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Abstract: Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus
results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus.
Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the
presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques,
women with MA having biological offspring is possible. The exact etiology of MA is unknown,
although several genes and mechanisms affect the development of Müllerian ducts. Through this
systematic review of the available literature, we searched for the genetic basis of MA. The aims
included identification of the genes, chromosomal locations, changes responsible for MA, and fertility
options, in order to offer proper management and counseling to these women with MA. A total of
85 studies were identified through searches. Most of the studies identified multiple genes at various
locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting
evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be
multifactorial and complex, involving multiple genes and mechanisms including various mutations
and mosaicism.

Keywords: Müllerian agenesis (MA); uterine aplasia; Mayer–Rokitansky–Küster–Hauser (MRKH)
syndrome; uterine agenesis; molecular; genetics

1. Introduction

Infertility is defined by the World Health Organization (WHO) as a disease of the male
or female reproductive system resulting in failure to achieve a pregnancy after 12 months or
more of regular unprotected sexual intercourse [1]. It can be “Primary”, denoting those who
have never become pregnant, or “Secondary”, depicting those with the inability to conceive
after at least one previous pregnancy [2]. Infertility affects millions of people worldwide [3].
The prevalence of infertility can vary throughout the world, but generally affects around
one in five couples [4]. Infertility can be caused by different factors in males, females, and
can be combined or even unexplained [3]. Common causes in females are diseases of the
ovaries, fallopian tubes, uterus, endocrinal, genital tract dysbiosis or combined, and differ
from country to country [5]. Similarly, the cause can commonly be obstruction of the tract,
testicular failure of spermatogenesis, poor sperm quality, or endocrinal in males [3]. Uterine
factor infertility (UFI) is defined as an absent uterus (absolute UFI) or as a nonfunctional
uterus (non-absolute UFI) [6]. Absolute UFI can be due to congenital absence of the uterus
or due to a hysterectomy later [6]. UFI can affect about 1 in 500 women of reproductive age
or up to 5% of females, although the exact data are unknown [7,8].
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Embryologically, the uterus, fallopian tubes, and upper part of the vagina develop
from Müllerian ducts (MD) (or the paramesonephric duct). The unfused cranial end of
MDs remains separated and forms the fallopian tubes. The further cranial end of MDs from
both sides fuse vertically to form the uterine body and cervix, and the caudal part of MDs
fuse to form the upper portion of the vagina. The vagina then canalizes and fuses with the
embryonic cloaca to complete the vaginal canal [9,10]. Ovarian development in utero, on
the other hand, is a complex process. Four components of the ovaries, namely the surface
epithelium, ovarian stroma, primordial germ cells, and sex cords, develop from the coelomic
epithelium, sub-coelomic mesoderm, yolk sac endoderm, and invagination of cortical
coelomic epithelium, respectively [11]. Favorable conditions for optimal development of
the female genital system are the presence of both functional X chromosomes (46 XX) and
the absence of the SRY gene [9]. Various agents can influence embryogenesis to cause
structural abnormalities. While drugs like diethylstilbestrol (DES), ionizing radiations, and
certain infections are known to be teratogenic, others may or may not have a role [12–14].

Müllerian agenesis (MA), (Müllerian aplasia, complete uterine aplasia) or Mayer–
Rokitansky–Küster–Hauser (MRKH) syndrome, is a rare disorder with an incidence of
1 per 4500–5000 females [15]. Although not identical, MRKH and MA are interchangeably
used in the literature. MRKH is further divided into two types. When there is an isolated
MA, with normal ovaries and without involvement of other organ systems, it is called type
1 MRKH. MRKH type 2 includes an absent uterus along with abnormalities in the tubes,
ovaries, and urinary system. Type 2 also includes a severe form called MURCS (Müllerian
duct aplasia, unilateral renal agenesis, and cervicothoracic somite anomalies) [15,16]. Some
consider MURCS a separate class and classify MRKH into typical (type 1), atypical (type 2),
and MURCS [17]. The exact cause of MA is largely unknown due to the heterogeneity in
the published literature. The disorder was long considered to be sporadic [15]. As interest
in MRKH grew, there were many reported cases of familial occurrence. Hence, there
emerged a subset of patients wherein an autosomal dominant inheritance with incomplete
penetrance and variable expressivity was a definite probability [18,19]. Intrinsically, it is
not possible to study maternal inheritance of cases with MA because of the nature of MA,
which produces absolute infertility. However, it is possible now due to advances in fertility
treatment which mean that having a biological child is highly possible [20]. Thus, there
occurred a series of studies to search for candidate genes and specific genetic bases of MA.
While earlier studies used microarrays or small gene panels/Sanger sequencing [21,22], the
scenario has changed with the use of massively parallel sequencing, including whole-exome
sequencing. Newer methods have opened wider opportunities for the search for genetic
causes of MA [23]. Furthermore, the studies in discordant monozygotic twins with only
one twin having MA support the role of environmental factors affecting the expressivity
of the genetic abnormalities [24–32]. Hence, through this research, we aim to explore the
genetic and molecular basis of MA. This will also help in counseling couples seeking newer
treatment options to achieve parenthood of biologically related offspring.

2. Methods
2.1. Search Strategy

A systematic search of the electronic databases Pubmed, Scopus, Web of Science,
Embase, and Google Scholar was carried out. Medical subject handling terms (MeSH)
and free-text term keywords like Mayer–Rokitansky–Küster–Hauser syndrome, Müllerian
agenesis, uterine aplasia, and uterine agenesis were used in combination with gene, genome,
genetic or molecular to search for data in January 2023. Thereafter, manual updates were
made on a weekly basis until 10 August 2023. There was no starting date for the search.
The references of relevant studies were also hand-searched if they did not belong to
these databases.
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2.2. Eligibility Criteria
2.2.1. Inclusion Criteria

Studied were included if they fulfilled all the following criteria:

1. English language articles or where English translation is available;
2. Full-text articles reporting on human genes, genome, genetics, or molecular bases;
3. Containing information on Müllerian duct abnormality or Müllerian agenesis or

Müllerian aplasia or uterine aplasia or Mayer–Rokitansky–Kuster–Hauser syndrome.

All eligible studies published before August 2023 were included for review.

2.2.2. Exclusion Criteria

Exclusions consisted of animal studies, duplicated studies, review articles, non-genetic
studies, articles in languages other than English where translation was not possible, and
studies where full-text articles were only available upon payment. Conference abstracts,
expert opinions, and critical appraisals were also excluded.

2.3. Study Selection

Genetic analysis can be performed with various methods. Older studies relied on
conventional comparative genomic hybridization (CGH), polymerase chain reaction (PCR),
or fluorescent in situ hybridization (FISH), while current analyses are carried out using
newer methods [33]. Data on the methods used in each study are also extracted, through
the search. As each of these methods has distinct advantages, they are mentioned in brief.

Array–CGH (aCGH): This assay provides higher resolution than traditional CGH,
and is used as an alternative means of genome-wide screening for copy number varia-
tions (CNVs). It combines traditional CGH principles with a microarray, and thus is not
dependent on actively dividing cells. An aCGH can simultaneously detect aneuploidies,
deletions, duplications, and amplifications of any locus represented on an array, as well as
submicroscopic chromosomal abnormalities [34].

Whole-exon sequencing (WES): This allows variations in the protein-coding region of
any gene to be identified, rather than in only a select few genes. It is an efficient method for
detecting CNVs in potential candidate genes to identify the abnormalities possibly causing
disease, as most known mutations that cause disease occur in exons. However, mutations
in regulatory factors coded outside exons can be missed [35].

Whole-genome sequencing (WGS): This is a more advanced technique based on
massive-genome sequencing, and is not dependent on the availability of predefined
databases for comparison and matching [36]. It can detect abnormalities in a wide spectrum
of genes. However, it is expensive and requires complex analysis [37].

After a thorough search of the databases, a total of 1308 results were retrieved. All the
abstracts and study titles were screened, and duplicates were removed. Furthermore, there
were a total of 1226 studies excluded, as they either did not fit the inclusion criteria, were
only animal studies, included only vaginal agenesis, only abnormalities other than uterine
agenesis, only gonadal dysgenesis, or did not explore the genetic basis of the disease. In a
manual search of references, three case reports were found and included. Finally, 85 articles
were included in the analysis. The Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) are in Figure 1.

2.4. Data Collection

All the authors (RD, SSK, MJ, BTG) reviewed all titles independently. The potential
relevance of the studies to be included for review was agreed upon by discussion on a
regular basis. Selected titles and abstracts were further screened between studies to reject
the overlap of cases. Full-text copies of the selected papers were obtained and the relevant
data were extracted. In the case of individual case reports, if the same patient was included
in more than one study with similar characteristics and findings, only the report with
a larger number of patients was included. As far as possible, single case reports were
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cross-checked with other reports from the same location and hospital. The decision on
exclusion or inclusion was decided by discussion if the time frame and characteristics of
the reported cases from the same center matched. The risk of bias was not assessed due to
the nature of the studies.
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3. Results and Discussion

The studies included only cohorts, case reports, case series, or retrospective analyses
of laboratory samples. The genetic analysis was carried out using various methods. Older
studies relied on conventional CGH, PCR, or FISH, while most of the newer analyses were
performed using newer methods like aCGH, WES, or WGS [33]. To put the completeness
of genetic analysis into context, the methods used in individual studies are considered in
this review.

3.1. Genetic Basis of MA

A universally agreeable gene is yet to be found in the available evidence. There are
elaborate investigations into candidate genes associated with MA. Out of the proposed
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genes, one or more were implicated in specific cohorts, but none were found in all. It is
rational to propose that the genes or regulators of genes essentially involved in Müllerian
duct development are most likely to be involved in MA [38]. The WNT signaling pathway
genes (WNT4, WNT9B), the HOX family genes, LX1, HNF1B, and a few other candidate
genes have been implicated by Mikhael et al. through WES, which was then confirmed
by Sanger sequencing [39]. The copy number variants (CNVs) at different locations in
chromosomes 1, 16, 17, and 22 were identified by this study [39] [Table 1]. A glossary of
gene names is available as supplementary material.

Table 1. Genes suspected to be involved in MRKH.

Genes and Location in Chromosome Reference Method Used Associations

MEFV and IL-32-16p13.3
CMTM7-3p22.3

CCR4 3p22.3
[40] CGH and RT-qPCR

IL32 and MEFV gene mutations
associated with Mediterranean

fever. MRKHS

BAZ2B and SLC4A10-2q24.2
KLHL18-3p21.31
PIK3CD-1p36.22

TNK2-3q29

[41] WGS MRKHS

LAMC1-1q25.3
RARA-17q21.2

HOXA10-7p15.2
PAX2-10q24–25

MMP14 and
LRP10-14q11.2

[39] WES, confirmed by
Sanger sequencing MRKHS

IFTP57, HHLA2 and MYH15-3q13.13
PLA2R1-2q23-q24

ITGB6 and RBMS1-2q24.2
[42] SNP microarray analysis MRKHS

LRP10-14q11.2
FRAS1-4q21.21

CC2D2A-4p15.32
KIF14-1q32.1
RSPO4-20p13

MKKS-20p12.2
NPHP3-3q22.1

DYNC2H1-11q22.3
SPECC1L-22q11
VWF-12p13.31

[43] WES MRKHS

TBC1D1-4p14
KMT2D-12q13.12
HOXD3-2q31-37
DLG5-10q22.3
GLI3-7p14.1

HIRA-22q11.21
GATA3-10p14
LIFR-5p13.1

CLIP1-12q24.31

[44] Sanger sequencing MRKHS

PRKX-Xp22.33
HOXC8-12q13.13 [45] RT-qPCR

MRKHS, Urinary malformations,
skeletal malformations, and/or

hearing defects.

MUC1-1q22 [45,46] Array analysis, RT-qPCR MRKHS

RBM8A-1q21 [21,47–50] Array CGH, MLPA
TAR syndrome

(thrombocytopenia, absence of
radius) [21,47–49]
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Table 1. Cont.

Genes and Location in Chromosome Reference Method Used Associations

WNT9B-17q21 [38,39,49,51–
54] Array CGH, WES

MA, renal abnormalities, and
cervicothoracic somite

dysplasia [38]

TBX6-16p11.2 [38,39,43,48–
50,55–59] Array CGH. WES

Autism spectrum disorders,
neurological disorders, unaffected

persons [49]

ACTR3B-Pseudogenes chromosomes 2, 4,
10, 16, 22 and Y [53] WES MA

LHX1-17q12 [21,47,49,54–
56,60–68] Array CGH, gene sequencing

MA, Anomalies in the body axis
formation [49], diabetes [61],

learning disability [61]

TCF2/HNF1B-17q12 [21,47,55,56,60–
67,69,70] Array CGH, DNA sequencing MA, Renal cysts [49] diabetes

[49,61], learning disability [61]

TBX1-22q11 [21,47,48,55,71–
74] Array CGH, FISH, MLPA

DiGeorge syndrome, heart defect,
hypocalcemia, immunodeficiency,

typical facial malformations,
cognitive and

behavioral disorders

WNT4-1p36.12 [39,66,75–77] PCR sequencing, CGH Hyperandrogenism (Atypical
MRKHS), Gonadal dysgenesis

GREB1L-18q11.1-q11.2 [45,53,78–80] WES, CGH
MRKHS type 2 with kidney

abnormalities, Twins discordant
for MRKHS [45]

DOCK4-7q31.1 [43,63] MRKHS

ZNF277-7q31.1 [63] MRKHS

DACT1-14q23.1 [81] MRKHS

DLGH1-3q29 [82] Direct sequencing Unilateral agenesis, pelvic kidney

OXTR-3p25.3 [83] DNA sequence analysis MRKHS

ESR1-6q25 [84] DNA sequence analysis MRKHS

WT1-11p13 [85] PCR

GATA4-8p23.1 [85] PCR

EMX2-10q26 [38,86,87] Sequence analysis MRKHS, other Müllerian
fusion abnormalities

SHOX-Pseudoautosomal region Xp22. 3 [39,88,89] CGH MRKHS

PBX1-1q23.3 [90] MRKHS

PAX8-2q14.1 [22,38,53,88] Array CGH. WES

Mutations have been associated
with thyroid dysgenesis, thyroid
follicular carcinomas, and atypical

follicular thyroid adenomas
[91], MRKHS

CGH = Comparative genomic hybridization; MLPA = Multiplex ligation-dependent probe amplification;
WES = Whole-genome exon sequencing; WGS = Whole-genome sequencing; RT-qPCR = Reverse-transcriptase
quantitative polymerase chain reaction; MA = Müllerian agenesis.

To overcome the drawbacks of WES, WGS was used recently by Pan et al. In addi-
tion, to further strengthen the prior evidence on specific gene involvements, this study
identified five de novo variants in nine patients with MA [41]. There are also certain
case reports of the involvement of CFTR, β-catenin, and te HOXA10 gene in women with
complete uterine aplasia. However, it was concluded that it is unlikely to be the causative
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factor [92–94]. In a recent study by Ragitha et al. using PCR sequencing of coding ex-
ons of the WNT4 gene in 32 women with MA and gonadal dysgenesis, single-nucleotide
variations, nucleotide substitution in intronic regions not affecting the normal splicing
mechanism, and synonymous polymorphism (c.861C > T; p.G287G, rs544988174) were
reported. Hence, any indication of WNT4 involvement in MA was not found [76].

There are a few studies exploring the inheritance of MA in families. It was not con-
clusively found to have a particular inheritance pattern, although an autosomal dominant
trait was suggested in a few and refuted in others [15,70,80,95,96]. The challenges were
incomplete family tree availability or of a particular genetic basis. Analyzing the specific
genetic composition of monozygotic twins is very helpful in the identification of genetic
contributions to the pathophysiology of diseases. When a single embryo divides into two
after fertilization, the resultant pregnancy is called a monozygotic twin pregnancy. As
they have developed from a single embryo, it is assumed that they share identical genetic
composition. Studying the genetic pattern of monozygotic twins where only one has a
condition gives us an insight into additional causative factors responsible for occurrences
like de novo dominant mutations, or somatic mutations in the specific tissue. In a recent
study on five pairs of monozygotic twins discordant for MA, the uterine tissue remnants
and blood were studied using WGS [53]. They reported a mosaic variant in ACTR3B. This
variant was absent in the blood of the normal twin, had low and high allele frequency in
the blood, and affected tissue of the twin with MA, respectively [53]. Few of the studies
elaborated on transcriptome analysis of endometrial samples from the rudimentary tissues.
In a previous study of 35 sporadic patients with MRKH, perturbations in endometrial
transcriptomes were described [96] This study in uterine remnants using RNA sequencing
demonstrated a large number of upregulated (1236 in MRKH type 1 and 801 in MRKH type
2) and downregulated (670 in MRKH type 1 and 373 in MRKH type 2) genes associated
with MRKHS [97]. It was also found that genes encoding for estrogen receptor 1 were
perturbed in a few other studies [25,83,84]. Analysis of endometrial tissue in monozygotic
twins also showed similar perturbations in a recent study by Buchert et al. [53].

In a recent study by Brakta et al. 2023, genetic analysis using optical genome map-
ping in 87 women with MRKH and available parents revealed 14 structural variants in
17/87 (19.5%). These included deletions (n = 7), duplications (n = 3), one new transloca-
tion t(7;14)(q32;q32) (n = 5), a previously identified translocation-t(3;16)(p22.3;p13.3), and
aneuploidies (n = 2). They also reported mosaicism in three cases for trisomy 12, a 7;14
translocation, and 45,X (75%)/46,XX (25%). It was concluded that the exact mechanism
for MA may be mosaicisms [98]. In another study by Brendan et al. in eight individuals
with MRKH, WES was used for analysis. The study reported multiple damaging and
potentially damaging changes in more than one woman involving chromosomes 1, 3, 4, 7,
8, 11, 12, 20, and 22 [43]. Furthermore, few of the studies have reported no abnormality
in the homeobox gene, the PAX2, WNT4, GALT, AMH, and AMHR genes, copy number
changes, and AMH promotor sequence variations [17,99–109]. Another interesting study
has reported a testis-specific protein 1-Y-linked (TSPY) gene in two women out of six with
MRKHS and the 46XX karyotype [110]. Similarly, the level of galactose-1-phosphate uridyl
transferase (GALT) was found to be lower in erythrocytes of women with vaginal agenesis,
and two variants of the GALT gene were detected in another study [111]. This suggests
that multiple genes and multiple mechanisms may be involved in the pathogenesis of MA.

3.2. Mechanisms of Genetic Changes

The development of female genital organs is a complex process and is influenced by
the interplay of genetic, hormonal, and environmental factors. To understand the basis
of genetic abnormalities resulting in MA, a brief overview of the development of MDs
is essential.

During embryonic development, in both male and female fetuses, the gonadal ridges
have the capacity to form either the testis or ovary until 6 weeks after conception. In the
gonadal ridges, the supporting-cell lineage derived from the multipotent somatic progenitor
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cells is programmed to include pre-granulosa (WNT4, RSPO1, FST, and CTNNB1) genes in
XX fetuses [112,113].

Müllerian (paramesonephric) ducts that give rise to most of the female reproductive
tract arise around 5–6 weeks of gestation as a cleft lined by the coelomic epithelium in
the urogenital ridge. Further development occurs in phases [114,115]. At first, there is a
thickening of the coelomic epithelium along with expression of LHX1, and anti-Müllerian
hormone receptor type II (AMHR2) [114,116–118]. DACH1 and DACH2 are transcriptional
co-factors that act by regulating the expression of LHX1 and WNT7A and are required
for the formation of MD [119,120]. In the next phase, these primordial Müllerian cells
invaginate from the coelomic epithelium to reach the Wolffian duct. WNT4 expression
in the mesonephric mesenchyme is essential for the Müllerian duct progenitor cells to
begin invagination [116,121]. The last is the elongation phase, which begins when the
invaginating tip of the Müllerian duct contacts the Wolffian duct. There is then proliferation
and caudal migration of cells. There is continued elongation of MD, which eventually fuses
centrally close to the urogenital sinus. MD then establishes apico-basal characteristics and
develops into an epithelial tube that gives rise to the endometrium, and the surrounding
mesenchyme differentiates into the myometrium of the uterus and Fallopian tubes [114,118].
The Wolffian duct plays an important role in the growth of MD, by supplying WNT9B
secretion [122]. LIM1 or PAX2 are transcription factors contributing to MD growth.

SOX9 has an important role in the regression of the MDs. In male fetuses, the SRY
(sex-determining region on the Y) gene encodes the transcription factor SOX9, which
plays a vital role in gonadal differentiation. Upregulation of the expression of SOX9 in
normal male development causes the development of Wolffian duct and degeneration of
MDs upregulating the expression of anti-Müllerian hormone (AMH), and results in the
downregulation of WNT4 expression [123–128]. Other members of the SOX family and
various other factors act through upregulation or downregulation of SOX9 to control MD
development. SOX3 can induce SOX9 expression, and SOX8 and SOX10 upregulate SOX9
expression [129]. Similarly, Foxl2 downregulates SOX9, and targeted disruption of Foxl2
leads to SOX9 upregulation in the XX gonad [130]. Prostaglandin D2 also upregulates SOX9
in the absence of SRY [131].

The role of WNT4 is crucial in the development of the internal genital tract. WNT4 is
a secreted protein that functions as a paracrine factor to regulate several developmental
mechanisms including the uterus, cervix, and fallopian tubes. In fetuses with XX chro-
mosomes, the absence of SRY releases WNT4 expression, which stabilizes β-catenin and
silences SOX9 [132]. β-catenin is responsible for oviduct coiling [133,134]. Many growth
factors, such as LIM1, EMX2, HOXA13, PAX2 and 8, and VANGL2 are also essential for the
development of reproductive organs. RSPO1 is expressed in the undifferentiated gonadal
ridge of XY and XX embryos and increases in the XX gonads in the absence of SRY. RSPO1
binds to G protein-coupled receptors, stimulates the expression of WNT4, and cooperates
with it to increase cytoplasmic β-catenin. The increase inWNT4/β-catenin counteracts
SOX9, thus leading to the ovarian pathway [135].

There are various genetic mechanisms that are potentially involved in causing a
disorder, which can occur in isolation or in combinations to result in a condition. Human
genomes are dynamic entities constantly influenced by alterations. The cumulative effects
of small-scale sequence alterations (caused by mutation) and larger-scale rearrangements
can bring about changes in the genome over a period of time [136]. The genome contains
coding regions and non-coding regions. The coding regions of the DNA are directly
involved in the formation of proteins, and noncoding regions may or may not be involved
in the regulation of gene expression. Regulation of gene expression occurs thanks to long
non-coding RNAs and epigenetic, transcriptional, post-transcriptional, translational, and
protein location effects [137].

The genes that encode for an important protein related to a particular disease or a
physical attribute are called candidate genes [138]. When there are chromosomal deletions,
especially of the area encoding for a specific gene, the genetic functions can be completely
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lost, and resulting phenotypes can be severe [139,140]. Candidate genes for MA are thus
thought to be related to the development of the Müllerian or Wolffian duct, or related
to regulatory factors like anti-Müllerian hormone (AMH), estrogen, and estrogen recep-
tor. The candidate genes identified by different studies are WNT4, LHX1, HNF1B, and
HOXA10 [61,65,70,75,77,116,141,142]. Other genes with possible causative roles not yet
substantiated adequately are HNRNPCL1, ITIH5, LRP10, MMRP14, OR2T2, OR4M2, PAX8,
PDE11A, RBM8A, SHOX, TBX6, WNT9B, and ZNF816 [Table 1].

A careful balance of levels of different proteins significantly influences the embry-
onic developmental processes. Duplications of genes encoding these proteins can result
in extra gene copies, and the resulting alteration of gene dosing can lead to develop-
mental defects [140]. A proposed mechanism for MA is an overdose of AMH. Duplica-
tions were found in many reported studies in multiple locations involving chromosomes
1,2,3,6,7,10,12,16,18,22 and X chromosomes [Table 2]. However, the exact mechanisms of
how these changes are related to the causation of MA are yet to be verified.

Table 2. Mechanisms of genetic changes.

Chromosome
Number Mechanism [Reference] Possible Gene Involved

1

1q31.1 Duplication (size 0.4 Mb) [55]
1q44 Deletion (size 0.32 Mb) [23,48]

1p36.12 mutations
1p36.21 deletion [23]

Mutation p.(Glu226Gly) [77]
Mutation c.1026C>T [73]

Mutation p.(Arg83Cys) [143]
Mutation c.35C>T p.(Leu12Pro) [144]

Mutation c.483C>T [145]
Mutation c.697G>A p.(Ala233Thr) [75]

Mutation g.200583493A>T [43]
1q21 Deletion (size 0.4 Mb to 4.6 Mb) [21,23,48]

1q21 Duplication (size 0.26 Mb to 0.36 Mb) [47,48]

1. KIF14 [43]
2. WNT4 is responsible for sex determination and

affects the invagination of coelomic epithelial
cells [121].

WNT4 mutation inhibits repression of ovarian steroid
enzymes and causes abnormal expression of 17α

hydroxylase and hyperandrogenism [75]
3. OR4M2, ZNF816 and PDE11A [23]

2

2p14 Duplication (size-0.23 Mb) [21]
2p14 Mutation c.1315G>A, p.Ala439Thr [53]

2p23.1 Duplication (size-0.21 Mb) [55]
2p24 Deletion (size-4.6 Mb) [55]

2q11.2 Duplication (size-1.3 Mb) [55]
2q24.2 Duplication [42]

2q13 Deletion (size-0.12 Mb) [21]

1. The PAX8 gene encodes a homeodomain signaling
molecule, strongly expressed in the MD [146].

2. Duplication at 2q24.2 of proband MRKHS involved
PLA2R1, ITGB6 and RBMS1

3

3p21 Duplication 0.10 Mb [60]
3p21 Mutation c.861G>A [145]
3q13 Duplication at 3q13. [42]

3q29 Deletion 0.05 Mb [60]
Mutation g.132403615G>A [43]

1. WNT7A encodes secreted signaling proteins, and is
involved in the development of the anterior–posterior
axis in the female reproductive tract. Coded proteins
are responsible for patterning during embryogenesis.

Their role in MA is uncertain.
2. May involve DLGH1, OXTR, NPHP3

4

4q28 Deletion 0.11 Mb [60]
4q32 Deletion 0.34 Mb [60]
4q35.2 Deletion 1.1 Mb [54]

Mutation g79204031G>A and g.15542618C>T [43]

1. FRAS1 (g79204031G>A) [43]
2. CC2D2A (g.15542618C>T) [43]

5 5p11 Deletion 0.40 Mb [62]
5q14.3 Deletion 0.40 Mb [62]

6

6p21 Duplication 0.17 Mb [60]
6q25.1 Duplication 0.42 Mb [60]
6q25.2 Duplication 0.44 Mb [60]
6q11.1 Duplication 0.41 Mb [62]
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Table 2. Cont.

Chromosome
Number Mechanism [Reference] Possible Gene Involved

7

7p15.2 Hypomethylation [32]
7p14 Duplication 1.75 Mb [60]

7q31.2 Deletion 1.8 Mb [54]
Mutation g111503593C>T [43]

1. HOXA5 is a transcriptional regulator of p53 and
progesterone receptor (PGR). Hypomethylation leads

to overexpression, which causes overexpression of
PGR [147]. Ectopic HOXA5 expression at the 5′end of
the cluster might prevent normal differentiation of the

MD or even regression.
2. It most likely involves Abdominal B (AbdB)

homeobox genes (HOX-A9, A10, A11, and A13),
required for differentiation and segmental patterning

of MD [148]
3. HOXA9 is expressed in the region that becomes the

oviduct [149]. Ectopic expression of HOXA5 or
HOXA9 inhibits MD differentiation [150].

4. DOCK4

8 8p23.1 Hypomethylation [85]
8p23.1 Activating mutations [32]

GATA binding protein 4 promotes AMH production
and regulates sex determination and

differentiation [85]. Overproduction of AMH leads
to MA.

10 10q24 Duplication 0.05 Mb [60]

11

11p11.12 Deletion 0.76 Mb (45)
11p 13 Hypomethylation [85]

11p 13 Activating mutation [32]
Mutation g.102985987C>T [43]

1. WT1 is a regulatory factor important for the
transcription of anti-Müllerian hormone (AMH) genes.

It promotes AMH expression and regulates sex
determination and differentiation [85]. Activating the

mutation of the gene for the AMH receptor, or the
receptor, causes excessive production of AMH, leading

to MRKHS [32]
2. DYNC2H1

12

12q13.13 Duplication [42]
12q23 Duplication 0.16 Mb [60]
12q24 Duplication 0.12 Mb [60]

Mutation g.6085324G>A [43]

VWF

13 13q21 Deletion 0.41 Mb [54]

14 14q32.33 Deletion 0.46 Mb [62]
14q32.33 mutation g.23345412G>A [43] LRP10

15
15q21.1 Deletion 0.28 Mb [62]
15q26.3 Deletion 0.54 Mb [54]

Deletions at 15q11.2 [23]

16

16p13.3 Increased expression [40]
16q11.2 Duplication 0.20 Mb [55]

16p11.2 Deletion (size 0.55 Mb to 0.6 Mb) [55]
Splice site mutation c.622-2A>T (g.30100162 T>A) [56]

Mutation c.484G>A(rs56098093) p.Gly162Ser [56]
Mutation c.815G>A p.Arg272Gln [56]

Mutation c.815G>A [54]

1. Genes for IL32 and MEFV.
2. TBX6 is involved in paraxial mesoderm formation
and somitogenesis in human embryos [151]. Deletion

induces MRKHS due to the loss of the
transcription factor.
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Table 2. Cont.

Chromosome
Number Mechanism [Reference] Possible Gene Involved

17

17q12 Deletion (size 1.2 to 1.9 Mb) [21,42,47,48,55,60,62]
17q12 Missense mutation of LHX1 [21,61]

c.790C>G p.(Arg264Gly)
c. c.25dup p.(Arg9Lysfs*25)

17q21-22 mutations
c.28G>T p.Ala10Ser

c.205C>T, p.Arg69Trp [53]
c.*158C>T

17q21-22 Five Missense mutations [54]
c.472C>G p.(Gln158Glu)
c.665G>A p.(Arg222His)
c.722G>A p.(Arg24His)
c.974G>A p.(Arg325His)
c.1029C>A p.(Cys343*)

1. Involves the LHX1(LIM homeobox protein 1) gene,
which is a transcription factor necessary for the

formation of the Müllerian duct-derived uterine and
vaginal epithelia [116].

2. HNF1B is [Pit–Oct–Unc homeodomain-containing
transcription factor that is frequently expressed in the
Müllerian duct during development [152]. It positively

regulates the expression of LHX1, PAX2, and
WNT9B [153].

3. Involves mutations in WNT9B, which acts upstream
of another Wnt4. It is responsible for the caudal

extension of the Müllerian duct and the organization
of the urogenital system [122].

18
18q23 Duplication 0.20 Mb [62]

18p Deletion [154]
18q11.1-q11.2 mutation c.4665T>A, p.Tyr1555

GREB1L is a target gene in the retinoic acid signaling
pathway, which is highly expressed in the developing

fetal human kidney and involved in the early
metanephros and genital development [155].

19 19q13.31 deletion [23] OR2T2 [23]

20 20q13.12 Deletion
Mutations g.941074G>A and g.10393439C>A [43]

1. WISP2 is significant in smooth muscle cell
proliferation and migration, and is induced by

estrogen in the uterus [156]. Estrogen regulates AMH
expression levels [157], and overexposure to estrogen
during development activates AMH promotors [32].

2. RSPO4
3. MKKS

22
22q11 Deletion (size 0.39 Mb to 2.6 Mb) [55,61,71,73]

Duplication (0.6 Mb–3.5 Mb) [47,61,158]
Mutations g.24720297G>A and g.24718408G>A [43]

1. TBX1
2. SPECC1L

X

Xp11.1 Deletion 0.12 Mb [60]
Xp11.3 Duplication 0.24 Mb [60]

Xp22 Duplication (0.07 to 0.36) [21,45,47,48,159]
Xq21.31 Deletion 1 Mb [160]

Xq deletion [161]
Xq22.3 Duplication 0.09 Mb [60]

Xq22.3 Microdeletion at Xp22.33 [42]

1. May involve the PRKX gene, encoding for a
serine/threonine kinase implicated in renal epithelium

morphogenesis [45].
2. May involve the SHOX gene, which encodes a

transcription factor responsible for skeletal growth.
The exact mechanism is unknown.

8,13

t(8;13) (q12;q14) translocation Translocation causes MRKHSS with or without renal
hypoplasia [162].

t(8;13)(q22.1;q32.1) translocation Translocation causes MRKHS with limb, breast, and
urinary functional defects [163]

3,16 t(3;16) (p22.3;p13.3) translocation Translocation causes MRKHS [40,98]

7,14 t(7;14)(q32;q32) translocation Translocation seen in MRKHS [98]

2, 4, 10, 16, 22
and Y c.1066G>A, p.Gly356Arg [53]

ACTR3B encodes a member of the actin-related
proteins and plays a role in the organization of the

actin cytoskeleton [164]. ACTR3B can have
pseudogenes in more than one chromosome.

A glossary of the genes can be found in the supplementary materials; MD = Müllerian duct.

Mutations involve changes in the nucleotide sequence of a short region of a genome.
The number of mutations occurring is usually minimized by the inherent DNA-repair
enzymes in the cell, and mutations persist only when the cellular DNA-repair mechanisms
fail. The mutations on coding regions are of various types. A lot of mutations are point



Int. J. Mol. Sci. 2024, 25, 120 12 of 21

mutations, where one nucleotide is replaced with the other, or it can involve the inser-
tion or deletion of one or a few nucleotides [136]. Insertions of small numbers of extra
nucleotides in the polynucleotide being synthesized, or failure of some nucleotides in the
frame being copied, can alter the entire sequence/codon down the frame. Such proteins are
usually markedly different from the original proteins. This is called a frame-shift mutation.
Silent mutations (also called synchronous) are said to have occurred when changes in
the nucleotide sequence have no effect on the functioning of the genome and they do not
change the encoded amino acid [165]. Missense mutations are changes that alter a codon to
another one, meaning the resultant amino acid is a completely different one. The effects
of missense mutations are difficult to predict. If the resultant amino acid is similar to
the original one or the change is in a non-critical amino acid, the functions are retained.
However, the mutant protein may have a completely different function if the change affects
a critical amino acid or the new amino acid is not similar to the original. On the other
hand, if the mutation results in the stopping of the translation of the mRNA prematurely
because of a stop codon, this is called a nonsense mutation. Nonsense mutation results in
a shortened protein, which can be non-functional and this effect depends on how much
of the polypeptide is lost [165]. There are various types of mutations documented in the
literature, including point mutations, frameshift mutations, and missense mutations in
patients with MA [Table 2]. While some of these changes involve candidate genes directly,
the significance of others is unclear. It is also noteworthy that DNA methylation levels act
as a regulator of gene expression. The presence of DNA methylation, in general, prevents
transcriptional activation of genes at a specific cell type [166,167]. A search for altered
imprinting markers at the 11p15 imprinting control region 1 (ICR1) in 100 patients with
MRKHS failed to detect any defects at that locus [168]. However, it did not rule out the
possibility of imprinting alterations at other locations in the etiology of MRKHS.

In a chromosomal translocation, genetic material is exchanged between two chro-
mosomes. Translocations were detected in five different individuals involving chromo-
somes 8,13, 7,14, and chromosomes 3,16 [40,98,162,163]. These were one individual with
t(8;13)(q22.1;q32.1), two with t(8;13)(q12;q14), and one with t(3;16)(p22.3;p13.3). In the latest
case report of these by Williams et al., about ten potential genes were identified, and four
of significance were further substantiated [66]. As none of the family members in the cases
had similar translocations, these were regarded as sporadic occurrences.

3.3. Fertility Options in Women with Müllerian Agenesis

MA means absolute infertility in females, and the diagnosis can be associated with
considerable psychological trauma [20]. Hence, the management requires a multidisci-
plinary approach including gynecologists, fertility specialists, psychologists, clinical nurse
specialists, support groups, and counselors [169]. Options for parenthood in these women
include surrogacy and uterine transplantation if parents seek a biologically related baby.
Adoption is an option if a biologically related baby is not desired in the first place or the
options have failed, are unacceptable, or contraindicated [20].

Gestational surrogacy is a popular option in women with AUFI, especially with func-
tioning ovaries, as in MA. The oocytes of the women with MA are collected and fused
with the partner’s spermatozoa through in-vitro fertilization. The resulting embryo is then
transferred to the uterus of the gestational surrogate. The couple then legally adopts the
child from the mother after birth. Legal parenthood of a biologically related child is thus
achieved [170]. The woman carrying the pregnancy is called a gestational surrogate. The
surrogate can be a close relative of the couple (altruistic) or unrelated, which would be
a commercial surrogate. A study by Petrozza et al. did not find evidence of inheritance
or congenital anomalies in babies born through surrogacy [96]. However, there are legal
implications for this method, which can vary in different countries. Surrogacy as such or
specific surrogacy may not be legally permitted in specific countries due to sociocultural
issues [20,171,172]. Countries can have different policies regarding commercial or altru-
istic surrogacy [173,174]. In the United Kingdom, surrogacy is permitted, but surrogacy
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agreements are not legally enforceable. The surrogate remains the child’s legal mother
from birth, up until the parenthood is legally transferred to the intended parents. This is
generally carried out after 6 weeks of birth. In case of disputes, the surrogacy arrangement
is not legally enforceable [20].

Uterine transplant (UT) involves transplantation of the uterus with the cervix, ligamen-
tous supports, and blood vessels. This results in restoring the natural anatomy. Successful
pregnancy and childbirth after a UT ensure conditions akin to natural biological parenthood,
which is acceptable both legally and socially. The first live birth following UT was reported
in Sweden in 2014 [175]. Since then, numerous case reports and series have been published.
A recent review has reported 18 live births out of 45 cases of UT [176]. Typically, the
whole process involves procuring a uterus from a live or deceased donor, transplantation,
immunosuppression, achieving pregnancy by embryo transfer, and delivery by cesarean
section followed by hysterectomy. While live organ donation involves additional risks to
the donor due to operative procedures, the clinical outcomes are speculated to be better.
Immunosuppression after UT is carried out with a non-teratogenic immunosuppressive
regimen and monitored for graft rejection by cervical biopsies [7,177,178]. Embryo transfer
is performed using a single euploid blastocyst after 6–12 months [176]. The ensuing preg-
nancy is then monitored following a protocol for high-risk pregnancy care, and delivered
by cesarean section at 37 weeks of gestation, or sooner if indicated. Vaginal delivery is
generally not advocated due to concerns about the structural integrity of the graft and
sufficiency of vascular anastomoses during contractions. Depending on the reproductive
expectations, further embryo transfers can be performed. The uterus is then removed
and immunosuppression is stopped to prevent further complications [179]. Although the
reproductive scenario in women with MA looks encouraging with UT, it involves ethical
issues encompassing both assisted reproduction and organ transplantation [180–182].

Adoption is an option for parenthood in couples with MA. It is a legal proceeding that
creates a parent–child relationship between persons not related by blood. Adoption laws
vary from country to country, and adoption is generally a long process. While it can be
legally and socially acceptable, the child is not biologically related to the parents.

4. Conclusions

MA results in absolute uterine factor infertility. The genetic basis of MA is yet unclear
and etiology is mostly multifactorial. Although many candidate genes have been identified,
more studies are required to substantiate the evidence. With the advancing options for
parenthood of biologically related offspring, further studies will be possible to identify
candidate genes, accurate mechanisms of MA, and inheritance of this condition.
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