Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Vinorelbine Demonstrated Antimitotic and Apoptotic Activities, Reduced Tumor Hypoxia via Blood-Vessel Normalization, and Upregulated Downstream Targets (p-p70S6K/4EBP1/Survivin) of the mTOR Pathway in HCC PDX Models
2.2. Vinorelbine Acted in Synergy with Everolimus (or Sirolimus) to Inhibit Tumor Growth
2.3. Everolimus Potentiated the Antitumor Activity of Vinorelbine to Inhibit Tumor Growth, Cell Proliferation, and the Expression of Positive Cell-Cycle Regulators and Prolonged the Survival of Mice Bearing HCC Tumors
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Patient-Derived Xenograft (PDX) HCC Models
4.3. Drug Treatment and Efficacy of Everolimus/Vinorelbine in Ectopic PDX HCC Models
4.4. Vessel Perfusion and Hypoxia Studies
4.5. Immunohistochemistry (IHC)
4.6. Cell Cultures
4.7. Propidium Iodide (PI) Flow Cytometry Analysis
4.8. Serum Analysis
4.9. Western Blot Analysis
4.10. Efficacies of Everolimus, Vinorelbine, and Everolimus/Vinorelbine in Orthotopic PDX HCC Models
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Desert, R.; Nieto, N.; Musso, O. Dimensions of hepatocellular carcinoma phenotypic diversity. World J. Gastroenterol. 2018, 24, 4536–4547. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver; European Organization for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomized phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef]
- Torrens, L.; Montironi, C.; Puigvehí, M.; Mesropian, A.; Leslie, J.; Haber, P.K.; Maeda, M.; Balaseviciute, U.; Willoughby, C.E.; Abril-Fornaguera, J.; et al. Immunomodulatory effects of lenvatinib plus anti-programmed cell death protein 1 in mice and rationale for patient enrichment in hepatocellular carcinoma. Hepatology 2021, 74, 2652–2669. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomized, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Park, J.W.; Blanc, J.F.; et al. Cabozantinib (C) versus placebo (P) in patients (pts) with advanced hepatocellular carcinoma (HCC) who have received prior sorafenib: Results from the randomized phase III CELESTIAL trial. J. Clin. Oncol. 2018, 36, 207. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Kannangai, R.; Adegbola, O.; Wang, J.; Su, G.; Torbenson, M. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin. Cancer Res. 2004, 10, 8421–8425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Huang, Y.; Li, J.; Wang, Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med. Oncol. 2010, 27, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Buitrago-Molina, L.E.; Pothiraju, D.; Lamlé, J.; Marhenke, S.; Kossatz, U.; Breuhahn, K.; Manns, M.P.; Malek, N.; Vogel, A. Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. Hepatology 2009, 50, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y.K.; Lim, H.Y.; Poon, R.T.P.; Blanc, J.F.; Vogel, A.; Chen, C.L.; et al. EVOLVE-1: Phase 3 study of everolimus for advanced HCC that progressed during or after sorafenib. J. Clin. Oncol. 2014, 32, 172. [Google Scholar] [CrossRef]
- Mabuchi, S.; Altomare, D.A.; Connolly, D.C.; Klein-Szanto, A.; Litwin, S.; Hoelzle, M.K.; Hensley, H.H.; Hamilton, T.C.; Testa, J.R. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res. 2007, 67, 2408–2413. [Google Scholar] [CrossRef]
- Patil, M.A.; Chua, M.S.; Pan, K.H.; Lin, R.; Lih, C.J.; Cheung, S.T.; Ho, C.; Li, R.; Fan, S.T.; Cohen, S.N.; et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene 2005, 24, 3737–3747. [Google Scholar] [CrossRef]
- Tung, C.Y.; Jen, C.H.; Hsu, M.T.; Wang, H.W.; Lin, C.H. A novel regulatory event-based gene set analysis method for exploring global functional changes in heterogeneous genomic data sets. BMC Genom. 2009, 10, 26. [Google Scholar] [CrossRef]
- Zhou, Q.; Ching, A.K.; Leung, W.K.; Szeto, C.Y.; Ho, S.M.; Chan, P.K.; Yuan, Y.F.; Lai, P.B.; Yeo, W.; Wong, N. Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int. J. Oncol. 2011, 38, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Higa, G.M. The microtubule as a breast cancer target. Breast Cancer 2011, 18, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.P.; Wolfe, L.A.; Duch, D.S. Potentiation of radiation therapy by vinorelbine (Navelbine) in non-small cell lung cancer. Semin. Oncol. 1996, 23, 41–47. [Google Scholar] [PubMed]
- Fukuoka, K.; Arioka, H.; Iwamoto, Y.; Fukumoto, H.; Kurokawa, H.; Ishida, T.; Tomonari, A.; Suzuki, T.; Usuda, J.; Kanzawa, F.; et al. Mechanism of the radiosensitization induced by vinorelbine in human non-small cell lung cancer cells. Lung Cancer 2001, 34, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Krzakowski, M.; Lucas, C.; Gridelli, C. Fractionated scheme of oral vinorelbine as single-agent therapy or in combination with cisplatin concomitantly with thoracic radiotherapy in stage III non-small-cell lung cancer: Dose-escalation phase I trial. Clin. Lung Cancer 2014, 15, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Aasebø, U. Poor prognosis patients with inoperable locally advanced NSCLC and large tumors benefit from palliative chemoradiotherapy: A subset analysis from a randomized clinical phase III trial. J. Thorac. Oncol. 2014, 9, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.; Lee, L.Y.; Goh, K.Y.; Ong, R.; Hao, H.X.; Huang, A.; Wang, Y.; Porta, D.G.; Chow, P.; Chung, A. Infigratinib mediates vascular normalization, impairs metastasis, and improves chemotherapy in hepatocellular carcinoma. Hepatology 2019, 69, 943–958. [Google Scholar] [CrossRef]
- Huynh, H.; Prawira, A.; Le, T.B.U.; Vu, T.C.; Hao, H.X.; Huang, A.; Wang, Y.; Porta, D.G. FGF401 and vinorelbine synergistically mediate antitumor activity and vascular normalization in FGF19-dependent hepatocellular carcinoma. Exp. Mol. Med. 2020, 52, 1857–1868. [Google Scholar] [CrossRef]
- Yeoh, K.W.; Prawira, A.; Saad, M.Z.B.; Lee, K.M.; Lee, E.M.H.; Low, G.K.; Nasir, M.H.B.M.; Phua, J.H.; Chow, W.W.L.; Lim, I.J.H.; et al. Vinorelbine augments radiotherapy in hepatocellular carcinoma. Cancers 2020, 12, 872. [Google Scholar] [CrossRef]
- Cancer Therapy Evaluation Programme (CTEP)—Investigational Drug Branch (IDB). National Cancer Institute, Cancer Therapy Evaluation Program. Available online: https://ctep.cancer.gov/branches/idb/default.htm (accessed on 9 December 2023).
- Gabardi, S.; Baroletti, S.A. Everolimus: A proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 2010, 30, 1044–1056. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: Final results and analysis of prognostic factors. Cancer 2010, 116, 4256–4265. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.C.; Wang, H.X.; Tang, L.; Ma, Y.; Zhang, F.C. A systematic review of vinorelbine for the treatment of breast cancer. Breast J. 2013, 19, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.; Koong, H.N.; Poon, D.; Choo, S.P.; Toh, H.C.; Thng, C.H.; Chow, P.; Ong, H.S.; Chung, A.; Goh, B.C.; et al. AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J. Hepatol. 2010, 52, 79–87. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, D.J.; Zhou, R.; Rudin, C.M. Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol. Cancer Ther. 2004, 3, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.; Hao, H.X.; Chan, S.L.; Chen, D.; Ong, R.; Soo, K.C.; Pochanard, P.; Yang, D.; Ruddy, D.; Liu, M.; et al. Loss of tuberous sclerosis complex 2 (TSC2) is frequent in hepatocellular carcinoma and predicts response to mTORC1 inhibitor everolimus. Mol. Cancer Ther. 2015, 14, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Tam, K.H.; Yang, Z.F.; Lau, C.K.; Lam, C.T.; Pang, R.W.; Poon, R.T. Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett. 2009, 273, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, W.Y.; Wu, Z.Y.; Varna, M.; Wang, A.H.; Zhou, L.; Chen, L.; Shen, Z.X.; Lu, H.; Zhao, W.L.; et al. Cytostatic and anti-angiogenic effects of temsirolimus in refractory mantle cell lymphoma. J. Hematol. Oncol. 2010, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Tozer, G.M.; Kanthou, C.; Baguley, B.C. Disrupting tumour blood vessels. Nat. Rev. Cancer 2005, 5, 423–435. [Google Scholar] [CrossRef]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef]
- Du, R.; Lu, K.V.; Petritsch, C.; Liu, P.; Ganss, R.; Passegué, E.; Song, H.; Vandenberg, S.; Johnson, R.S.; Werb, Z.; et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13, 206–220. [Google Scholar] [CrossRef]
- Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lui, V.W.; Lau, C.P.; Cheng, S.H.; Ng, M.H.; Cai, Y.; Chan, S.L.; Yeo, W. Sustained antitumor activity by co-targeting mTOR and the microtubule with temsirolimus/vinblastine combination in hepatocellular carcinoma. Biochem. Pharmacol. 2012, 83, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.P.; Xiong, B.H.; Zhang, Y.X.; Wang, S.L.; Zuo, Q.; Li, J. FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma. Eur. J. Pharmacol. 2022, 931, 175186. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, C.; Liu, W.; Du, X.; Liu, X.; Xing, B. Long noncoding RNA LINC01234 promotes hepatocellular carcinoma progression through orchestrating aspartate metabolic reprogramming. Mol. Ther. 2022, 30, 2354–2369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wong, C.H.; Lau, C.P.; Hui, C.W.; Lui, V.W.; Chan, S.L.; Yeo, W. Enhanced antitumor activity with combining effect of mTOR inhibition and microtubule stabilization in hepatocellular carcinoma. Int. J. Hepatol. 2013, 2013, 103830. [Google Scholar] [CrossRef] [PubMed]
- Campostrini, N.; Marimpietri, D.; Totolo, A.; Mancone, C.; Fimia, G.M.; Ponzoni, M.; Righetti, P.G. Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics 2006, 6, 4420–4431. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kim, I.K.; Han, S.; Park, I.; Kim, C.; Bae, J.; Oh, S.J.; Lee, S.; Kim, J.H.; Woo, D.C.; et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016, 30, 953–967. [Google Scholar] [CrossRef]
- Mpekris, F.; Baish, J.W.; Stylianopoulos, T.; Jain, R.K. Role of vascular normalization in benefit from metronomic chemotherapy. Proc. Natl. Acad. Sci. USA 2017, 114, 1994–1999. [Google Scholar] [CrossRef]
- Cantelmo, A.R.; Conradi, L.C.; Brajic, A.; Goveia, J.; Kalucka, J.; Pircher, A.; Chaturvedi, P.; Hol, J.; Thienpont, B.; Teuwen, L.A.; et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 2016, 30, 968–985. [Google Scholar] [CrossRef]
- Marimpietri, D.; Brignole, C.; Nico, B.; Pastorino, F.; Pezzolo, A.; Piccardi, F.; Cilli, M.; Di Paolo, D.; Pagnan, G.; Longo, L.; et al. Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis. Clin. Cancer Res. 2007, 13, 3977–3988. [Google Scholar] [CrossRef]
- Pal, K.; Madamsetty, V.S.; Dutta, S.K.; Mukhopadhyay, D. Co-delivery of everolimus and vinorelbine via a tumor-targeted liposomal formulation inhibits tumor growth and metastasis in RCC. Int. J. Nanomed. 2019, 14, 5109–5123. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.S.; Banerji, U. Combine and conquer: Challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 2017, 14, 57–66. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, T.; McSheehy, P.M.; Wartmann, M.; Lassota, P.; Brandt, R.; Lane, H.A. Evaluation of the mTOR inhibitor, everolimus, in combination with cytotoxic antitumor agents using human tumor models in vitro and in vivo. Anticancer. Drugs 2011, 22, 58–78. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Cao, Y.; Dutta, S.; Wang, E.; Mukhopadhyay, D. VEGF neutralizing antibody increases the therapeutic efficacy of vinorelbine for renal cell carcinoma. J. Cell. Mol. Med. 2010, 14, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Tsuruo, T.; Inaba, M.; Tashiro, T.; Yamori, T.; Ohnishi, Y.; Ashizawa, T.; Sakai, T.; Kobayashi, S.; Gomi, K. Evaluation of antitumor activity of navelbine (vinorelbine ditartrate) against human breast carcinoma xenografts based on its pharmacokinetics in nude mice. Anticancer. Drugs 1994, 5, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J. Everolimus. Clin. Cancer Res. 2010, 16, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.K.; Smith, I.E. Vinorelbine—A clinical review. Br. J. Cancer 2000, 82, 1907–1913. [Google Scholar] [CrossRef]
- Huijts, C.M.; Santegoets, S.J.; de Jong, T.D.; Verheul, H.M.; de Gruijl, T.D.; van der Vliet, H.J. Immunological effects of everolimus in patients with metastatic renal cell cancer. Int. J. Immunopathol. Pharmacol. 2017, 30, 341–352. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Gou, H.; Cao, D.; Jiang, M.; Hou, M. Clinical significance of Cox-2, survivin and Bcl-2 expression in hepatocellular carcinoma (HCC). Med. Oncol. 2011, 28, 796–803. [Google Scholar] [CrossRef]
- Huynh, H.; Soo, K.C.; Chow, P.K.; Panasci, L.; Tran, E. Xenografts of human hepatocellular carcinoma: A useful model for testing drugs. Clin. Cancer Res. 2006, 12, 4306–4314. [Google Scholar] [CrossRef]
- Huynh, H.; Ngo, V.C.; Koong, H.N.; Poon, D.; Choo, S.P.; Thng, C.H.; Chow, P.; Ong, H.S.; Chung, A.; Soo, K.C. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J. Cell. Mol. Med. 2009, 13, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US); Institute for Laboratory Animal Research (US). Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011.
HCC PDX Model | Treatments and T/C Ratios | |||||
---|---|---|---|---|---|---|
Control | Everolimus 2 mg/kg QD | Vinorelbine 3 mg/kg Q3.5D | Everolimus/ Vinorelbine | Sirolimus 2 mg/kg QD | Sirolimus/ Vinorelbine | |
HCC05–0411B | 1 | 0.1883 | 0.6707 | 0.1389 | ||
HCC06–1009 | 1 | 0.2931 | 0.5650 | 0.2031 | 0.3958 | 0.1919 |
HCC24–0309 | 1 | 0.1218 | 0.5142 | 0.0698 | ||
HCC26–0808B | 1 | 0.1886 | 0.5775 | 0.1780 | ||
HCC13–0212 | 1 | 0.3359 | 0.1966 | 0.0656 | 0.3785 | 0.1292 |
HCC19–0509 | 1 | 0.3754 | 0.3348 | 0.2319 | ||
HCC25–0705A | 1 | 0.1622 | 0.3869 | 0.0635 | ||
HCC01–0708 | 1 | 0.5767 | 0.7542 | 0.3345 | ||
HCC05–0614 | 1 | 0.5395 | 0.5105 | 0.1523 | ||
HCC09–0913 | 1 | 0.5645 | 0.6651 | 0.3314 | ||
HCC13–0109 | 1 | 0.6108 | 0.3092 | 0.2419 | ||
HCC19–0913 | 1 | 0.5770 | 0.3192 | 0.1669 | 0.5888 | 0.1691 |
HCC27–1014 | 1 | 0.7707 | 0.5866 | 0.3332 | ||
HCC29–0909A | 1 | 0.6287 | 0.5671 | 0.3680 | ||
HCC30–0805B | 1 | 0.6080 | 0.6176 | 0.2041 |
Serum Marker | Unit | Control | Everolimus 2 mg/kg QD | Vinorelbine 3 mg/kg Q3.5D | Everolimus/ Vinorelbine |
---|---|---|---|---|---|
BUN | (mg/dL) | 13.8 | 13.1 | 16.5 | 16.8 |
CRE | (mg/dL) | 0.45 | 0.38 | 0.49 | 0.46 |
ALT | (U/L) | 38.7 | 54.5 | 69.5 | 62.8 |
ALP | (U/L) | 54.1 | 73.7 | 88.2 | 89.2 |
AST | (U/L) | 195 | 254.6 | 279.0 | 308.5 |
TBIL | (mg/dL) | 0.3 | 0.32 | 0.38 | 0.39 |
GLU | (mg/dL) | 163.2 | 170.4 | 156.9 | 188 |
ALB | (g/dL) | 4.0 | 3.75 | 3.7 | 3.6 |
HCC Cells | Drugs | Stage of Cell Cycle | |||
---|---|---|---|---|---|
Sub G1 | G1 | S | G2/M | ||
HCC13–0109 | Vehicle | 1.56 ± 0.31 | 63.70 ± 3.50 | 3.80 ± 0.42 | 30.94 ± 2.10 |
Everolimus 0.1 μM | 1.69 ± 0.35 | 74.52 ± 4.21 | 1.84 ± 0.28 | 21.95 ± 1.86 | |
Vinorelbine 1 nM | 10.53 ± 1.14 | 42.59 ± 3.65 | 2.20 ± 0.54 | 44.68 ± 5.11 | |
Everolimus 0.1 μM + Vinorelbine 1 nM | 17.68 ± 1.26 | 32.40 ± 1.89 | 1.54 ± 0.28 | 48.38 ± 4.23 | |
HCC25–0705A | Vehicle | 1.91 ± 0.30 | 57.71 ± 3.68 | 11.90 ± 1.34 | 28.48 ± 1.89 |
Everolimus 0.1 μM | 12.06 ± 1.06 | 66.53 ± 4.29 | 3.0 ± 0.23 | 18.41 ± 1.22 | |
Vinorelbine 1 nM | 13.63 ± 1.88 | 43.98 ± 2.57 | 5.16 ± 0.34 | 37.23 ± 2.80 | |
Everolimus 0.1 μM + Vinorelbine 1 nM | 14.59 ± 2.43 | 41.35 ± 2.64 | 5.94 ± 0.21 | 38.12 ± 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, H.; Ng, W.H.; Soo, K.C. Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 17. https://doi.org/10.3390/ijms25010017
Huynh H, Ng WH, Soo KC. Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2024; 25(1):17. https://doi.org/10.3390/ijms25010017
Chicago/Turabian StyleHuynh, Hung, Wai Har Ng, and Khee Chee Soo. 2024. "Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma" International Journal of Molecular Sciences 25, no. 1: 17. https://doi.org/10.3390/ijms25010017
APA StyleHuynh, H., Ng, W. H., & Soo, K. C. (2024). Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 25(1), 17. https://doi.org/10.3390/ijms25010017