the
study Gill et al. [36].

The authors, on the one hand, on the basis of GWAS data, showed a strong link
between the locus rs1799945 (C/G) HFE and the human organism iron status (these were
analyzed such serum parameters as levels of the iron, transferrin, ferritin, and saturation of
transferrin), on the other hand, using a phenome-wide association study with mendelian
randomization (MR-PheWAS analyses), established a substantial influence (causal effect) of
the status of iron in organisms at risk of anemia and hypercholesterolemia development [36].
A direct link between hypercholesterolemia and a high AH risk (and in general, a high risk
of morbidity/mortality associated with cardiovascular diseases) has been known for a long
time and is currently beyond doubt (including in the countries of Eastern Europe) [2,37].
High levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol
(LDL-C), and low levels of high-density lipoprotein cholesterol (HDL-C) in AH patients in
comparison with the control were also found in the studied sample (Table 3), which, firstly,
confirms the significant role of hypercholesterolemia in AH development (risk factor);
secondly, it gives reason to assume that one of the significant mechanisms underlying the
involvement of rs1799945 (C/G) HFE in AH formation in the population studied by us may
be iron status and hypercholesterolemia associated with it.

The data derived by us in silico also demonstrate a serious functional potential
of the rs1799945 (C/G) HFE in the organism (it and 7 loci strongly linked to it have
been functionally important for 15 genes, including replacement of amino acid Histidine
by Aspartic acid in the 63 position of the HFE protein, epigenetic changes in 5 genes
(HIST1H2BC; HIST1H2AC; HIST1H1T; HIST1H4C; HFE), eQTL/sQTL influences on 11/1
genes (ALAS2; BTN2A3P; GUSBP2; HFE; HIST1H3E; RP11-457M11.5; SLC17A1; SLC17A3;
TRIM38; U91328.19; ZNF322/HFE)), which can also justify its involvement in AH suscepti-
bility. For example, histone genes, such as H2A, H3E, H1T, H2B, H4C, etc., are functionally
associated with the rs1799945 locus and are of paramount importance in the regulation of
chromatin structure resulting in the modification of DNA “activity” (suppress/activate
gene transcription): H2A variants hold the positions of entry/exit along the nucleosomal
DNA wrap and thus control the “availability” of DNA; various fractions of H3 histone
proteins and their modifications are known “markers” of functionally active DNA regions
(promoters/enhancers); the H1T variant is a linker histone and “coordinates” chromatin
packaging [38]. In another example, using the cDNA library of the heart of an early human
embryo, a new zinc finger gene called ZNF322 was isolated, which, as the authors showed,
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is expressed both at various embryonic stages (from 80 days to 24 weeks; thus, it is in
numerous tissues of an adult [39]. The authors have shown that ZNF322 is a “transcription
activator” (via MAPK signaling pathways) of reporter genes such as SRE, AP-1, which
have been important for AH pathobiology [39].

Table 3. Phenotypic characteristics of the study participants.

Parameters AH,
Mean ± SD, % (n)

Controls,
Mean ± SD, % (n) p

N 939 466
Gender (Male/

Female)
60.06/39.94
(564/375)

55.15/44.85
(257/209) 0.09

Age (years) 58.08 ± 8.91 57.82 ± 9.52 0.77
BMI (kg/m2) 30.78 ± 5.08 24.94 ± 3.14 <0.001
SBP (mmHg) 182.48 ± 28.26 122.58 ± 11.49 <0.001
DBP (mmHg) 105.84 ± 13.47 77.65 ± 6.93 <0.001

TC (mM) 5.71 ± 1.29 5.26 ± 1.04 <0.001
HDL-C (mM) 1.34 ± 0.42 1.52 ± 0.42 <0.001
LDL-C (mM) 3.78 ± 1.11 3.22 ± 0.74 <0.001

TG (mM) 1.92 ± 1.03 1.22 ± 0.71 <0.001
BG (mM) 5.92 ± 1.68 4.88 ± 0.95 <0.001
Smoking 38.33 (353) 19.76 (84) <0.001

Alcohol abuse 5.79 (53) 3.12 (13) 0.051
Low physical activity 58.68 (551) 27.47 (128) <0.001

Low fruit/vegetable consumption 11.39 (107) 8.15 (38) 0.074
High fatty foods consumption 24.71 (232) 10.30 (48) <0.001

High sodium consumption 16.72 (157) 13.30 (62) 0.113

Note: Clinical characteristics of age, BMI, SBP, DBP, HDL-C, LDL-C, TG and TC are given as means ± SD
and other values as number of individuals; BMI—body mass index; BG—blood glucose; SBP—systolic blood
pressure; DBP—diastolic blood pressure; TC—total cholesterol; HDL-C—high-density lipoprotein cholesterol;
TG—triglycerides; LDL-C—low-density lipoprotein cholesterol.

Using the in silico approach widely utilized in modern genetic research, we estab-
lished the multifarious pleiotropic functional actions (chromatin changes; eQTL/sQTL)
of 7 AH-involved loci (and 81 linked SNPs) in relation to 101 genes. Furthermore, for a
considerable number of genes (more 20 genes), these influences were registered by us in
AH target organs such as arterial vessels (aorta, coronary artery, etc.) (OBFC1, HLA-DRB5,
HLA-DRB1, HLA-DRB6, LY6G5B, VWA7, C4A, HFE, ABHD16A, CYP21A1P, SMARCD1,
LY6G5C, COX14, GPANK1, RP4-605O3.4, RP4-605O3.4, BAG6, ATF1, LSM2, STK19B, ATF6B)
and adult/fetal heart (OBFC1, HLA-DRB1, HLA-DRB6, HLA-DRB5, CSNK2B, C4A, CERS5,
CYP21A1P, HIST1H3E, DDAH2, RP4-605O3.4, STN1, LY6G5B, STK19B, LY6G5C, GPANK1).
The phenotypic functionality of the aforementioned genes may be responsible for the
pathophysiology of AH. Thus, for instance, the OBFC1 gene (also called STN1 subunit of
CST complex) encodes one of the subunits of alpha accessory factor that stimulates the
enzyme activity and thereby initiates DNA replication; as well, this protein is important
for telomere-linked complexes and telomere regulation mechanisms (it provides telomere
length homeostasis by inhibiting telomerase, recruits and activates the corresponding DNA
polymerase, facilitates repair and initiates DNA replication, etc.) [40,41]. Said et al. detected
the strongest association of genetically determined telomere length (including OBFC1 gene)
with cardiovascular disease and hypertension (based on Mendelian randomization data
of UK Biobank 134,773 individuals) [42]. The strong effect of expression-involved OBFC1
polymorphic variants (including eQTL in adventitial tissue of aorta) on cardiovascular
disease risk has been shown in previous publication data [43]. Considering our in silico
data, several genes of the body immune system (HLA-DRB1, HLA-DRB6, HLA-DRB5)
and the extensive pathways related with them associated with the immune responses
(MHC protein-involved reactions, immune system process regulation, antigen process-
ing and presentation, etc.) are among the causal factors of hypertension. Pronounced
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changes in the immune system of AH patients (increased proinflammatory interleukins
and other cytokines (tumor necrosis factors, chemokines, etc.) plasma levels, heat shock
proteins overexpression, etc.), a substantial contribution of various immune-dependent
processes to the development/aggravation of the disease (innate/adaptive immunity ac-
tivation, changes of the immune reactivity, B- and T- cells pro- and anti- inflammatory
responses, manifestations of autoantigenic reactions (due to heat shock proteins, isoketal-
modified proteins, etc.), cascade of cytokine responses, etc.), and the need to correct the
immune imbalance during hypertension therapy have been noted in numerous previous
studies [44–47]. Rodriguez-Iturbe et al. considers the formation and exacerbation of hy-
pertension as a step-by-step process of involving a variety of mechanisms of the immune
system (episodic formation of danger-linked molecular substations and Toll-like receptor
expression, activation of the innate immune system and the appearance of inflammatory
reactions (infiltration, etc.) in target organs (kidney, vessels, etc.), involvement adaptive
immunity reactions in the renal and vascular inflammation, the appearance of an imbal-
ance in inflammatory/anti-inflammatory responses, etc.) and indicate the need to identify
genetic factors/traits of hypertension related to the immune response [44]. Our work
confirms the paramount importance of genetic factors (including certain AH-impact GWAS
polymorphisms) associated with the multiple immune system pathways in AH formation
in the Caucasian population of Central Russia.

It is extremely interesting that in a previously conducted genetic research aimed at
finding associations of GWAS AH candidate genes with pre-eclampsia in a sample that
included 452 pregnant women with pre-eclampsia and 498 pregnant women without pre-
eclampsia (the same ten GWAS AH/BP risk loci panel was studied in the same Caucasian
population of Central Russia), the significant role of rs1799945 (C/G) HFE (OR = 2.24)
in the development of this pregnancy complication was detected [48]. Herewith, it is
important to note the complete coincidence of the data obtained for AH (this study) and
pre-eclampsia (obtained by us earlier [48]) in orientation (the risk value of the polymorphic
variant G) and the associated strength of the polymorphism rs1799945 (C/G) HFE (OR
indicators were approximately the same in value and amounted to OR = 2.53 for AH and
OR = 2.24 for pre-eclampsia). These facts may indicate, on the one hand, the “reliability” of
the identified associations obtained from completely different samples in the same ethno-
territorial group of the Russian population and, on the other hand, the proven risk role of
GWAS-impact rs1799945 (C/G) HFE in the development of hypertensive conditions (AH as
an independent disease, and arterial hypertension is the main symptom of pre-eclampsia)
in the Caucasian population of Central Russia, which opens up good prospects for further
use of this polymorphism with a prognostic purpose in the practical medicine in this
territory of Russia. Meanwhile, there is also an obvious need for additional evidence of the
effectiveness of the rs1799945 (C/G) HFE polymorphism in other human diseases correlated
with hypertensive manifestations (for example, kidney disease, metabolic syndrome, etc.)
in the Caucasian population of Central Russia, which may be the subject of further research.

4. Materials and Methods
4.1. Study Subjects

When planning this work, the number of samples (patient/control) necessary for
the study were determined using the Genetic Association Study (GAS) Power Calcula-
tor software (online source: http://csg.sph.umich.edu/abecasis/gas_power_calculator/
(accessed on 18 November 2022)) (a multiplicative model of the disease was considered).
Taking into account the prevalence of AH among adults, according to the literature [1], on
average, about 30–45% with the required research power of 80% and 5% error of the 1st
kind (α = 0.05) to identify differences in the frequencies of polymorphic variants between
patients and control at the level of OR = 1.23–1.30, the total sample number (patients and
control) should be at least 1100 subjects with the prevalence of polymorphic genetic variants
among the population ≥10%.

http://csg.sph.umich.edu/abecasis/gas_power_calculator/
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The sample of the present case-control study consisted of 1405 unrelated Caucasian
participants (Russian origin; born in Central Russia [49,50]) including 939 AH patients
and 466 AH free individuals. The studied subjects were recruited during the 2013–2016
period at the Cardiology Department of St. Joasaph Belgorod Regional Clinical Hos-
pital. All procedures in this study were performed following the tenets of the Decla-
ration of Helsinki. The study protocol was approved by the of the Human Investiga-
tion Committee (Ethics Committee) of Belgorod State University. All the participants
were fully informed of the purpose and procedures, and written consent was obtained
from each participant. The AH diagnosis was verified by certified cardiologists accord-
ing to the WHO/ESC/ESH recommendation [1] (this was described in detail by us ear-
lier [21]). AH was defined as SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg (office pa-
rameters) [1]. All AH patients had ≥1 year AH clinical anamnesis, and 81.79% received
antiAH drugs. Control subjects were AH free (SBP < 140mmHg and DBP < 90mmHg),
did not receive antiAH drugs and did not have pronounced metabolic (type 2 diabetes
mellitus) and cardiovascular (coronary artery disease) disorders. Individuals with severe
autoimmune/allergic/oncological/hematological disorder were excluded [51]. Data char-
acterizing diet and lifestyle were obtained for all subjects. In accordance with WHO/FAO
Expert recommendations, “low fruit/vegetable consumption” was considered as daily con-
sumption of less than 400 g of fruits and vegetables, “low physical activity” was evaluated
as average weekly physical activity of medium intensity (total at home and at work) less
than 2.5 h, “high fatty foods consumption” was estimated to be the share of the average
daily consumption of fatty foods from the total amount of food consumed≥10%, and “high
sodium consumption” was considered to be the daily consumption of salt in the volume of
a teaspoon or more (≥5 g) [52].

Table 3 presents phenotypic characteristics of the AH and AH-free participants pre-
viously received by us [21]: AH patients had high indicators of BMI, blood glucose, TC,
TG, LDL-C, smokers and low parameters of HDL-C vs. AH-free individuals (p < 0.001).
These data gave us a reason to use the above indicators as confounders in genetic analy-
sis (Model 1). Besides this, the percentage of individuals with low physical activity and
preferring fatty foods was higher among AH patients (p < 0.001) (Table 3). These two
AH-significant risk factors were additionally included as covariates in Model 2 (together
with all covariates of Model 1).

4.2. Experimental Genetic Analysis (DNA Isolation; SNPs Selection; SNPs Genotyping)

Five milliliters of the venous blood was drawn from the ulnar vein and collected
into tubes containing 100 µL of 10% EDTA [53]. High molecular weight genomic DNA
was extracted from peripheral blood leukocytes, using the standard (phenol/chloroform)
protocols [54].

For this study, we selected 10 loci taking into account special criteria such as (1) previously
GWAS-linked with BP/AH in Caucasians; (2) possessed impact functionality (evaluated in
silico by HaploReg programme [55]), and (3) had significant polymorphism (the frequency
of the minor allele was at least 10% among Europeans (HaploReg data [55] and the data of
previously conducted studies [48,56,57] were taken into account)). The ten common SNPs
(rs167479 of RGL3, rs8068318 of TBX2, rs2681472 of ATP2B1, rs7302981 of CERS5, rs633185
of ARHGAP42, rs4387287 of OBFC1, rs932764 of PLCE1, rs805303 of BAG6, rs1799945 of
HFE, rs1173771 of AC026703.1) were chosen for this study based on the above special
criteria. All ten SNPs were BP-associated in Europeans, and all 10 SNPs were AH-linked:
eight loci were AH-correlated in Europeans and two SNPs (rs2681472 ATP2B1; rs4387287
OBFC1) were AH-significant in the cohort subjects with European prevalence (more 85%
out all participations) (Table S13). Nine polymorphic variants among studied 10 SNPs
where AH/BP was associated in at least two GWAS (only the locus rs4387287 OBFC1
was AH/BP-associated in one GWAS) (Table S13). All 10 loci selected for the study were
found with a frequency of 14% or more among Europeans (Table S14) and were functional
(Table S14).
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Well known and widely used in genetic research, the TaqMan probe method of Poly-
merase Chain Reaction was used for genotyping DNA on the examined SNPs. The allele-
detection process was performed on a CFX96 Real-Time System (Applied Biosystems,
Foster City, CA, USA) to determine the allelic discrimination [58]. The genotyping pro-
cedure was carried out at the department of Medical Biological Disciplines (Laboratory
of “Human Molecular Genetics”) of Belgorod State National Research University. We
paid special attention to the quality control of genotyping: duplicate samples of DNA of
participants (≈4–6% out all samples) (independent internal positive control) and samples
containing the reaction mixture but not the DNA content (independent internal negative
control) were interspersed throughout the plates used for genotype analysis for quality
control purposes [59,60]. Importantly, the status of “AH/AH free” of the subjects and the
positions of positive/negative independent internal controls on the plates were “hidden”
for laboratory personnel during the entire procedure of experimental genetic research.
The concordance rates for quality control samples (positive/negative internal controls)
were 100% for all assays. An additional measure of quality control of genotyping was the
assessment of the compliance of the observed distribution of genotypes with the expected
parameters when fulfilling the Hardy–Weinberg law (we performed this procedure at
the next stage of our study—statistical analysis of genetic data). The implementation of
the Hardy–Weinberg law for the loci under consideration was an additional argument
indicating the sufficient quality of the genotyping performed.

4.3. Statistical Analysis of Genetic Data

The samples included in the study (939 AH and 466 AH free) can identify differences
in the frequencies of minor alleles of studied SNPs (with an estimated prevalence of
the SNPs minor allele among Europeans of 14–46% (Table S14) (HaploReg data [55])
between the AH and AH free groups at OR = 1.25–1.37 (additive model), OR = 1.42–1.44
(dominant model), OR = 1.47–3.10 (recessive model) (calculations were performed in the
Quanto program (http://hydra.usc.edu/gxe, 2006 (accessed on 18 November 2022)), at
power = 80%; α = 0.05 for 2-sided test).

For each SNP, the Hardy–Weinberg equilibrium was assessed by Pearson’s goodness-
of-fit χ2 statistical test [61,62]. The degrees of significance of differences in polymor-
phic variants (genotype/allele and genotype combinations frequencies) of studied genes
(four inheritance models were considered for individual SNPs (allelic; recessive; addi-
tive; dominant) [63]; for the general SNP list, intergenic interactions were analyzed [64])
between AH and AH-free cohorts were calculated using gPLINK [65], MB-MDR [66,67],
MDR [68,69] packages. The odds ratios (ORgenetic model) and their 95% confidence intervals
(CIgenetic model) were obtained by logistic regression [70,71] while adjusting for multiple
comparisons (applied permutation testing [72]) and confounding factors (listed above
for Model 1 and Model 2 in the “Study subjects” section according to the data in Ta-
ble 3). Statistical significance was set at 5%, or pperm (pperm-interaction) ≤ 0.05. For AH-
associated SNP rs1799945 (C/G) HFE was calculated for statistical power with Quanto tool
(http://hydra.usc.edu/gxe, 2006 (accessed on 18 November 2022)).

4.4. SNPs/Gene Predict Functionality/Functions

The well-known bioinformatics information (PolyPhen [73]; SIFT [74], HaploReg [55];
Blood eQTL browser [75]; GTExConsortium [76]; Gene Ontology [77]; GeneMANIA [78];
STRING [79]) was applied to examine in silico an association at the AH-involved loci/genes
and high-linked SNPs (used parameter r2 equal or more 0.80 [80,81]) (according to the
HaploReg database [55]) with functional prediction effects [82,83].

5. Conclusions

The GWAS-impact for AH/BP polymorphic locus rs1799945 of the HFE gene and inter-
genic interactions of BAG6, CERS5, AC026703.1, HFE, PLCE1, OBFC1, RGL3 are associated
with the risk of developing AH in the Caucasian population of Central Russia. Along-

http://hydra.usc.edu/gxe
http://hydra.usc.edu/gxe
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side this, three studied SNPs such as rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42,
rs2681472 (A/G) ATP2B1, did not confirm the association with AH.
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