Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. suPAR and GDF-15 Levels
2.3. Correlation with EASIX
3. Discussion
4. Materials and Methods
4.1. Patients and Study Design
4.2. GvHD Prophylaxis
4.3. HSCT-TMA Diagnosis
4.4. Complement Activation Markers
4.5. EASIX, Soluble C5b-9/Membrane Attack Complex, suPAR, and GDF-15
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biedermann, B.C. Vascular endothelium and graft-versus-host disease. Best Pract. Res. Clin. Haematol. 2008, 21, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Luft, T.; Dreger, P.; Radujkovic, A. Endothelial cell dysfunction: A key determinant for the outcome of allogeneic stem cell transplantation. Bone Marrow Transplant. 2021, 56, 2326–2335. [Google Scholar] [CrossRef] [PubMed]
- Vythoulkas, D.; Tsirigotis, P.; Griniezaki, M.; Konstantellos, I.; Lazana, I. Endothelial Dysfunction Syndromes after Allogeneic Stem Cell Transplantation. Cancers 2023, 15, 680. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Ho, V.T.; Schwaeble, W.; Dudler, T.; Daha, M.; Fujita, T.; Jodele, S. Role of the lectin pathway of complement in hematopoietic stem cell transplantation-associated endothelial injury and thrombotic microangiopathy. Exp. Hematol. Oncol. 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Sakellari, I.; Anagnostopoulos, A.; Brodsky, R.A. Transplant-associated thrombotic microangiopathy: Opening Pandora’s box. Bone Marrow Transplant. 2017, 52, 1355–1360. [Google Scholar] [CrossRef]
- Jodele, S.; Dandoy, C.E.; Lane, A.; Laskin, B.L.; Teusink-Cross, A.; Myers, K.C.; Wallace, G.H.; Nelson, A.; Bleesing, J.; Chima, R.S.; et al. Complement blockade for TA-TMA: Lessons learned from a large pediatric cohort treated with eculizumab. Blood 2020, 135, 1049–1057. [Google Scholar] [CrossRef]
- Schoettler, M.; Carreras, E.; Cho, B.; Dandoy, C.; Ho, V.; Jodele, S.; Moissev, I.; Sanchez-Ortega, I.; Srivastava, A.; Atsuta, Y.; et al. Harmonizing Definitions for Diagnostic Criteria and Prognostic Assessment of Transplantation-Associated Thrombotic Microangiopathy: A Report on Behalf of the European Society for Blood and Marrow Transplantation, American Society for Transplantation and Cellular Therapy, Asia-Pacific Blood and Marrow Transplantation Group, and Center for International Blood and Marrow Transplant Research. Transplant. Cell Ther. 2023, 29, 151–163. [Google Scholar] [CrossRef]
- Luft, T.; Benner, A.; Jodele, S.; Dandoy, C.E.; Storb, R.; Gooley, T.; Sandmaier, B.M.; Becker, N.; Radujkovic, A.; Dreger, P.; et al. EASIX in patients with acute graft-versus-host disease: A retrospective cohort analysis. Lancet Haematol. 2017, 4, e414–e423. [Google Scholar] [CrossRef]
- Luft, T.; Benner, A.; Terzer, T.; Jodele, S.; Dandoy, C.E.; Storb, R.; Kordelas, L.; Beelen, D.; Gooley, T.; Sandmaier, B.M.; et al. EASIX and mortality after allogeneic stem cell transplantation. Bone Marrow Transplant. 2020, 55, 553–561. [Google Scholar] [CrossRef]
- Shouval, R.; Fein, J.A.; Shouval, A.; Danylesko, I.; Shem-Tov, N.; Zlotnik, M.; Yerushalmi, R.; Shimoni, A.; Nagler, A. External validation and comparison of multiple prognostic scores in allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019, 3, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Sakellari, I.; Chatzikonstantinou, T.; Mallouri, D.; Batsis, I.; Vardi, A.; Bousiou, Z.; Koravou, E.-E.; Masmanidou, M.; Touloumenidou, T.; et al. Endothelial and Complement Activation As Predictors of Survival in Adult Allogeneic Hematopoietic Cell Transplantation. Hemasphere 2020, 5, e487. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, M.; Van Hoovels, L.; Benucci, M.; De Luca, R.; Coccia, C.; Bernardini, P.; Russo, E.; Amedei, A.; Guiducci, S.; Grossi, V.; et al. Soluble Urokinase Plasminogen Activator Receptor (suPAR) in Autoimmune Rheumatic and Non Rheumatic Diseases. J. Pers. Med. 2023, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Fu, J. GDF15 as a key disease target and biomarker: Linking chronic lung diseases and ageing [published online ahead of print, 2023 Apr 24]. Mol. Cell Biochem. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Kastritis, E.; Papassotiriou, I.; Merlini, G.; Milani, P.; Terpos, E.; Basset, M.; Akalestos, A.; Russo, F.; Psimenou, E.; Apostolakou, F.; et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood 2018, 131, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Anagnostopoulos, A.; Mastellos, D.C. Complement in Thrombotic Microangiopathies: Unraveling Ariadne’s Thread Into the Labyrinth of Complement Therapeutics. Front. Immunol. 2019, 10, 337. [Google Scholar] [CrossRef]
- Sarkodee-Adoo, C.; Sotirescu, D.; Sensenbrenner, L.; Rapoport, A.P.; Cottler-Fox, M.; Tricot, G.; Ruehle, K.; Meisenberg, B. Thrombotic microangiopathy in blood and marrow transplant patients receiving tacrolimus or cyclosporine A. Transfusion 2003, 43, 78–84. [Google Scholar] [CrossRef]
- Peyvandi, F.; Siboni, S.M.; Deliliers, D.L.; Lavoretano, S.; De Fazio, N.; Moroni, B.; Deliliers, G.L.; Mannucci, P.M. Prospective study on the behaviour of the metalloprotease ADAMTS13 and of von Willebrand factor after bone marrow transplantation. Br. J. Haematol. 2006, 134, 187–195. [Google Scholar] [CrossRef]
- Laskin, B.L.; Maisel, J.; Goebel, J.; Yin, H.J.; Luo, G.; Khoury, J.C.; Davies, S.M.; Jodele, S. Renal arteriolar C4d deposition: A novel characteristic of hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transplantation 2013, 96, 217–223. [Google Scholar] [CrossRef]
- Jodele, S.; Licht, C.; Goebel, J.; Dixon, B.P.; Zhang, K.; Sivakumaran, T.A.; Davies, S.M.; Pluthero, F.G.; Lu, L.; Laskin, B.L. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 2013, 122, 2003–2007. [Google Scholar] [CrossRef] [PubMed]
- Lazana, I. Transplant-Associated Thrombotic Microangiopathy in the Context of Allogenic Hematopoietic Stem Cell Transplantation: Where We Stand. Int. J. Mol. Sci. 2023, 24, 1159. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudjafari, Z.; Alencar, M.C.; Alexander, M.D.; Johnson, D.J.; Yeh, J.; Evans, M.D. Hematopoietic stem cell transplantation-associated thrombotic microangiopathy and the role of advanced practice providers and pharmacists. Bone Marrow Transplant. 2023, 58, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, M.; Qi, J.; Miao, W.; Zhang, Z.; Wu, D.; Han, Y. Efficacy and Safety of Eculizumab in the Treatment of Transplant-Associated Thrombotic Microangiopathy: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 11, 564647. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; de Fontbrune, F.S.; Lee, L.W.L.; Pessoa, V.; Gualandro, S.; Füreder, W.; Ptushkin, V.; Rottinghaus, S.T.; Volles, L.; Shafner, L.; et al. Ravulizumab (ALXN1210) vs. eculizumab in adult patients with PNH naive to complement inhibitors: The 301 study. Blood 2019, 133, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Schols, S.; Nunn, M.A.; Mackie, I.; Weston-Davies, W.; Nishimura, J.; Kanakura, Y.; Blijlevens, N.; Muus, P.; Langemeijer, S. Successful treatment of a PNH patient non-responsive to eculizumab with the novel complement C5 inhibitor coversin (nomacopan). Br. J. Haematol. 2020, 188, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Khaled, S.K.; Claes, K.; Goh, Y.T.; Kwong, Y.L.; Leung, N.; Mendrek, W.; Nakamura, R.; Sathar, J.; Ng, E.; Nangia, N.; et al. Narsoplimab, a Mannan-Binding Lectin-Associated Serine Protease-2 Inhibitor, for the Treatment of Adult Hematopoietic Stem-Cell Transplantation-Associated Thrombotic Microangiopathy. J. Clin. Oncol. 2022, 40, 2447–2457. [Google Scholar] [CrossRef]
- Gaya, A. Pegcetacoplan: Climbing up the complement cascade. Lancet Haematol. 2022, 9, e628–e629. [Google Scholar] [CrossRef]
- Malard, F.; Holler, E.; Sandmaier, B.M.; Huang, H.; Mohty, M. Acute graft-versus-host disease. Nat. Rev. Dis. Primers 2023, 9, 27. [Google Scholar] [CrossRef]
- Filipovich, A.H.; Weisdorf, D.; Pavletic, S.; Socie, G.; Wingard, J.R.; Lee, S.J.; Martin, P.; Chien, J.; Przepiorka, D.; Couriel, D.; et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol. Blood Marrow Transplant. 2005, 11, 945–956. [Google Scholar] [CrossRef]
- Yu, J.; Judy, J.T.; Parasuraman, S.; Sinha, M.; Weisdorf, D. Inpatient Healthcare Resource Utilization, Costs, and Mortality in Adult Patients with Acute Graft-versus-Host Disease, Including Steroid-Refractory or High-Risk Disease, following Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Link-Rachner, C.S.; Sockel, K.; Schuetz, C. Established and Emerging Treatments of Skin GvHD. Front. Immunol. 2022, 13, 838494. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.J.; Rizzo, J.D.; Wingard, J.R.; Ballen, K.; Curtin, P.T.; Cutler, C.; Litzow, M.R.; Nieto, Y.; Savani, B.N.; Schriber, J.R.; et al. First- and second-line systemic treatment of acute graft-versus-host disease: Recommendations of the American Society of Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2012, 18, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R.; Burchert, A.; Lengerke, C.; Verbeek, M.; Maas-Bauer, K.; Metzelder, S.K.; Spoerl, S.; Ditschkowski, M.; Ecsedi, M.; Sockel, K.; et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: A multicenter survey. Leukemia 2015, 29, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R.; von Bubnoff, N.; Butler, J.; Mohty, M.; Niederwieser, D.; Or, R.; Szer, J.; Wagner, E.M.; Zuckerman, T.; Mahuzier, B.; et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N. Engl. J. Med. 2020, 382, 1800–1810. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.K. Updates in chronic graft-versus-host disease. Hematol. Am. Soc. Hematol. Educ. Program 2021, 2021, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.; Guillén-Olmos, E.; Diaz-Ricart, M.; Palomo, M. Complement Mediated Endothelial Damage in Thrombotic Microangiopathies. Front. Med. 2022, 9, 811504. [Google Scholar] [CrossRef]
- Riesner, K.; Shi, Y.; Jacobi, A.; Kraeter, M.; Kalupa, M.; McGearey, A.; Mertlitz, S.; Cordes, S.; Schrezenmeier, J.-F.; Mengwasser, J.; et al. Initiation of acute graft-versus-host disease by angiogenesis. Blood 2017, 129, 2021–2032. [Google Scholar] [CrossRef]
- Rachakonda, S.P.; Penack, O.; Dietrich, S.; Blau, O.; Blau, I.W.; Radujkovic, A.; Isermann, B.; Ho, A.D.; Uharek, L.; Dreger, P.; et al. Single-Nucleotide Polymorphisms Within the Thrombomodulin Gene (THBD) Predict Mortality in Patients with Graft-Versus-Host Disease. J. Clin. Oncol. 2014, 32, 3421–3427. [Google Scholar] [CrossRef]
- Dietrich, S.; Falk, C.S.; Benner, A.; Karamustafa, S.; Hahn, E.; Andrulis, M.; Hegenbart, U.; Ho, A.D.; Dreger, P.; Luft, T. Endothelial vulnerability and endothelial damage are associated with risk of graft-versus-host disease and response to steroid treatment. Biol. Blood Marrow Transplant. 2013, 19, 22–27. [Google Scholar] [CrossRef]
- Nomura, S.; Ishii, K.; Fujita, S.; Nakaya, A.; Satake, A.; Ito, T. Associations between acute GVHD-related biomarkers and endothelial cell activation after allogeneic hematopoietic stem cell transplantation. Transpl. Immunol. 2017, 43–44, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; Khera, N.; Levine, J.E.; Chai, X.; Storer, B.; Liu, H.D.; Inamoto, Y.; Chen, G.L.; Mayer, S.; Arora, M.; et al. Late acute graft-versus-host disease: A prospective analysis of clinical outcomes and circulating angiogenic factors. Blood 2016, 128, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Chrysanthopoulou, A.; Sakellari, I.; Batsis, I.; Mallouri, D.; Touloumenidou, T.; Papalexandri, A.; Mitsios, A.; Arampatzioglou, A.; Ritis, K.; et al. Linking Complement Activation, Coagulation, and Neutrophils in Transplant-Associated Thrombotic Microangiopathy. Thromb. Haemost. 2019, 119, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Ploug, M.; Rønne, E.; Behrendt, N.; Jensen, A.L.; Blasi, F.; Danø, K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J. Biol. Chem. 1991, 266, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Donadello, K.; Scolletta, S.; Covajes, C.; Vincent, J.L. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Lyngbæk, S.; Sehestedt, T.; Marott, J.L.; Hansen, T.W.; Olsen, M.H.; Andersen, O.; Linneberg, A.; Madsbad, S.; Haugaard, S.B.; Eugen-Olsen, J.; et al. CRP and suPAR are differently related to anthropometry and subclinical organ damage. Int. J. Cardiol. 2013, 167, 781–785. [Google Scholar] [CrossRef]
- Goodchild, T.T.; Li, Z.; Lefer, D.J. Soluble urokinase plasminogen activator receptor: From biomarker to active participant in atherosclerosis and cardiovascular disease. J. Clin. Invest. 2022, 132, e165868. [Google Scholar] [CrossRef]
- Hayek, S.S.; Leaf, D.E.; Tahhan, A.S.; Raad, M.; Sharma, S.; Waikar, S.S.; Sever, S.; Camacho, A.; Wang, X.; Dande, R.R.; et al. Soluble Urokinase Receptor and Acute Kidney Injury. N. Engl. J. Med. 2020, 382, 416–426. [Google Scholar] [CrossRef]
- Kastritis, E.; Papassotiriou, I.; Theodorakakou, F.; Margeli, A.; Barzteliotou, A.; Tsiligkeridou, E.; Andreatou, A.; Fotiou, D.; Migkou, M.; Kanellias, N.; et al. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) As a Biomarker of Renal Outcomes in AL Amyloidosis. Blood 2020, 136 (Suppl. S1), 33. [Google Scholar] [CrossRef]
- Lafon, T.; Cazalis, M.-A.; Vallejo, C.; Tazarourte, K.; Blein, S.; Pachot, A.; Laterre, P.-F.; Laribi, S.; François, B.; Textoris, J.; et al. Prognostic performance of endothelial biomarkers to early predict clinical deterioration of patients with suspected bacterial infection and sepsis admitted to the emergency department. Ann. Intensive Care 2020, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Haastrup, E.; Andersen, J.; Ostrowski, S.R.; Høyer-Hansen, G.; Jacobsen, N.; Heilmann, C.; Ullum, H.; Müller, K. Soluble urokinase plasminogen activator receptor during allogeneic stem cell transplantation. Scand. J. Immunol. 2011, 73, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, P.E.; ten Hove, T.; te Velde, A.A.; van Deventer, S.J.; van Der Poll, T. Upregulation of monocyte urokinase plasminogen activator receptor during human endotoxemia. Infect. Immun. 2000, 68, 2156–2160. [Google Scholar] [CrossRef] [PubMed]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef] [PubMed]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Flowers, M.E.; Kansu, E.; Sullivan, K.M. Pathophysiology and treatment of graft-versus-host disease. Hematol. Oncol. Clin. N. Am. 1999, 13, 1091-ix. [Google Scholar] [CrossRef] [PubMed]
- Mazagova, M.; Buikema, H.; Landheer, S.W.; Vavrinec, P.; van Buiten, A.; Henning, R.H.; Deelman, L.E. Growth differentiation factor 15 impairs aortic contractile and relaxing function through altered caveolar signaling of the endothelium. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H709–H718. [Google Scholar] [CrossRef]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol. Metab. 2020, 31, 939–951. [Google Scholar] [CrossRef]
- Tanno, T.; Noel, P.; Miller, J.L. Growth differentiation factor 15 in erythroid health and disease. Curr. Opin. Hematol. 2010, 17, 184–190. [Google Scholar] [CrossRef]
- Larissi, K.; Politou, M.; Margeli, A.; Poziopoulos, C.; Flevari, P.; Terpos, E.; Papassotiriou, I.; Voskaridou, E. The Growth Differentiation Factor-15 (GDF-15) levels are increased in patients with compound heterozygous sickle cell and beta-thalassemia (HbS/βthal), correlate with markers of hemolysis, iron burden, coagulation, endothelial dysfunction and pulmonary hypertension. Blood Cells Mol. Dis. 2019, 77, 137–141. [Google Scholar] [CrossRef]
- Wesseling, M.; de Poel, J.H.C.; de Jager, S.C.A. Growth differentiation factor 15 in adverse cardiac remodelling: From biomarker to causal player. ESC Heart Fail 2020, 7, 1488–1501. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Dogon, G.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int. J. Mol. Sci. 2021, 22, 8889. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Sakellari, I.; Chatziconstantinou, T.; Mallouri, D.; Batsis, I.; Vardi, A.; Bousiou, Z.; Koravou, E.; Masmanidou, M.; Touloumenidou, T.; et al. Easix Is Strongly Associated with Complement Activation and Overall Survival in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. Blood 2019, 134, 4520. [Google Scholar] [CrossRef]
- Schoettler, M.L.; Bhatt, H.; Vasu, S. A systematic review of diagnostic, prognostic, and risk blood and urine biomarkers of transplant-associated thrombotic microangiopathy. Front. Immunol. 2023, 13, 1064203. [Google Scholar] [CrossRef] [PubMed]
- Pryzdial, E.L.G.; Leatherdale, A.; Conway, E.M. Coagulation and complement: Key innate defense participants in a seamless web. Front. Immunol. 2022, 13, 918775. [Google Scholar] [CrossRef]
- Schmidt, C.Q.; Schrezenmeier, H.; Kavanagh, D. Complement and the prothrombotic state. Blood 2022, 139, 1954–1972. [Google Scholar] [CrossRef]
- Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995, 15, 825–828. [Google Scholar]
- Ruutu, T.; Barosi, G.; Benjamin, R.J.; Clark, R.E.; George, J.N.; Gratwohl, A.; Holler, E.; Iacobelli, M.; Kentouche, K.; Lämmle, B.; et al. Diagnostic criteria for hematopoietic stem cell transplant-associated microangiopathy: Results of a consensus process by an International Working Group. Haematologica 2007, 92, 95–100. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Yuan, X.; Ye, Z.; Ambinder, A.J.; Shanbhag, S.P.; Streiff, M.B.; Kickler, T.S.; Moliterno, A.R.; Sperati, C.J.; Brodsky, R.A. Modified Ham test for atypical hemolytic uremic syndrome. Blood 2015, 125, 3637–3646. [Google Scholar] [CrossRef]
TA-TMA (n = 20) | GVHD (n = 20) | Controls (n = 20) | p | |
Age (year) | 36 (17–56) | 42 (19–52) | 39 (18–49) | 0.212 |
Disease type (n) | ||||
AML | 4 | 5 | 6 | 0.228 |
ALL | 12 | 9 | 10 | |
Lymphoma | 3 | 5 | 3 | |
Multiple myeloma | 1 | 1 | 1 | |
Disease phase (n) | ||||
Early CR | 12 | 14 | 13 | 0.421 |
Late CR | 4 | 3 | 4 | |
Relapsed/Refractory | 4 | 3 | 3 | |
Myeloablative conditioning (n) | 16 | 8 | 16 | 0.892 |
Donor (n) | ||||
Sibling | 8 | 10 | 9 | 0.732 |
Unrelated | 8 | 5 | 6 | |
Haploidentical | 4 | 5 | 4 | |
HLA-matched donor (n) | 16 | 17 | 18 | 0.343 |
Follow-up (mo) | 8.5 (2.7–102.1) | 12.0 (2.9–32.2) | 14.2 (4.5–79.1) | 0.745 |
Infections (n) | ||||
Bacterial | 12 | 12 | 10 | 0.431 |
Viral | 13 | 11 | 9 | 0.373 |
Fungal | 10 | 7 | 12 | 0.653 |
GVHD (n) | ||||
Severe acute | 12 | 18 | 0 | <0.001 |
Extensive chronic | 17 | 19 | 0 | <0.001 |
EASIX at day 0 | 1.57 (0.3–18.9) | 1.37 (0.3–4.4) | 1.4 (0.2–6.2) | 0.565 |
EASIX at day 100 | 7.2 (1.1–118.2) | 3.3 (1.8–12.1) | 1.41 (0.2–30.8) | 0.014 |
EASIX at last follow-up | 22.7 (0.3–604.3) | 7.8 (0.6–210.1) | 0.89 (0.1–62.7) | 0.001 |
Soluble C5b-9 (ng/mL) | 325 (184–902) | 243 (175–454) | 227 (53–281) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavriilaki, E.; Bousiou, Z.; Batsis, I.; Vardi, A.; Mallouri, D.; Koravou, E.-E.; Konstantinidou, G.; Spyridis, N.; Karavalakis, G.; Noli, F.; et al. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. Int. J. Mol. Sci. 2024, 25, 231. https://doi.org/10.3390/ijms25010231
Gavriilaki E, Bousiou Z, Batsis I, Vardi A, Mallouri D, Koravou E-E, Konstantinidou G, Spyridis N, Karavalakis G, Noli F, et al. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. International Journal of Molecular Sciences. 2024; 25(1):231. https://doi.org/10.3390/ijms25010231
Chicago/Turabian StyleGavriilaki, Eleni, Zoi Bousiou, Ioannis Batsis, Anna Vardi, Despina Mallouri, Evaggelia-Evdoxia Koravou, Georgia Konstantinidou, Nikolaos Spyridis, Georgios Karavalakis, Foteini Noli, and et al. 2024. "Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients" International Journal of Molecular Sciences 25, no. 1: 231. https://doi.org/10.3390/ijms25010231
APA StyleGavriilaki, E., Bousiou, Z., Batsis, I., Vardi, A., Mallouri, D., Koravou, E. -E., Konstantinidou, G., Spyridis, N., Karavalakis, G., Noli, F., Patriarcheas, V., Masmanidou, M., Touloumenidou, T., Papalexandri, A., Poziopoulos, C., Yannaki, E., Sakellari, I., Politou, M., & Papassotiriou, I. (2024). Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. International Journal of Molecular Sciences, 25(1), 231. https://doi.org/10.3390/ijms25010231