Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex
Abstract
:1. Introduction
2. Results
2.1. Serotonin Decreases the E/I Balance of Spontaneous Synaptic Currents
2.2. Serotonin Does Not Change Miniature Synaptic Currents
2.3. Serotonin Decreases Excitatory and Inhibitory Evoked Synaptic Responses
2.4. Serotonergic Modulation Promotes LTD at Excitatory Synapses
2.5. Serotonin Decreases Neuronal Spiking and Increases the Action Potential Amplitude
2.6. Serotonin Blocks the LTD at Inhibitory Synapses
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Preparation and Maintenance of Slices
4.3. Electrophysiological Recordings
4.4. Spontaneous and Miniature Postsynaptic Currents
4.5. Neuronal Firing
4.6. Evoked Postsynaptic Responses and Stimulation
4.7. Serotonergic Modulation of Evoked Postsynaptic Responses
4.8. Serotonergic Modulation of Synaptic Plasticity
4.9. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgarten, H.G.; Grozdanovic, Z. Psychopharmacology of central serotonergic systems. Pharmacopsychiatry 1995, 28 (Suppl. S2), 73–79. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.L.; Azmitia, E.C.; Lim, S.B.; Cleworth, T.W.; Horslen, B.C.; Blouin, J.-S.; Inglis, J.T.; Carpenter, M.G.; Brill, J.; Shao, Z.; et al. Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165–229. [Google Scholar] [CrossRef] [PubMed]
- Bunin, M.A.; Wightman, R. Paracrine neurotransmission in the CNS: Involvement of 5-HT. Trends Neurosci. 1999, 22, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Singer, W. Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur. J. Neurosci. 1995, 7, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Pazos, A.; Cortés, R.; Palacios, J. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 1985, 346, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Pazos, A.; Palacios, J. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985, 346, 205–230. [Google Scholar] [CrossRef] [PubMed]
- Pompeiano, M.; Palacios, J.; Mengod, G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: Correlation with receptor binding. J. Neurosci. 1992, 12, 440–453. [Google Scholar] [CrossRef]
- Hong, S.Z.; Mesik, L.; Grossman, C.D.; Cohen, J.Y.; Lee, B.; Severin, D.; Lee, H.-K.; Hell, J.W.; Kirkwood, A. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat. Commun. 2022, 13, 3202. [Google Scholar] [CrossRef]
- Frémaux, N.; Sprekeler, H.; Gerstner, W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons. PLoS Comput. Biol. 2013, 9, e1003024. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, Y.; Xie, G.; Gregor, D.; Bekker, A.; Ye, J.H. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels. Neuropharmacology 2016, 101, 449–459. [Google Scholar] [CrossRef]
- Gaspar, P.; Cases, O.; Maroteaux, L. The developmental role of serotonin: News from mouse molecular genetics. Nat. Rev. Neurosci. 2003, 4, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, T.; Andolina, D.; Ventura, R.; Puglisi-Allegra, S.; Cabib, S. Reduced availability of brain amines during critical phases of postnatal development in a genetic mouse model of cognitive delay. Brain Res. 2008, 1217, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Rebello, T.J.; Yu, Q.; Goodfellow, N.M.; Cagliostro MK, C.; Teissier, A.; Morelli, E.; Demireva, E.Y.; Chemiakine, A.; Rosoklija, G.B.; Dwork, A.J.; et al. Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function. J. Neurosci. 2014, 34, 12379–12393. [Google Scholar] [CrossRef] [PubMed]
- Vinkers, C.H.; Oosting, R.S.; van Bogaert, M.J.; Olivier, B.; Groenink, L. Early-life blockade of 5-HT1A receptors alters adult anxiety behavior and benzodiazepine sensitivity. Biol. Psychiatry 2010, 67, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, M.S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 2004, 306, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Andolina, D.; Conversi, D.; Cabib, S.; Trabalza, A.; Ventura, R.; Puglisi-Allegra, S.; Pascucci, T. 5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. Int. J. Neuropsychopharmacol. 2011, 14, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Durig, J.; Hornung, J.-P. Neonatal serotonin depletion affects developing and mature mouse cortical neurons. Neuroreport 2000, 11, 833–837. [Google Scholar] [CrossRef]
- Dori, I.; Dinopoulos, A.; Blue, M.E.; Parnavelas, J.G. Regional differences in the ontogeny of the serotonergic projection to the cerebral cortex. Exp. Neurol. 1996, 138, 1–14. [Google Scholar] [CrossRef]
- Vu, D.H.; Törk, I. Differential development of the dual serotoninergic fiber system in the cerebral cortex of the cat. J. Comp. Neurol. 1992, 317, 156–174. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Q.; Cynader, M.S. Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex. Exp. Brain Res. 1997, 114, 321–328. [Google Scholar] [CrossRef]
- Moreau, A.W.; Amar, M.; Le Roux, N.; Morel, N.; Fossier, P. Serotoninergic fine-tuning of the excitation–inhibition balance in rat visual cortical networks. Cereb. Cortex 2010, 20, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.W.; Amar, M.; Callebert, J.; Fossier, P. Serotonergic modulation of LTP at excitatory and inhibitory synapses in the de-veloping rat visual cortex. Neuroscience 2013, 238, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Fagiolini, M.; Hensch, T.K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 2000, 404, 183–186. [Google Scholar] [CrossRef]
- Hensch, T.K. Critical period mechanisms in developing visual cortex. Curr. Top Dev. Biol. 2005, 69, 215–237. [Google Scholar] [PubMed]
- Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 2005, 6, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Hensch, T.K.; Fagiolini, M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog. Brain Res. 2005, 147, 115–124. [Google Scholar]
- Katz, L.C.; Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 1996, 274, 1133–1138. [Google Scholar] [CrossRef]
- Rittenhouse, C.D.; Shouval, H.Z.; Paradiso, M.A.; Bear, M.F. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 1999, 397, 347–350. [Google Scholar] [CrossRef]
- Turrigiano, G.G.; Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 2004, 5, 97–107. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, P.; Li, Y.T.; Sun, Y.J.; Yanagawa, Y.; Obata, K.; Zhang, L.I.; Tao, H.W. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 2009, 29, 10520–10532. [Google Scholar] [CrossRef]
- Tan, L.; Tring, E.; Ringach, D.L.; Zipursky, S.L.; Trachtenberg, J.T. Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period. Neuron 2020, 108, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Maffei, A.; Turrigiano, G.G. Multiple modes of network homeostasis in visual cortical layer 2/3. J. Neurosci. 2008, 28, 4377–4384. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.S.; Cudmore, R.H.; Nelson, S.B.; Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 2002, 5, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Lee, H.-K. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J. Neurosci. 2007, 27, 6692–6700. [Google Scholar] [CrossRef] [PubMed]
- Tatti, R.; Olivia, K.; Swanson, O.K.; Lee, M.S.E.; Maffei, A. Layer-specific developmental changes in excitation and inhibition in rat primary visual cortex. eNeuro 2017, 4, e0402-17. [Google Scholar] [CrossRef] [PubMed]
- Medini, P. Cell-type-specific sub- and suprathreshold receptive fields of layer 4 and layer 2/3 pyramids in rat primary visual cortex. Neuroscience 2011, 190, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-W.; Jang, H.-J.; Cho, K.-H.; Kim, M.-J.; Yoon, S.H.; Rhie, D.-J. Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex. Korean J. Physiol. Pharmacol. 2012, 16, 65–70. [Google Scholar] [CrossRef]
- Hu, L.; Liu, C.; Dang, M.; Luo, B.; Guo, Y.; Wang, H. Activation of 5-HT 2A/2C receptors reduces the excitability of cultured cortical neurons. Neurosci. Lett. 2016, 632, 124–129. [Google Scholar] [CrossRef]
- Rao, D.; Basura, G.J.; Roche, J.; Daniels, S.; Mancilla, J.G.; Manis, P.B. Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex. J. Neurophysiol. 2010, 104, 2693–2703. [Google Scholar] [CrossRef]
- Jang, H.J.; Cho, K.H.; Park, S.W.; Kim, M.J.; Yoon, S.H.; Rhie, D.J. Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex. J. Neurophysiol. 2012, 107, 407–416. [Google Scholar] [CrossRef]
- Joo, K.; Rhie, D.-J.; Jang, H.-J. Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex. Korean J. Physiol. Pharmacol. 2015, 19, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Cho, K.H.; Park, S.W.; Kim, M.J.; Yoon, S.H.; Rhie, D.J. The development of phasic and tonic inhibition in the rat visual cortex. Korean J. Physiol. Pharmacol. 2010, 14, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Rasch, M.J.; Chen, G.; Ye, C.-Q.; Wu, S.; Zhang, X.-H. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex. J. Neurosci. 2014, 34, 2940–2955. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Cho, K.-H.; Joo, K.; Rhie, D.-J. Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats. Korean J. Physiol. Pharmacol. 2020, 24, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Higa, G.S.V.; Francis-Oliveira, J.; Carlos-Lima, E.; Tamais, A.M.; Borges, F.d.S.; Kihara, A.H.; Shieh, I.C.; Ulrich, H.; Chiavegatto, S.; De Pasquale, R. 5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci. Rep. 2022, 12, 21015. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Zhao, X.; Li, Y.; Zheng, L.; Wang, J.; Li, Y.-H. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex. Curr. Neurovascular Res. 2016, 13, 321–328. [Google Scholar] [CrossRef]
- Huang, S.; Treviño, M.; He, K.; Ardiles, A.; de Pasquale, R.; Guo, Y.; Palacios, A.; Huganir, R.; Kirkwood, A. Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron 2012, 73, 497–510. [Google Scholar] [CrossRef]
- Seol, G.H.; Ziburkus, J.; Huang, S.; Song, L.; Kim, I.T.; Takamiya, K.; Huganir, R.L.; Lee, H.-K.; Kirkwood, A. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 2007, 55, 919–929. [Google Scholar] [CrossRef]
- Philpot, B.D.; Espinosa, J.S.; Bear, M.F. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J. Neurosci. 2003, 23, 5583–5588. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M.-M. Spike timing-dependent plasticity of neural circuits. Neuron 2004, 44, 23–30. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M.M. Spike timing-dependent plasticity: From synapse to perception. Physiol. Rev. 2006, 86, 1033–1048. [Google Scholar] [CrossRef]
- Clopath, C.; Gerstner, W. Voltage and Spike Timing Interact in STDP—A Unified Model. Front. Synaptic Neurosci. 2010, 2, 25. [Google Scholar] [CrossRef]
- Froemke, R.C.; Letzkus, J.J.; Kampa, B.M.; Hang, G.B.; Stuart, G.J. Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front. Synaptic Neurosci. 2010, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Sugisaki, E.; Fukushima, Y.; Nakajima, N.; Aihara, T. The dependence of acetylcholine on dynamic changes in the membrane po-tential and an action potential during spike timing-dependent plasticity induction in the hippocampus. Eur. J. Neurosci. 2022, 56, 5972–5986. [Google Scholar] [CrossRef] [PubMed]
- Llano, I.; Leresche, N.; Marty, A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 1991, 6, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Pitler, T.; Alger, B. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci. 1992, 12, 4122–4132. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Ohmura, T.; Komatsu, Y. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. J. Neurosci. 2003, 23, 6557–6566. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, S.; de Pasquale, R.; Millman, D.; Song, L.; Lee, H.K.; Tsumoto, T.; Kirkwood, A. The maturation of GABAergic transmission in visual cortex requires endocannabinoid-mediated LTD of inhibitory inputs during a critical period. Neuron 2010, 66, 248–259. [Google Scholar] [CrossRef]
- Li, Y.H.; Xiang, K.; Xu, X.; Zhao, X.; Li, Y.; Zheng, L.; Wang, J. Co-activation of both 5-HT1A and 5-HT7 receptors induced attenuation of glutamatergic synaptic transmission in the rat visual cortex. Neurosci. Lett. 2018, 686, 122–126. [Google Scholar] [CrossRef]
- Roerig, B.; Katz, L.C. Modulation of intrinsic circuits by serotonin 5-HT3Receptors in developing ferret visual cortex. J. Neurosci. 1997, 17, 8324–8338. [Google Scholar] [CrossRef]
- Azimi, Z.; Barzan, R.; Spoida, K.; Surdin, T.; Wollenweber, P.; Mark, M.D.; Herlitze, S.; Jancke, D. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. Elife 2020, 9, e53552. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.M.; Kawaguchi, K.; Seillier, L.; Nienborg, H. Serotonergic modulation of local network processing in V1 mirrors previously reported signatures of local network modulation by spatial attention. Eur. J. Neurosci. 2023, 57, 1368–1382. [Google Scholar] [CrossRef] [PubMed]
- Winkel, F.; Ryazantseva, M.; Voigt, M.B.; Didio, G.; Lilja, A.; Llach Pou, M.; Steinzeig, A.; Harkki, J.; Englund, J.; Khirug, S.; et al. Pharmacological and optical activation of TrkB in Parvalbumin interneurons regulate intrinsic states to orchestrate cortical plasticity. Mol. Psychiatry 2021, 26, 7247–7256. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.P.; Liu, B.H.; Li, Y.T.; Huang, Z.J.; Zhang, L.I.; Tao, H.W. Visual representations by cortical somatostatin inhibitory neu-rons—Selective but with weak and delayed responses. J. Neurosci. 2010, 30, 14371–14379. [Google Scholar] [CrossRef] [PubMed]
- Hang, G.B.; Dan, Y. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex. J. Neurophysiol. 2011, 105, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Carrasquillo, Y.; Hooks, B.M.; Nerbonne, J.M.; Burkhalter, A. Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex. J. Neurosci. 2013, 33, 17373–17384. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M. Synchrony in sensation. Curr. Opin. Neurobiol. 2011, 21, 701–708. [Google Scholar] [CrossRef]
- Hage, T.A.; Bosma-Moody, A.; Baker, C.A.; Kratz, M.B.; Campagnola, L.; Jarsky, T.; Zeng, H.; Murphy, G.J. Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. Elife 2022, 11, e71103. [Google Scholar] [CrossRef]
- Packer, A.M.; Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: A canonical microcircuit for inhibition? J. Neurosci. 2011, 31, 13260–13271. [Google Scholar] [CrossRef]
- Adesnik, H.; Bruns, W.; Taniguchi, H.; Huang, Z.J.; Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 2012, 490, 226–231. [Google Scholar] [CrossRef]
- Fino, E.; Packer, A.M.; Yuste, R. The logic of inhibitory connectivity in the neocortex. Neurosci. 2013, 19, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Cardin, J.A. Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations. J. Neurosci. 2016, 36, 10496–10504. [Google Scholar] [CrossRef] [PubMed]
- Atallah, B.V.; Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 2009, 62, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex. J. Physiol. 2018, 596, 1639–1657. [Google Scholar] [CrossRef] [PubMed]
- Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009, 32, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H.; Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 2010, 464, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, H.; Finn, I.M.; Schaffer, E.S.; Miller, K.D.; Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 2009, 62, 578–592. [Google Scholar] [CrossRef]
- Jadi, M.P.; Sejnowski, T.J. Cortical oscillations arise from contextual interactions that regulate sparse coding. Proc. Natl. Acad. Sci. USA 2014, 111, 6780–6785. [Google Scholar] [CrossRef]
- Jadi, M.P.; Sejnowski, T.J. Regulating Cortical Oscillations in an Inhibition-Stabilized Network. Proc. IEEE Inst. Electr. Electron. Eng. 2014, 102, 830–842. [Google Scholar] [CrossRef]
- Xu, X.; Olivas, N.D.; Ikrar, T.; Peng, T.; Holmes, T.C.; Nie, Q.; Shi, Y. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity. J. Physiol. 2016, 594, 1891–1910. [Google Scholar] [CrossRef]
- Jiang, B.; Treviño, M.; Kirkwood, A. Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex. J. Neurosci. 2007, 27, 9648–9652. [Google Scholar] [CrossRef] [PubMed]
- Dyck, R.; Cynader, M.S. Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: Transient regional, laminar, and columnar distributions during postnatal development. J. Neurosci. 1993, 13, 4316–4338. [Google Scholar] [CrossRef] [PubMed]
- Vetencourt, J.F.M.; Tiraboschi, E.; Spolidoro, M.; Castrén, E.; Maffei, L. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur. J. Neurosci. 2011, 33, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Tiraboschi, E.; Greco, D.; Restani, L.; Cerri, C.; Auvinen, P.; Maffei, L.; Castrén, E.; Maya-Vetencourt, J.F. Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. J. Physiol. 2012, 590, 4777–4787. [Google Scholar] [CrossRef]
- Baroncelli, L.; Sale, A.; Viegi, A.; Vetencourt JF, M.; De Pasquale, R.; Baldini, S.; Maffei, L. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 2010, 226, 100–109. [Google Scholar] [CrossRef]
- Balog, J.; Matthies, U.; Naumann, L.; Voget, M.; Winter, C.; Lehmann, K. Social experience modulates ocular dominance plasticity differentially in adult male and female mice. NeuroImage 2014, 103, 454–461. [Google Scholar] [CrossRef]
- Edagawa, Y.; Saito, H.; Abe, K. The serotonin 5-HT2 receptor-phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortex. Eur. J. Neurosci. 2000, 12, 1391–1396. [Google Scholar] [CrossRef]
- Kim, H.-S.; Jang, H.-J.; Cho, K.-H.; Hahn, S.J.; Yoon, S.H.; Jo, Y.-H.; Kim, M.-S.; Rhie, D.-J. Serotonin inhibits the induction of NMDA receptor-dependent long-term potentiation in the rat primary visual cortex. Brain Res. 2006, 1103, 49–55. [Google Scholar] [CrossRef]
- Edagawa, Y.; Saito, H.; Abe, K. Stimulation of the 5-HT1A receptor selectively suppresses NMDA receptor-mediated synaptic excitation in the rat visual cortex. Brain Res. 1999, 827, 225–228. [Google Scholar] [CrossRef]
- Athilingam, J.C.; Ben-Shalom, R.; Keeshen, C.M.; Sohal, V.S.; Bender, K.J. Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons. Elife 2017, 6, e31991. [Google Scholar] [CrossRef]
- Andrade, R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 2011, 61, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Durieux, L.J.A.; Gilissen, S.R.J.; Arckens, L. Endocannabinoids and cortical plasticity: CB1R as a possible regulator of the excitation/inhibition balance in health and disease. Eur. J. Neurosci. 2022, 55, 971–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Park, J.M.; Lee, S.H.; Ho, W.K. Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons. J. Neurosci. 2019, 39, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Crosby, K.M.; Inoue, W.; Pittman, Q.J.; Bains, J.S. Endocannabinoids gate state-dependent plasticity of synaptic inhibition in feeding circuits. Neuron 2011, 71, 529–541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlos-Lima, E.; Higa, G.S.V.; Viana, F.J.C.; Tamais, A.M.; Cruvinel, E.; Borges, F.d.S.; Francis-Oliveira, J.; Ulrich, H.; De Pasquale, R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. Int. J. Mol. Sci. 2024, 25, 519. https://doi.org/10.3390/ijms25010519
Carlos-Lima E, Higa GSV, Viana FJC, Tamais AM, Cruvinel E, Borges FdS, Francis-Oliveira J, Ulrich H, De Pasquale R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. International Journal of Molecular Sciences. 2024; 25(1):519. https://doi.org/10.3390/ijms25010519
Chicago/Turabian StyleCarlos-Lima, Estevão, Guilherme Shigueto Vilar Higa, Felipe José Costa Viana, Alicia Moraes Tamais, Emily Cruvinel, Fernando da Silva Borges, José Francis-Oliveira, Henning Ulrich, and Roberto De Pasquale. 2024. "Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex" International Journal of Molecular Sciences 25, no. 1: 519. https://doi.org/10.3390/ijms25010519
APA StyleCarlos-Lima, E., Higa, G. S. V., Viana, F. J. C., Tamais, A. M., Cruvinel, E., Borges, F. d. S., Francis-Oliveira, J., Ulrich, H., & De Pasquale, R. (2024). Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. International Journal of Molecular Sciences, 25(1), 519. https://doi.org/10.3390/ijms25010519