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Abstract: Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States,
with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis
and treatment of CRC in recent years, genetic heterogeneity of CRC—the culprit for possible CRC
relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective
therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic
and epigenetic changes are well recognized to be responsible for the stepwise development of
CRC malignancy. In this review, we focus on detailed genetic alteration information about the
nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such
as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2
(ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we
provide deep insight into different CRC research models, with a particular focus on patient-derived
xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic
alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic
changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing
its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB
signaling may hold great promise for novel therapeutic development in CRC. Future endeavors
may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell
(hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.)
to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in
CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing
Biobanks, etc., may further pave the way for the development of innovative personalized medicine to
treat CRC in the future.
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1. Introduction
1.1. Overview of Colorectal Cancer (CRC)

CRC comprises colon and rectal cancers and is one of the most aggressive forms of
cancers [1]. According to the American Cancer Society, about 52,000 people are estimated
to die from CRC in 2023, making it the third leading cause of cancer mortality in the
United States [1]. Notably, considerable advances have been made in the screening and
early diagnosis of CRC, resulting in a 60–90% five-year overall survival rate for both local
and metastatic CRC patients, particularly for rectosigmoid colon and left colon cancer [2].
Upon diagnosis, patients typically undergo surgical resection and are administered a single
or a combination chemotherapeutic regimen, which comprises 5-fluorouracil, oxaliplatin
(OX), irinotecan, and capecitabine [3,4]. The challenges are the genetic heterogeneity of
CRC which lead to possible relapse and drug resistance. Thus, there is an urgent need to
develop more effective therapeutics to overcome the aforementioned challenges in CRC
treatment strategies [5].

1.2. Model of CRC Initiation and Progression

Genetic and epigenetic alterations underlie the stepwise development of CRC ma-
lignancy. The development of CRC begins as an irregular colonic crypt evolving into a
polyp, which then accumulates genetic changes to progress into CRC over 10–15 years [6].
The most common pathway is the adenoma–carcinoma sequence. According to the Vo-
gelstein model, sporadic development of CRC occurs when normal colorectal epithelia
are transformed into an early adenoma through the silencing of adenomatous polyposis
coli (APC), a known negative regulator of the Wnt signaling pathway. The hypoactivity of
APC results in the stabilization of β-catenin, allowing the enhanced expression of genes
involved in cellular differentiation, growth, and cell cycle [7]. Following the development
of a dysplastic/adenomatous colorectal epithelia, the mutation of KRAS and inactivation
of TP53, alongside other genetic and epigenetic changes, lead to the development and
subsequent progression of a colorectal adenocarcinoma [8]. Another less common pathway
for CRC development is the serrated neoplasia pathway, which encompasses the progres-
sion of a hyperplastic/sessile serrated polyp to a microsatellite stable/instable (MSS/MSI)
carcinoma [9]. Particularly, MSI, which is detected in about 15% of CRC patients, is caused
by a deficiency in the activity of DNA mismatch repair (MMR) proteins, such as MSH2,
MLH1, PMS2, PMS1, and MSH6 [10]. Some of the MSI patients’ tumors contain mutations
that either developed sporadically or are passed down hereditarily (Lynch syndrome CRC).
Also, epigenetic instability, through hypermethylation of the CpG Island contributes to
CRC tumorigenesis. This subset of CRC, known as the CpG island methylator phenotype
(CIMP), is characterized by the silencing effect of methylation at the DNA of several tumor
suppressor genes, thus leading to their activation [11] (Figure 1).
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expression of genes involved in cellular differentiation, growth, and cell cycle. Following the devel-
opment of a dysplastic colorectal epithelia, the mutation of KRAS and inactivation of TP53, alongside
other genetic and epigenetic changes, lead to the development and subsequent progression of CRC.

1.3. Known Genetic Changes in CRC

CRC is often characterized by the changes in its genetic landscape. The classification
of CRC based on its predominant molecular pathways includes a chromosomal instability
pathway, a microsatellite instability pathway, and a CpG island methylator phenotype.
These CRC subtypes are associated with alterations in a specific set of tumor suppres-
sors and oncogenes [12]. For example, as aforementioned, the APC gene mutation is a
well-established driver of CRC initiation. The inactivation of APC enhances the activity of
cyclin D1, c-myc, c-Jun, which promotes cellular proliferation [13]. Furthermore, mutant
KRAS, found in 30–50% of CRC tumors, influences the activity of the RAF/MEK/ERK
and PI3K/PTEN/AKT signaling pathways, leading to cascade of events that fuel worse
overall survival [8]. For example, the aberrant activation of the RAF/MEK/ERK pathway
by mutant KRAS leads to the upregulation of insulin-like growth factor-I receptor (IGF-IR),
thus promoting CRC metastasis to the liver [14]. KRAS mutation also impacts normal
cellular polarity, protein synthesis, angiogenesis, and cellular death functions in CRC cell
lines and patients [15]. Notably, the mutation of valine (V) to glutamic acid (E) at residue
600 on BRAF (BRAFV600E), a kinase downstream of KRAS, is found in microsatellite
stable CRC patients and contributes to poor clinical outcomes, including the resistance to
anti-epidermal growth factor receptor (EGFR) therapy [16]. Somatic mutations of phos-
phatidylinositol 3-kinase (PI3KCA) are found in ~30% of CRC and encompass the loss of
PTEN, and the amplification of insulin receptor substrate 2 (IRS2), AKT, and PAK4 [17].
Similarly, the mutation and loss of TP53 are reported in up to 75% of CRC cases. TP53 loss
compromises the cell cycle regulation in CRC through the suppression of BubR1, p21, and
p27 activities [7]. Also, the loss of heterozygosity at the long arm of chromosome 13 (18q
LOH) is found in 80% of CRC patients [18]. Some of the key tumor suppressor genes that
are affected by this chromosomal aberration include small mothers against decapentaplegic
homolog (SMAD) 2, SMAD4, netrin receptor DCC (DCC), and Cdk5. Notably, SMAD2 and
4 are terminal effectors of the transforming growth factor (TGF)-β signaling pathway, and
they play a role in suppressing protein translation, cellular growth, and proliferation, and
epithelial to mesenchymal transition (EMT) [18]. Collectively, there are several other genetic
alterations that drive CRC development and progression, and some others remain to be
uncovered. Subsequently, through in-depth sequencing strategies, scientists will be able to
better stratify CRC patients genetically to provide tailored effective therapeutics [19,20].

2. NF-κB Signaling in CRC

NF-κB is a master regulator of inflammation and plays a critical role in triggering the
expression of tumor-promoting genes [21]. NF-κB comprises five transcription factors—p65
(RelA), RelB, c-Rel (Rel), NF-κB1 (p50/p105), NF-κB2 (p52/p100)—which dimerize and
bind to gene promoters to facilitate NF-κB transcriptional activity. Other major compo-
nents of the NF-κB signaling include a multi-subunit IκB kinase (IKKα, β, and γ) and the
inhibitors of NF-κB (IκBα, IκBβ, and IκBε) [22]. Based on the sets of stimuli received and
the series of signaling cascades that result intracellularly, the NF-κB signaling pathway
is divided into two pathways: canonical and non-canonical pathways. In the canonical
pathway, proinflammatory signals, such as cytokines, growth factors, pathogen-associated
molecular patterns (PAMPs), etc., lead to the phosphorylation of IKKβ, thus causing its
activation. The activated IKKβ further phosphorylates IκBα, resulting in its proteasomal
degradation. The degradation of IκBα exposes the nuclear localization motif on NF-κB,
leading to its nuclear translocation and subsequent induction of gene transcription [23].
NF-κB’s primary effectors in the canonical pathway include p65/p65, c-Rel/c-Rel, p65/p50,
and c-Rel/p50 [24]. Together, their activities affect key cellular functions such as inflamma-
tion, cell survival, and cell death [25]. On the other hand, non-canonical NF-κB signaling
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involves the activation of receptors such as the cluster of differentiation 40 (CD40) recep-
tor, the lymphotoxin-β receptor (LTβR), and BLyS receptor 3 (BR3) receptors, which then
activate NF-κB inducing kinase (NIK) and IKKα. Activated IKKα phosphorylates p100,
causing partial proteasomal degradation to produce p52, which predominantly associates
with RelB and translocates into the nucleus to bind to their cognate genes and promote
transcription [26]. Quite different from the canonical pathway, the majority of the genes
activated by this non-canonical pathway are involved in biological functions like lym-
phoid organogenesis, B-cell survival and maturation, dendritic cell activation, and bone
metabolism [27] (Figure 2).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 20 
 

 

inflammation, cell survival, and cell death [25]. On the other hand, non-canonical NF-κB 
signaling involves the activation of receptors such as the cluster of differentiation 40 
(CD40) receptor, the lymphotoxin-β receptor (LTβR), and BLyS receptor 3 (BR3) receptors, 
which then activate NF-κB inducing kinase (NIK) and IKKα. Activated IKKα phosphory-
lates p100, causing partial proteasomal degradation to produce p52, which predominantly 
associates with RelB and translocates into the nucleus to bind to their cognate genes and 
promote transcription [26]. Quite different from the canonical pathway, the majority of 
the genes activated by this non-canonical pathway are involved in biological functions 
like lymphoid organogenesis, B-cell survival and maturation, dendritic cell activation, and 
bone metabolism [27] (Figure 2). 

 
Figure 2. Schematic illustration of simplified NF-κB pathways. (Left): Canonical pathway: Upon 
stimulation by various factors, like cytokines or pathogen-associated molecular pattern molecules 
(PAMPs), IKK complex will be activated, leading to the phosphorylation of IκBα and its subsequent 
degradation. This will free up the p65/p50 heterodimer, which will then translocate into the nucleus, 
bind to κB-binding site, and trigger the transcription of NF-κB dependent genes. (Right): Non-ca-
nonical pathway. Upon stimulation by various factors, like lymphotoxin (LT) β or B lymphocyte 
activating factor of the tumor necrosis factor family (BAFF), NF-κB-inducing kinase (NIK) will be 
activated, leading to the phosphorylation and activation of IKKα, and the subsequent processing of 
p100 (p52 precursor)/RelB into mature p52/RelB heterodimer. This p52/RelB heterodimer will then 
translocate into the nucleus, bind to the κB-binding site, and trigger the transcription of NF-κB de-
pendent genes. Symbol P: phosphorylation 

Notably, the canonical NF-κB signaling pathway has been highly implicated in CRC 
tumorigenesis as evident from its aberrantly hyperactivated signaling in ~50% of CRC pa-
tients [28]. Ping and colleagues reported that IL-1β activated NF-κB signaling promotes 
CRC growth via increased expression in miR-181a, which negatively regulates PTEN ex-
pression [29]. Several studies have also demonstrated the critical role of NF-κB in CRC cell 
proliferation, anti-apoptosis, inflammation, metastasis, and therapeutic resistance via up-
regulation of oncogenes that drive those biological functions [30]. As NF-κB is an 

Figure 2. Schematic illustration of simplified NF-κB pathways. (Left): Canonical pathway: Upon
stimulation by various factors, like cytokines or pathogen-associated molecular pattern molecules
(PAMPs), IKK complex will be activated, leading to the phosphorylation of IκBα and its subsequent
degradation. This will free up the p65/p50 heterodimer, which will then translocate into the nucleus,
bind to κB-binding site, and trigger the transcription of NF-κB dependent genes. (Right): Non-
canonical pathway. Upon stimulation by various factors, like lymphotoxin (LT) β or B lymphocyte
activating factor of the tumor necrosis factor family (BAFF), NF-κB-inducing kinase (NIK) will be
activated, leading to the phosphorylation and activation of IKKα, and the subsequent processing
of p100 (p52 precursor)/RelB into mature p52/RelB heterodimer. This p52/RelB heterodimer will
then translocate into the nucleus, bind to the κB-binding site, and trigger the transcription of NF-κB
dependent genes. Symbol P: phosphorylation.

Notably, the canonical NF-κB signaling pathway has been highly implicated in CRC
tumorigenesis as evident from its aberrantly hyperactivated signaling in ~50% of CRC
patients [28]. Ping and colleagues reported that IL-1β activated NF-κB signaling promotes
CRC growth via increased expression in miR-181a, which negatively regulates PTEN
expression [29]. Several studies have also demonstrated the critical role of NF-κB in CRC
cell proliferation, anti-apoptosis, inflammation, metastasis, and therapeutic resistance
via upregulation of oncogenes that drive those biological functions [30]. As NF-κB is an
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important node of signaling that drives CRC, it is important to dissect how mutations and
other genetic/epigenetic aberrations directly influence NF-κB signaling components and
their activity in CRC.

3. Genetic Changes of NF-κB Signaling in CRC

Both NF-κB family members and the regulators of the NF-κB signaling pathway have
been identified to harbor mutations in CRC patients. Using a large group of 348 CRC
patients’ samples from CBioportal [31,32], we will summarize some protein mutations in
NF-κB and its regulators in CRC below.

3.1. Known NF-κB Genetic Mutations in CRC
3.1.1. Genetic Alterations

As summarized in Table 1 [31,32], different components of NF-κB family members
have various gene alterations, like mutations, deletion, amplification, etc., in CRC.

Table 1. Mutations observed on NF-κB components among 348 colon cancer patients (Data resource:
cBioPortal for Cancer Genomics) [31,32].

Gene Symbol Gene Description Protein Protein
Mutation Mutation Type Copy Number

Rel C-Rel proto-oncogene,
NF-κB subunit

Rel

R22C Missense Diploid
G288S Missense Diploid
R108Q Missense Diploid
G229D Missense Diploid

X285_splice Splice Diploid

RelA RelA proto-oncogene,
NF-κB subunit

RelA (p65)

R166W Missense Diploid
D446H Missense Diploid
N139del IF del Diploid

H487Pfs*4 FS ins Diploid
P521L Missense Diploid
T357A Missense Diploid
Q287* Nonsense ShallowDel

RelB
RELB Proto-Oncogene,

NF-κB Subunit RelB

A29V Missense Diploid
P314L Missense Gain
R434W Missense Diploid
T494M Missense Diploid

G530Afs*5 FS del Diploid
E53* Nonsense Diploid

P482L Missense Diploid
P482L Missense ShallowDel
V379I Missense Diploid
G522R Missense Diploid
Y539H Missense Diploid
V353M Missense Diploid
C306Y Missense Diploid

NF-κB1 NF-κB subunit 1 p105/p50

R613C Missense Diploid
A901T Missense Diploid
G477V Missense Diploid
D436G Missense Diploid

NF-κB2 NF-κB subunit 2 p100/p52

Y294Ifs*4 FS del Diploid
A514T Missense Diploid
A867V Missense Diploid
K252N Missense Diploid
T806M Missense Diploid
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Table 1. Cont.

Gene Symbol Gene Description Protein Protein
Mutation Mutation Type Copy Number

NF-κB2 NF-κB subunit 2 p100/p52

L474M Missense Diploid
A121T Missense Diploid
K252M Missense Diploid

M1? Nonstart Diploid

FS ins: Frame shift insertion; FS del: Frame shift deletion; IF del: In frame deletion; ShallowDel: Shallow deletion;
Symbol *: Nonsense mutations.

For instance, a comprehensive analysis of 348 colon cancer samples revealed that
approximately 2.5% of the cases exhibited gene alterations in the RelA protein. As
shown in Table 1 and Figure 3A, seven different types of protein mutations have been
identified on RelA, the large subunit of NF-κB, in 348 CRC patients. They are R166W
(Arginine–Tryptophan mutation), D446H (Aspartic acid–Histidine mutation), N139del (As-
paragine deletion), etc. These mutations include missense, deletion, insertion, or nonsense
mutations. The copy number of gene is either diploid, or shallow deletion. Among these
mutations, two are located in the rel homology domain (RHD) (Figure 3A), which mediates
the crucial function of DNA contact and homo- and heterodimerization.
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Figure 3. Genetic alterations on NF-κB family members RelA and RelB. (A) Schematic diagram
of protein mutations on RelA identified in CRC patients. Data resource: cBioPortal for Cancer
Genomics [31,32]. Note: RelA is 551 amino acids (aa) in length. Abbreviation: RHD: Rel ho-
mology domain. (B) Putative copy number alterations from Genomic Identification of Signifi-
cant Targets in Cancer (GISTIC) for RelB. Data resource: cBioPortal for Cancer Genomics [31,32].
Symbol *: Nonsense mutations.

Interestingly, compared to the RelA protein, another NF-κB family member, RelB,
exhibited more frequency of gene alterations. The analysis of 348 colon cancer samples
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revealed that approximately 5% of the cases exhibited gene alteration in the RelB protein.
As shown in Table 1, more than a dozen various types of protein mutations have been
identified on RelB in 348 CRC patients. They are P314L (Proline–Leucine mutation), T494M
(Threonine–Methionine mutation), Y539H (Tyrosine–Histidine mutation), etc. These mu-
tations include missense, deletion, or nonsense mutations. The copy number of gene is
diploid, gain, shallow deletion, or amplification (Table 1, Figure 3B).

Other NF-κB family members, like Rel, NF-κB1, and NF-κB2, have been identified
with various types of gene alterations. The overall mutation types identified among
important NF-κB signaling components are listed in Tables 1–3 (Data resource: cBioPortal
for Cancer Genomics) [31,32]. For instance, the protein mutations types identified for Rel,
RelA, RelB, NF-κB1, and NF-κB2 are 5, 7, 13, 4, and 9, with a total number of 38 protein
mutation variants identified (Table 3). The gene alteration frequencies are in the same
order, 2.5, 2.5, 5.0, 1.8, and 3.0%, respectively, with a total 14.8% alteration frequency among
these 5 NF-κB family members. These data suggest the high genetic alteration rate of
NF-κB family members in CRC patients, highlighting the genetic heterogeneity of NF-κB
family members alterations in CRC, and suggesting potential implications for the proteins’
functional activities in CRC.

Table 2. Mutations observed on regulators of the NF-κB signaling pathway among 348 colon cancer
patients (Data resource: cBioPortal for Cancer Genomics) [31,32].

Gene Symbol Gene Description Protein Protein
Mutation Mutation Type Copy Number

Chuk (IKBKA) Inhibitor of nuclear factor
κB kinase subunit α

IKKα

E82* Nonsense Diploid
P700del IF del Diploid

X577_splice Splice Diploid
E513* Nonsense Diploid
L50P Missense ShallowDel

IKBKB
Inhibitor of nuclear factor

κB kinase subunit β
IKKβ

R582Q Missense Diploid
P551L Missense Diploid
A454T Missense Diploid

N225Tfs*25 FS del Gain
Q438H Missense Gain
A481V Missense Diploid

X159_splice Splice Gain

IRAK1 Interleukin 1 receptor
associated kinase 1

IRAK1

R51C Missense Diploid
T383A Missense Diploid
T234M Missense Diploid
A78T Missense Diploid
R61C Missense Diploid

E259D Missense Diploid
C43R Missense Diploid

KDM2A Lysine demethylase 2A KDM2A

P597Afs*34 FS ins Diploid
T162M Missense Diploid
N1083S Missense Diploid
H452R Missense Diploid
A576S Missense Diploid
P729L Missense Diploid
R733G Missense Diploid
S416G Missense Diploid

MAP3K7 Mitogen-activated protein
kinase kinase kinase 7

MAP3K7 (TAK1)

R226W Missense Diploid
T169Dfs*7 FS ins Diploid

R238Q Missense Diploid
L255V Missense Diploid
D488V Missense Diploid
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Table 2. Cont.

Gene Symbol Gene Description Protein Protein
Mutation Mutation Type Copy Number

MAP3K7 Mitogen-activated protein
kinase kinase kinase 7

MAP3K7 (TAK1)

R248Q Missense Diploid
P256S Missense Diploid
D343Y Missense Diploid
R463K Missense Diploid

NFKBIA NF-κB inhibitor α IκBα
E41A Missense Diploid

P147H Missense Diploid

ODAD2
Outer dynein arm docking

complex subunit 2 ODAD2

T9M Missense Diploid
R841C Missense Diploid

R1032C Missense Diploid
K304T Missense Diploid
I517T Missense Diploid
L813I Missense Diploid
A29V Missense Diploid

A556V Missense Diploid
L298* FS del Gain
E626* Nonsense Diploid
I543T Missense Diploid
A445E Missense Diploid
L154I Missense Diploid

G536D Missense Diploid
A820S Missense ShallowDel
S661A Missense Diploid
S743Y Missense Diploid

PRMT5
Protein arginine

methyltransferase 5 PRMT5

H47Y Missense Diploid
V413L Missense Diploid
R256Q Missense Diploid
Y535S Missense Diploid
L287V Missense Diploid
E57K Missense Gain

TAB1
TGFβ activated kinase 1

(MAP3K7) binding protein 1 TAB1

Y293C Missense Diploid
E96D Missense Diploid

A310G Missense Diploid
L361Q Missense Diploid

TAB2
TGF-β activated kinase 1

(MAP3K7) binding protein 2 TAB2

A672T Missense Diploid
R579I Missense Diploid
N211K Missense Diploid
R72C Missense Diploid

A182V Missense Diploid

TRAF2 TNF receptor associated
factor 2

TRAF2

P9Lfs*77 FS del Diploid
P9Lfs*77 FS del Amp
E122K Missense Diploid
A3T Missense Diploid

A494V Missense Diploid

Amp: Amplification; FS ins: Frame shift insertion; FS del: Frame shift deletion; IF del: In frame deletion;
ShallowDel: Shallow deletion; Symbol *: Nonsense mutations.
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Table 3. Protein Mutation Rate of NF-κB family members or representative NF-κB pathway regulators
among 348 CRC patients (Data resource: cBioPortal for Cancer Genomics) [31,32].

Classification Protein
Protein

Mutation
Types

Alteration
Frequency, % Total Protein Mutation Types Total Alteration Frequency, %

NF-κB family
members

Rel 5 2.5

38

113

14.8

53.7

RelA (p65) 7 2.5
RelB 13 5.0

P105/p50 4 1.8
P100/p52 9 3.0

NF-κB
pathway

regulators

IKKα 5 1.4

75 38.9

IKKβ 7 6.0
IRAK1 7 4.0

KDM2A 8 2.8
MAP3K7 9 4.0
NFKBIA 2 1.1
ODAD2 17 7.0
PRMT5 6 5.0
TAB1 4 1.8
TAB2 5 3.0

TRAF2 5 2.8

3.1.2. Polymorphism in the NF-κB1 Gene in CRC

In addition to protein mutations among NF-κB family members, other genetic changes,
such as polymorphism have also been linked to CRC progression. Despite the fact that
NF-κB can form various pairs of molecules, the prototypical one is the heterodimer of p65
(RelA)/p50. p50 is coded by the NF-κB1 gene on chromosome 4q23-q24. This p65/p50
heterodimer plays a key role in NF-κB function [33–35]. In several cancer types, including
CRC, lung cancer, blood cancer, and pancreatic cancer, etc., researchers have observed
constitutive activation of this particular family [36–39].

Importantly, a recent study has detected a genetic variation within the promoter seg-
ment of the NF-κB1 gene. This genetic variation entails a 4-base pair (bp) insertion/deletion
(94ins/delATTG) positioned between two presumed critical regulatory components in the
promoter, specifically AP-1 and κB [36]. Interestingly, the research found that people who
have two copies of this deletion (94del/delATTG) are more likely to develop ulcerative
colitis, a chronic inflammatory bowel disease predominantly affecting the colon. If left
untreated, ulcerative colitis-related inflammation in the colon can result in an increased risk
in developing CRC. The study observed that the deletion variant of the 94ins/delATTG
polymorphism in the NF-κB1 gene’s promoter region, whether homozygous (DD) or het-
erozygous (WD), was linked to an increased risk in CRC among Swedish patients, including
those with both unselected and sporadic forms of the disease [36,40].

Taken together, numerous evidences have demonstrated the high mutation rate of
NF-κB family members in CRC. Further investigation is warranted to elucidate the specific
biological significance and clinical implications of these diverse NF-κB mutations and
mRNA expression patterns in the context of CRC progression and treatment response. Such
insights may provide valuable avenues for targeted therapies and personalized approaches
in managing CRC patients with these specific molecular features.

3.2. Known Genetic Changes of NF-κB Signaling Regulators
3.2.1. Overall Genetic Alterations

In addition to the NF-κB family members mentioned above, there are many known
NF-κB signaling pathway regulators that may harbor genetic alterations in CRC patients as
well. It is worth noting that both negative regulators of NF-κB subject to loss-of-function
mutations or positive regulators of NF-κB affected by gain-of-function mutations may lead
to NF-κB constitutive activation.
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As shown in Table 2, representative positive regulators such as Inhibitor of nuclear
factor κB kinase subunit α (Chuk, also named IKBKA), Inhibitor of nuclear factor κB ki-
nase subunit β (IKBKB), Interleukin 1 receptor associated kinase 1 (IRAK1), Mitogen-
activated protein kinase kinase kinase 7 (MAP3K7), Protein arginine methyltransferase 5
(PRMT5) [34,41–43], TGFβ activated kinase (MAP3K7) binding protein 1 (TAB1), TAB2,
and Tumor necrosis factor receptor associated factor 2 (TRAF2) have 5, 7, 7, 9, 6, 4, 5, and
5 different types of protein mutation variants, respectively. In the same order, their individ-
ual genetic alteration frequencies are 1.4, 6.0, 4.0, 4.0, 5.0, 1.8, 3.0, and 2.8% (Tables 2 and 3)
(Data resource: cBioPortal for Cancer Genomics) [31,32], with IKBKB and PRMT5 having
the top 2 gene alteration frequency.

In terms of negative regulators, such as Lysine demethylase 2A (KDM2A, also named
F-box and leucine-rich repeat 11, FBXL11) [35,39], NF-κB inhibitor α (NFKBIA, also named
IκBα), and Outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo
repeat-containing 4, ARMC4) [44], they have 8, 2, and 17 different types of mutant vari-
ants. Accordingly, their genetic alteration frequencies are 2.8, 1.1, and 7.0%, among
which ODAD2 has the most diverse mutants and highest geneticalteration frequency
(Tables 2 and 3).

Together, there are total 75 protein mutation types and 38.9% of genetic alteration
frequency in these representative NF-κB positive and negative regulators. With additional
38 mutation types, and 14.8% genetic alteration frequency of NF-κB family members, it
consists of a strikingly high number of mutation types (113 types) and high frequency
(~53.7%) of genetic alterations in these 348 CRC patients studied (Table 3). In addition
to the representative NF-κB regulators listed in Table 2, there are more NF-κB pathway
regulators that are not included in Table 2, like myeloid differentiation primary response
88 (MyD88), IKKγ, TNFα induced protein 3 (TNFAIP3, also named A20), TNF receptor
(TNFR)-associated factor 1 (TRAF1), TRAF6, etc. Thus, the percentage of genetic alterations
from factors that can affect NF-κB signaling shall be much more than the 53.7% we count
here. Therefore, the clinical data from these 348 CRC patients strongly suggest the pivotal
role of genetic variations in both NF-κB family members and NF-κB pathway regulators
may play in CRC initiation, progression, and prognosis [32].

Below, we will use PRMT5 as an example of a positive regulator, and ODAD2 as an
example of a negative regulator to illustrate their genetic alterations in CRC in detail.

3.2.2. Genetic Alterations of NF-κB Positive Regulator, PRMT5 in CRC

PRMT5, a type II PRMT enzyme, regulates gene expression, cell cycle, and protein
function through arginine methylation [45]. PRMT5 is a critical player in various can-
cer types, including colorectal cancer, and its increased expression is common in these
malignancies [34,41–43,46,47]. Overexpression in colorectal cancer suggests its role in onco-
genesis via epigenetics and cell cycle, highlighting the potential for targeted therapy [43,45].
PRMT5 mutations are prevalent across a spectrum of cancer types, with a pronounced
prevalence notably in CRC, pancreatic cancer, etc. This underscores their substantive role in
the pathogenesis of these specific cancers, suggesting their potential as pivotal drivers [45].
Consequently, understanding the prevalence and significance of PRMT5 mutations holds
promise for informing novel therapeutic interventions targeting the molecular underpin-
nings of skin and colorectal cancer. Notably, among the PRMT1-9 genes, PRMT5 gene is
unique due to its higher occurrence of missense mutations. This suggests that changes
in the coding sequence of PRMT5 are more frequent in cancers, implying a potential role
in cancer development [48]. Based on an analysis employing the Catalogue of Somatic
Mutations in Cancer (COSMIC), a comprehensive collection indicates a total of 338 PRMT5
mutations across various cancer types. Among these, 239 mutations are positioned in
coding regions, while 99 are located in non-coding regions [48].

Ongoing extensive research is dedicated to deciphering the intricate mechanisms
by which PRMT5 influences tumor formation, offering promising avenues for develop-
ing targeted and effective cancer treatments. PRMT5 has been previously shown to be
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overexpressed in approximately 75% of CRC patient tumor samples and negatively cor-
related with CRC patient survival. PRMT5 catalyzes the methylations of some proteins
including NF-κB and Y-box binding protein 1 (YBX1), both are key transcriptional and
translational regulators widely recognized as oncogenic drivers in various solid tumors,
including CRC [49,50]. Our study has shown the impact of the Serine–Alanine mutant of
PRMT5 (S15A) in HEK293 and CRC cells (HT29, DLD1, and HCT116) to understand its
effect on NF-κB activation [49]. The results confirmed that S15 phosphorylation is crucial
for PRMT5-mediated NF-κB activation. Overexpressing the S15A mutant significantly
reduced NF-κB activation, indicating its inhibitory role. Moreover, the mutation disrupted
the interaction between PRMT5 and p65 and led to decreased PRMT5 methyltransferase
activity upon IL-1β stimulation.

Based on the analysis of 348 colon cancer patient samples using data from the CBio-
Portal [31,32], approximately 5.0% were found to harbor genetic alterations on the PRMT5
gene. Among these, six notable missense mutations were identified. They are H47Y
(Histidine–Tyrosine); E57K (Glutamate–Lysine); R256Q (Arginine–Glutamine); L287V
(Leucine–Valine); V413L (Valine–Leucine), and Y535S (Tyrosine–Serine) (Figure 4A). All of
these are missense mutations. Additionally, there are cases of gene copy number gain.
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This finding highlights the genetic heterogeneity within the studied population. The
specific missense mutations at the residues listed above suggest potential functional im-
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plications that may contribute to the pathobiology of CRC. Further investigation into the
consequences of this mutation and its role in tumorigenesis could offer valuable insights
into the molecular mechanisms underlying CRC, potentially paving the way for targeted
therapeutic approaches in personalized treatment strategies for affected patients [31,32].

In fact, PRMT5 currently is viewed as a hot therapeutic target in cancer. Several
pharmaceutical companies are developing inhibitors to target this enzyme [42,43].

3.2.3. Genetic Alterations of NF-κB Negative Regulator, ODAD2 in CRC

Recently, using the powerful validation-based insertional mutagenesis (VBIM) tech-
nique established by our laboratory previously [39,44], we discovered outer dynein arm
docking complex subunit 2 (ODAD2) (also named armadillo repeat-containing protein 4
(ARMC4), a rarely studied protein known to date, as a novel negative regulator of NF-κB
in CRC. We showed that a high expression of ODAD2 downregulated the expression
of NF-κB-dependent genes, dramatically reduced NF-κB activity, cellular proliferation,
anchorage-independent growth, and migratory ability in vitro, and significantly decreased
xenograft tumor growth in vivo. Importantly, the lower ODAD2 expression in patient
tumors than normal tissues indicate its potential tumor suppressor function in CRC. Col-
lectively, we uncovered a completely new facet of ODAD2 function by identifying it as a
novel NF-κB negative regulator, thus uncovering ODAD2 as a potential new therapeutic
target in CRC [44].

Impressively, based on the analysis of 348 colon cancer patient samples using data
from the CBioPortal [31,32], approximately 7.0% of patients were found to harbor genetic
alterations of ODAD2 (Table 3). Among these, 17 notable protein mutations were identi-
fied. For instance, mutations include L298* FS del (Leucine frame shift deletion), A556V
(Alanine–Valine), and A820S (Alanine–Serine) missense mutation with ShallowDel (Shallow
deletion), etc. (Figure 4B, Table 2). The types of gene alterations include missense mutation,
deep deletion, amplification, etc. (Figure 4C). These data suggest that genetic alteration in
ODAD2 could be an important factor contributing to CRC initiation and progression.

4. Research Models CRC

As aforementioned, scientists have uncovered different genetic alterations along NF-κB
signaling in CRC patients [31,32]. It would be of great importance if scientists could further
utilize these patients’ samples to investigate their mechanistic roles in CRC initiation and
progression, and build up a platform to develop novel drugs to treat CRC, and so on. The
rapid advances in CRC research models in recent years have made all these applications
possible. In the past decades, the field of CRC research has witnessed the emergence
of models such as immortalized cancer cell lines, genetically engineered mouse models
(GEMMs), cell line-derived xenografts (CDX), patient-derived xenografts (PDX), organoid
cultures, and humanized mice, which have contributed distinct insights into the disease’s
mechanisms, progression, and therapeutic treatments [51–57]. We have summarized the
pros and cons of each model in Table 4. Among these models, PDX or PDX in humanized
mice and organoid cultures, in particular, are emerging as more reliable preclinical CRC
models. Thus, we will elaborate more detail on these two models below.

Table 4. Advantages and disadvantages of different CRC models.

Model Advantages Disadvantages Reference

Immortalized cancer
cell lines

• Practical, inexpensive
• Large quantity, permit amplification,

experimental replication, and storage

• Accumulate genetic aberrations
• Lack invasiveness, metastasis,

tumor heterogeneity, and TME
[58,59]
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Table 4. Cont.

Model Advantages Disadvantages Reference

GEMMs

• Genetically defined
• Evaluate the functions of specific genes and

molecular pathways of tumorigenesis
• Mimic TSI

• Lack invasiveness, metastasis, and
tumor heterogeneity

• Time consuming, expensive
[51,52,58]

CDXs

• Cell lines are generally available and
modifiable

• Fast, inexpensive
• High take rates

• Do not reflect histopathological
traits of human tumors

• Lack invasiveness, metastasis,
tumor heterogeneity, and TME

• Fail to evaluate the immune
system

[53,59,60]

PDXs

• Retain original tumor histological and
genetic traits

• Model metastatic behavior
• RTR
• Easy to expand

• Varied take rates
• Fail to evaluate the immune

system
• Time consuming, expensive

[54,55,61]

Organoids

• Retain original tumor histological and
genetic traits

• RTR
• Genetically engineerable to reflect

mutations and for visualization

• Varied take rates
• Complex culture components
• Lack TME

[56,57,62,
63]

Humanized mice

• Mimic human immunological response and
TME

• RTR
• Creates a natural heterogeneity of tumor

cells

• Cross-reaction between human
factors and mouse cells can reduce
engraftment

• Technically complicated,
expensive

[53,64,65]

RTR: Recapitulate therapeutic response; TME: Tumor microenvironment; TSI: Tumor–stroma interactions.

4.1. PDX CRC Models

As shown in Figure 5 (Top Panel), PDX CRC models are generated by transplanting
fresh primary tumor, metastatic tumor, or circulating tumor cells (CTCs) specimens into
immunodeficient mice or humanized mice. It can be classified as subcutaneous and
orthotopic PDX CRC model. For the subcutaneous PDX CRC model, it is completed
heterotopically through subcutaneous implantation into the dorsal area; while for the
orthotopic PDX CRC model, it is carried out orthotopically through direct implantation
into the anatomical site of origin [52]. The subcutaneous PDX CRC model is commonly
used as it is easy to operate, monitor, and resect with good tumor engraftment, while rarely
generate metastases [66]. In contrast, the orthotopic PDX CRC model is more invasive,
labor intensive, and difficult to monitor longitudinally; however, they are better models of
metastases because they generate primary tumors and distant lung and liver metastases
at similar rates observed in patients [64,66–69]. As such, orthotopic PDX CRC models are
helpful to evaluate local invasive growth of primary tumors, study tumor–host interactions
and therapeutic responses in their anatomical context, but preclinical therapeutic studies
currently exclusively utilize subcutaneous PDX CRC models [70].
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Figure 5. Generation and application of CRC PDX and organoid models. Both PDX and organoid
models can be generated from primary tumors within the colon or rectum, metastatic tumors, or CTCs,
which are surgically resected, biopsied, or collected via peripheral blood. For the PDX model (Top,
blue arrows), surgically resected tumor tissues or biopsies will be transplanted into immunodeficient
or humanized mice. The sliced tumor tissue or cell sample is transplanted either heterotopically
through subcutaneous implantation into the dorsal area or orthotopically through direct implantation
into the colon. When the tumor reaches sufficient size, it is dissected, confirmed, and re-passaged into
other mice. For the organoid model (Bottom, red arrows), surgically resected tumor tissues or biopsies
can be dissociated into single cells and then cultured in a 3D medium usually containing Matrigel
and growth factors which allow and optimize growth. Both the PDX model and the organoids model
can then be utilized by enabling molecular profiling of patient tumors, drug discovery, to facilitating
personalized medicine. For the PDX model, it also can be further used to generate organoids. While
for the organoid model, it also can be further used to generate the PDX model.

PDX CRC models faithfully recapitulate the stromal structure, histological differentia-
tion, and histopathological subtypes of the patient tumors they are derived from [53,66,71].
In addition, studies have found that the PDX CRC models maintain important gene mu-
tations (e.g., KRAS) as well as gene expression, copy number changes, and microsatellite
instability of the primary tumor, enabling in vivo investigations mirroring human condi-
tions [72]. As such, PDXs are suitable models for studying the NF-κB signaling pathway
and have been utilized identify new biomarkers and novel targets. For instance, studies
using PDX models have found that downregulation of RING finger 138 (RNF138) sensitized
CRC cells to SC75741, a highly potent and specific NF-κB signaling inhibitor [73]. PDX
models have also been used to identify NF-κB, EGFR, and 12 other markers of cetuximab
sensitivity and resistance, and to elucidate the combined inhibition of NF-κB and BET
proteins as a potential combination therapy for CRC [74,75]. Given that PDXs have been
found to accurately predict patient responses to conventional as well as novel therapeutics,
these models provide a valuable platform for investigating patient responses to drugs
and treatments, thus elucidating the NF-κB signaling pathway in CRC, mechanisms of
resistance, and facilitating personalized medicine [55,76] (Figure 5).
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4.2. Organoid CRC Models

Different from PDX CRC models, organoid CRC models (Figure 5, Bottom Panel) are
three-dimensional cultures that can be established from cancer cells from primary tumor
samples, metastatic tumor samples, CTCs, or PDX CRC models (Figure 5). Organoid
CRC models such as NF-κB reporter intestinal organoids can also be genetically mod-
ified (e.g., CRISPR-Cas9 genome editing) as well as generated from genetic modify-
ing normal tissue organoids, enabling improved CRC visualization and carcinogenesis
modeling [60,77–80]. Thus, their significance lies in their capacity to bridge the gap between
traditional in vitro monolayer cultures and in vivo animal models. Since the first establish-
ment of intestinal and human CRC organoids by Sato et al., organoid models have been
utilized to elucidate various aspects of CRC such as intratumor heterogeneity, micrometas-
tases, driver pathway mutations, and cancer stem cells [79,81–83]. These “tumor-in-a-dish”
models have been found to accurately recapitulate the morphological and (epi)genetic
features of parent tumors as well as the unique cellular and environmental characteristics
that contribute to the vast biological inter- and intratumor heterogeneity [77,84,85]. Culture
conditions can also be modified by adding or removing components (e.g., growth factors,
cytokines) to investigate specific signaling pathways, enabling researchers to investigate
unique TMEs and giving researchers additional in vitro control [86]. For instance, NF-κB
reporter intestinal organoids are responsive to most cytokines such as TNFα, making them
suitable models for investigating the role inflammatory factors, such as TNFα, play at
different steps in the NF-κB pathway [87].

In addition, organoids have been found to recapitulate patient response [56,57]. As
such, organoid models offer a valuable tool for modeling CRC in vitro due to their genetic
modifiability, ability to recapitulate human CRC, and ability to predict patient responses to
conventional and novel drugs and therapies [56,78,88] (Table 4, Figure 5).

4.3. Applications and Impact of PDX and Organoid CRC Models

Compared with CRC cells, GEMMs, and CDX models, PDX and organoid CRC mod-
els more accurately preserve patient tumor characteristics, represent cancer biology and
heterogeneity, and recapitulate therapeutic responses. Hence, PDX and organoid models
hold significant translational value and play complementary roles in CRC research.

PDX CRC models offer a complex in vivo environment by engrafting patient tumor
tissues into immunodeficient mice, allowing the study of tumor behavior, therapy responses,
and interactions with the TME. On the other hand, organoid CRC models provide an in vitro
platform that captures cellular heterogeneity and maintains tumor architecture, enabling
high-throughput drug screening, genetic manipulation, and detailed mechanistic studies.
Utilized together, these models synergistically enhance translational research by providing
both in vitro control and in vivo relevance, offering both preclinical and clinical insights
into CRC biology and therapeutic responses [89,90].

The clinical relevance of PDX and organoid models also stem from their potential in
immunotherapy research. Traditionally, it has been difficult to model and study tumor-
immune system interactions and how immune cells react to drugs and therapeutics ex vivo.
Through techniques such as adoptive cell-transfer therapy, tumor and immune cell co-
cultures, and humanized mice, PDX and organoid models are increasingly being utilized to
study CRC tumor-immune interactions as well as identifying immunotherapy targets in the
NF-κB signaling pathway [65,91–94]. Humanized mice models, highly immunodeficient
mice engrafted with functional human immune systems and PDXs or organoids, in particu-
lar, are emerging as models for developing and testing immunotherapeutic strategies and
have provided many insights into the behaviors of diverse cancers within their native TMEs.
As such, PDX and organoid models are improving to become more and more accurate in
recapitulating CRC and tumor-immune system interactions, making both models valuable
platforms for immunotherapy research as well as personalized medicine [93,94].

Moreover, the success rate to establish PDX and organoid CRC models is very high,
which enables the prospective generation of large ”living biobanks” containing both col-
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lections of patients’ CRC samples, and their matched sets of PDX and organoid CRC
models. Such “living biobanks” would offer not only unique insights into broad can-
cer phenotypes but also a platform for high-throughput drug screens, thus, facilitating
a better understanding of CRC as well as the development of patient-specific treatment
regimens [53,56,57] (Figure 5).

5. Conclusions and Perspective

Due to the fact that CRC is the third leading cause of cancer mortality in the United
States [1], there is an urgent demand for the development of novel therapeutics for CRC. In
addition to the standard therapy of CRC that we mentioned above, significant advances
have also been made in the targeted therapy and immunotherapy fronts for CRC treatments.
For example, several drugs targeting the EGFR, vascular endothelial growth factor receptor
(VEGFR), and programmed cell death protein 1 (PD-1) have been approved by the FDA for
CRC treatment. Some of these drugs include Cetuximab, Panitumumab, Ramucirumab,
and Ipilimumab [4].

Due to the importance of NF-κB in CRC progression, agents that inhibit NF-κB can be
developed as targeted therapies for CRC. Unsurprisingly, much effort has been made to
develop NF-κB inhibitors [95,96]. However, targeting specific pathways that regulate NF-
κB has been the preferred approach rather than targeting NF-κB itself, because basal NF-κB
activity is vital to normal cellular functions and immune responses. To date, there are very
few FDA-approved NF-κB inhibitors, and most focus on blood cancers; e.g., Bortizomib
is a proteasome inhibitor not specific to NF-κB, and used on mantle cell lymphoma, and
multiple myeloma, etc. Thus, there remains an urgent need to develop NF-κB inhibitors
that target solid tumors, including CRC.

In this review, we provide detailed genetic alteration information about NF-κB sig-
naling, including both NF-κB family members, and their regulators. This knowledge may
serve as a rich reservoir for future study by the CRC scientific community. For instance,
the function of each mutation could be individually tested in both in vitro and in vivo
experimental models. A larger cohort of CRC patient specimens could be further collected
to conduct much deeper and more complicated analysis, like the correlation between the
mutation site and patients survival, CRC stage, gender, and race, etc.

On a broader perspective, since it is not surprising that CRC patients frequently harbor
genetic mutations on more than one gene, the role of genetic alterations of NF-κB signaling
components and their interaction with mutations on other genes, like KRAS or TP53 [8]
(Figure 1) could be further delineated in CRC research models. In this regard, our review
also contributes deep insight into different CRC research models, especially focusing on
PDX and organoid models. Given the fact that genetic alterations on NF-κB signaling
components account for at least nearly 53.7% of overall genetic changes identified in CRC
patients [31,32], it is reasonably to argue that genetic alterations on NF-κB signaling may
provide a fresh angle for novel therapeutic development. For instance, scientists may
consider utilizing PDX or organoids to dive in the underlying mechanism of CRC, build up
platforms for drug screening and development, and develop Biobanks, etc. Excitingly, the
cutting-edge stem cell models, like isogenic human embryonic stem cell (hESC)-derived
colonic cells and human pluripotent stem cells (hPSC)-derived colonic organoids can also
be used to examine the role of specific gene mutations in CRC progression [97]. Collec-
tively, these efforts may lead to the discovery of new therapeutic targets, and innovative
personalized medicine for the treatment of CRC in the future.
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